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A Sierphski numbef4, page 420] and [1], is an odd positive intedersuch that no positive integer
in this infinite list is prime:

k2l +1,k22+ 1, k22 +1,... k2" +1,.... (1)

A Riesel numbefl] is similar to a Sierpinski number, with 1 replacing+1 in the above infinite
list. Such a number is an odd positive intedgeso that no positive integer in this infinite list is prime:

K'—1k2?—1k22-1,... . k2"—1

5 PR

A cover, for such &, is a finite list of positive integers such that each inte¢en the appropriate
infinite list, has a factor, in the cover, with < d < j.

Given ak and its cover, ACL2 is used to systematically verify thatreiateger, in the appropriate
infinite list, has a smaller factor in the cover.

1 Introduction

Sierpifiski and Riesel numbers are not easy to find. To difgwen odd positive integer as a Sierpifski
number or a Riesel number, one need only locate a prime inghmgriate infinite list. With four
exceptionsk = 47,103 143 197, all of the first 100 odd positive integers<ik < 199, are disqualified
as Sierpifhski numbers by finding at least one prime in thedight elements of the infinite list][3]:

K2l 4+ 1, k22 +1,k22+1,... k2B +1.

Bothk = 103 andk = 197 are eliminated by finding a prime in the list no later tkatf + 1 [3], leaving
47 and 143 as the only possible Sierpifski numbers less2b@n It turns out that 143%3+ 1 and
47.2583 1 1 are prime([8], eliminating them. Thus, there are no Sieskiihumbers in the range<d k <
199. The situation is similar for Riesel numbers.

In 1960, W. Sierpihski[7] proved, for

k =15511380746462593381

every member in the infinite list, given blyl (1), is divisiblg bne of the prime factors of the first six
Fermat numbers. For nonnegative integethe Fermat numberk,, is given by

Fa=22+1
The first five Fermat numbers are prime drds the product of two primes:
Fo=3,F1 =5F, =17 F3 = 257, F4, = 65537
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Fs = 4294967297 641- 6700417

Thus (3 5 17 257 641 65537 6700411 a cover fork = 15511380746462593381, showing it to be a
Sierpihski number. Sierpinski’s original proof is debed in [&, page 374] and[2].
In 1962, J. Selfridge (unpublished) proved that 78557 iseapgfiski number by showing that

(35713193778

is a cover[[6]. Later, in 1967, Selfridge and Sierpihski jeotured that 78557 is the smallest Sierpin-
ski number [[6]. The distributed computing project Sevemtee Bust [6] is devoted to proving this
conjecture, disqualifying every < 78557, by finding am that makesk-2" + 1 prime. For example,
19249 213018586 1 5 3918990-digit prime, eliminated 19249 [9]. When thigjgct started in 2002, all
but 17 values ok had already been disqualified. Currently six valuek mmain to be eliminated.

Earlier, in 1956, but less well known than Sierpinski’'s Wdd. Riesel[5] showed 509203 is a Riesel
number with cover3 5 7 13 17 241 It is possible for the same odd positive integer to be both a
Sierpifiski number and a Riesel number. An examiple [k]4s143665583045350793098657.

2 Covers Into ACL2 Proofs

Given an odd positive integek, with a Sierpihski covery’, here is the process used to verify thas a
Sierpifski number. There is a similar process for verfyRigsel numbers from their covers.
1. For eachd in %, find positive integeby and nonnegative integeg so that for every nonnegative
integeri, d is a factor ofk- 20a+¢ 4 1.
In practice, every in % is an odd prime smaller thda
(a) Search for positive integérsuch that is a factor of 2 — 1. Sinced is an odd prime, it turns
out that such & will always exidl among 12,....d — 1. Letby be the fird suchb.
(b) Search for nonnegative integesuch that is a factor ofk-2°+ 1. If such ac exists, then
one exists among,Q,...,by — 1. Letcy be the firdd suchg, if it exists.
(c) Assumingcy exists, use induction on to prove that for every nonnegative integged is a
factor ofk- 20a+¢ 4 1
The base case, wheg-= 0, follows from[1b above.
The induction step, going froin= j toi = j + 1, follows from[1& above:

k2Pa(i+1)+Ca 4 g — [kPal+Ca. (2Ba _ 1)] 4 [k2Pal+Ca 4 q] )

By[1d,d is a factor of the left summand dfl(2) adds a factor of the right summand by the
induction hypothesis.

2. For each positive integer, find d in 4 and nonnegative integeso thatn = by -i 4+ ¢4. If suchd
andi exist, then, by Jcd is a factor ofk- 2%+C -1 = k. 274 1.
To ensure that sucH andi exist for every positiven, only a finite number of cases need be
considered: Let be the least common multiple of all thg’s found for thed’s in 4. Check for
each
ne{0,1,2,...,0—1},

1For the mathematically literate: The well-known Fermattle Theorem ensures the claimed existence.

2Thus, being mathematically precid®, is just the order of 2 in the multiplicative group of the intes modulad.

