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A Sierpínski number[4, page 420] and [1], is an odd positive integer,k, such that no positive integer
in this infinite list is prime:

k21+1,k22+1,k23+1, . . . ,k2n+1, . . . . (1)

A Riesel number[1] is similar to a Sierpiński number, with−1 replacing+1 in the above infinite
list. Such a number is an odd positive integer,k, so that no positive integer in this infinite list is prime:

k21−1,k22−1,k23−1, . . . ,k2n−1, . . . .

A cover, for such ak, is a finite list of positive integers such that each integer,j, in the appropriate
infinite list, has a factor,d, in the cover, with 1< d < j.

Given ak and its cover, ACL2 is used to systematically verify that each integer, in the appropriate
infinite list, has a smaller factor in the cover.

1 Introduction

Sierpiński and Riesel numbers are not easy to find. To disqualify an odd positive integer as a Sierpiński
number or a Riesel number, one need only locate a prime in the appropriate infinite list. With four
exceptions,k= 47,103,143,197, all of the first 100 odd positive integers, 1≤ k≤ 199, are disqualified
as Sierpiński numbers by finding at least one prime in the first eight elements of the infinite list [3]:

k21+1,k22+1,k23+1, . . . ,k28+1.

Bothk= 103 andk= 197 are eliminated by finding a prime in the list no later thank216+1 [3], leaving
47 and 143 as the only possible Sierpiński numbers less than200. It turns out that 143· 253+ 1 and
47·2583+1 are prime [3], eliminating them. Thus, there are no Sierpi´nski numbers in the range 1≤ k≤
199. The situation is similar for Riesel numbers.

In 1960, W. Sierpiński [7] proved, for

k= 15511380746462593381,

every member in the infinite list, given by (1), is divisible by one of the prime factors of the first six
Fermat numbers. For nonnegative integer,n, theFermat number, Fn, is given by

Fn = 22n
+1.

The first five Fermat numbers are prime andF5 is the product of two primes:

F0 = 3,F1 = 5,F2 = 17,F3 = 257,F4 = 65537,
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F5 = 4294967297= 641·6700417.

Thus(3 5 17 257 641 65537 6700417) is a cover fork = 15511380746462593381, showing it to be a
Sierpiński number. Sierpiński’s original proof is described in [8, page 374] and [2].

In 1962, J. Selfridge (unpublished) proved that 78557 is a Sierpiński number by showing that

(3 5 7 13 19 37 73)

is a cover [6]. Later, in 1967, Selfridge and Sierpiński conjectured that 78557 is the smallest Sierpin-
ski number [6]. The distributed computing project Seventeen or Bust [6] is devoted to proving this
conjecture, disqualifying everyk < 78557, by finding ann that makesk ·2n + 1 prime. For example,
19249·213018586+1, a 3918990-digit prime, eliminated 19249 [9]. When this project started in 2002, all
but 17 values ofk had already been disqualified. Currently six values ofk remain to be eliminated.

Earlier, in 1956, but less well known than Sierpiński’s work, H. Riesel [5] showed 509203 is a Riesel
number with cover(3 5 7 13 17 241). It is possible for the same odd positive integer to be both a
Sierpiński number and a Riesel number. An example [1] isk= 143665583045350793098657.

2 Covers Into ACL2 Proofs

Given an odd positive integer,k, with a Sierpiński cover,C , here is the process used to verify thatk is a
Sierpiński number. There is a similar process for verfyingRiesel numbers from their covers.

1. For eachd in C , find positive integerbd