3If d does not dividek, then ¢ = —(1/k) (modd), socq is thediscrete logarithmbase 2, of-(1/k) in the integers
modulod.
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that there always isdin % that satisfies the equation

mod(n,by) = cqg.

This process has not been formally verified in ACL2. For exiampe don’t bother to check that every
member of¢ is an odd prime. Instead, for each individkaind %, ACL2 events are generated that
would provek is a Sierpifiski number, if all the events succeed. If soméhefevents fail, then, as
usual when using ACL2, further study of the failure is reqdirin the hope of taking corrective action.
The generation of these events is controlled by the macsesfy-sierpinski andverify-riesel.
These macros take three arguments: the name of a witnedsofutitat will find a factor for a given
k2" 41, the numbek that is a Sierpifski or Riesel number, and the co¥efor k. The macros then
generate the proof, following the plan outlined in this smtt

For eachd in ¢, by andcy from 1a and 1b, are computed. They are needed to define thessitn
function and to state the theorems mentioned in 1c, whichhene proved. For example, the proof that
78557 is a Sierpihski number defines this witness function:

(DEFUN WITNESS (N)
(IF (INTEGERP N)

(COND ((EQUAL (MOD N 2) 0) 3)
((EQUAL (MOD N 4) 1) 5)
((EQUAL (MOD N 3) 1) 7)
((EQUAL (MOD N 12) 11) 13)
((EQUAL (MOD N 18) 15) 19)
((EQUAL (MOD N 36) 27) 37)
((EQUAL (MOD N 9) 3) 73))

0))

The rightmost numbers, in this definition, form the covee tlorrespondindpy’s are the leftmost num-
bers, and the middle numbers are this. So% = (357 1319 37 78 byz3 =9, andcyz = 3.
The theorem, from 1c, fat =73 is

(DEFTHM WITNESS-LEMMA-73
(IMPLIES (AND (INTEGERP N)
(>= N 0))
(DIVIDES 73
(+1
(x 78557
(EXPT 2
(+ 3
(x9NI
:HINTS ...)

Four properties are proved about the witness functionblsiténg 78557 is a Sierpihski number:

(DEFTHM WITNESS-NATP
(AND (INTEGERP (WITNESS N))
(<= 0 (WITNESS N)))
:HINTS ...)
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(DEFTHM WITNESS-GT-1
(IMPLIES (INTEGERP N)
(< 1 (WITNESS N)))
:HINTS ...)

(DEFTHM WITNESS-LT-SIERPINSKI
(IMPLIES (AND (INTEGERP N)
(<= 0 N))
(< (WITNESS N)
(+ 1 (x 78557 (EXPT 2 N))))))

(DEFTHM WITNESS-DIVIDES-SIERPINSKI-SEQUENCE
(IMPLIES (AND (INTEGERP N)
(<= 0 N))
(DIVIDES (WITNESS N)
(+ 1 (x 78557 (EXPT 2 N)))))
:HINTS ...)

As suggested above in 2, these properties can be proved Wwnghevery integer is “covered” by one of
the cases given in theOND-expression used in the definition of the witness function.

(DEFTHM WITNESS-COVER-ALL-CASES
(IMPLIES (INTEGERP N)
(OR (EQUAL (MOD N 2) 0)
(EQUAL (MOD N 4) 1)
(EQUAL (MOD N 3) 1)
(EQUAL (MOD N 12) 11)
(EQUAL (MOD N 18) 15)
(EQUAL (MOD N 36) 27)
(EQUAL (MOD N 9) 3)))
:RULE-CLASSES NIL
:HINTS ...)

To prove this, we first demonstrate that these cases are gtkllmwhenn is replaced by moth, 36)
(where 36 is the least common multiple of all the moduli abovkhis can be checked, essentially, by
computation.

(DEFTHM WITNESS-COVER-ALL-CASES-MOD-36
(IMPLIES (INTEGERP N)
(OR (EQUAL (MOD (MOD N 36) 2) 0)

(EQUAL (MOD (MOD N 36) 4) 1)
(EQUAL (MOD (MOD N 36) 3) 1)
(EQUAL (MOD (MOD N 36) 12) 11)
(EQUAL (MOD (MOD N 36) 18) 15)
(EQUAL (MOD (MOD N 36) 36) 27)
(EQUAL (MOD (MOD N 36) 9) 3)))

:RULE-CLASSES NIL

:HINTS ...)
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The actual modular equivalences that need to be proved depeboth the number 78557 and its cover.
Although the theorem that is being proved is obviously tthere does not appear to be a way to prove it
once and for all in ACL2, not even usirgicapsulate. Instead, a pair of theorems very much like the
ones we have described needs to be proved from scratch todd&erent Sierpinski or Riesel number.
As experienced ACL2 users, we are concerned that ACL2 wilpsy fail to prove this theorem for some
combination of numbers and their covers. However, we hagd tieese macros to generate the proof for
each of the Sierpifiski and Riesel numbeith coverslisted in the appendix, and all of the proofs have
gone through automatically. Note that the appendix esﬂ@ﬂiicontains all the Sierpifski and Riesel
numbers known to us.

3 Numbers Without Covers

There are odd positive integers, shown to be Sierpinskr{esel) numbers, that have no known covers.
ACL2 proofs have been constructed for these numbers.

For example([1]k = 4008735125781478102999926000625 is a Sierpinski nyrbbémo (com-
plete) cover is known. For all positive integer,if mod(n,4) # 2, thenk- 2"+ 1 has a factor among the
members of3 17 97 241 257 673 To showk is a Sierpihski number, a factor bf2" + 1 must be found
for all positive integern, such that modn,4) = 2. Such a factor is constructed using these facts:

e k=44745755 is a fourth power
o A4+ 1=(2C+2x+1)- (22 —-2x+1)
Leti = 44745755, s& = i*. Then
k-2M241 = 22(i-2"%+1
= 4(-2M%+1
= [2(-2")2%42(-2")+1]-[2(i-2")2 —2(i- 2") + 1] (3)
The left factor of [(B) algebraically reduces to show

400436518104005@2"4 4+ 89491510214/ +1

is a factor ofk- 2"+ 1, whenever mo¢h,4) = 2.
A Riesel numberk, with no known cover, is given in Appendix A. In this exampites a2 is a square
and

k-22'—1 = a2.22"_1
= (a2")?-1
(@2"+1)-(a2"—1)

shows how to factok- 2™ — 1 whenmis even and positive. A (partial) cover, listed in Appendixgives
a constant factor for eadh 2™ — 1, whenmis odd and positive.

4Given a Sierpinski or Riesel numbkrand its cover, infinitely many other examples can be constructed: R.ge the
product of the numbers iff and leti be a positive integer. Thdoi-2-i- P is also a Sierpifiski or Riesel number with the same
cover.
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4 Conclusions

Given a Sierpifiski or Riesel numbdy, and its cover, we have described ACL2 macros that generate
events verifying that each integer, in the appropriate itefilist, has a smaller factor in the cover.

For the few known Sierpifiski or Riesel numbers with no knaerers, hand-crafted ACL2 proofs
have been constructed verifying that each integer, in theogpiate infinite list, has a smaller factor.
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A Sierpinski and Riesel Numbers

Numbersk, verified with ACL2.
Eachk with a cover? is either mentioned in the References or claimed at varia@isites. Numbers
k without known covers are from|[1].

Smallest known Sierpiiski number
k =78557=17-4621, a product of two primes
¢=(357131937738

Smallest known prime Sierphski number
k=271129
¢ =(357131724})



26 Verifying Numbers in ACL2

More Sierpifiski numbers
k €
271577 (357131724}
322523 (357 13377310p
327739 (357131797 25¢
482719 (357131724}
575041 (3571317241
603713 (357131724}
903983 (357131724}
934909 (357131973109
965431 (3571317241
1259779 (35713197310p
1290677 (357131937 10p
1518781 (3571317 24}
1624097 (3571317241
1639459 (3571317241
1777613 (357131719 109 433
2131043 (3571317241

Smallest Sierpfiski number found by Sierpifski
k =15511380746462593381

% = (3517 257 641 65537 67004117

Smallest known Riesel number
k =509203

¢ = (357131724}
More Riesel numbers
4
762701 (357131724}
777149 (35713193778
790841 (35713193778
992077 (357131724}

Numbers both Sierpifski and Riesel
%R indicates the Riesel number cover afiglindicates the Sierpihski number cover.

k = 143665583045350793098657
¢r= (35131797 241 257
¢s=(37111931376173109 151 331 1321

k = 47867742232066880047611079
%r= (3711193137 416173109 151 331
%s= (351317 97 241 257
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k = 878503122374924101526292469
%r= (37131937 73 97 109 241 257
%s= (351117 314161 151 331 61681

k = 3872639446526560168555701047
¢r= (371319377397 109 241 6Y3
%s= (351117 314161151 33161681

k =623506356601958507977841221247
¢r= (371319377397 109 241 6Y3
%s= (3517 257 641 65537 6700417
Sierpinski numbers without cover
k = 40087351257814781029999260006284745758
(317 97 241 257 673s partial cover for modn, 4) # 2.

400436518104005@2."/4! + 89491510274/ 41
is a factor ofk- 2" + 1, whenever moth,4) = 2.

k = 7341106150007 75
(317 257 641 65537 6700411 partial cover for modn,4) +# 2.
1077836790113632192906501201280"4 +146822123000155@."/4/ +1
is a factor ofk- 2" + 1, whenever moth,4) = 2.

Riesel number without cover
Leta = 389684530387388117515931462080888704606697246980@tdn= a2.
The list

(71731417197 113 127 151 241 257 281 337 641 673 1321 14449 BBER7 6700417
is partial cover for odd positve.

a-2"2 4+ 1 s afactor ok- 2" — 1, wheneven is positive and even.
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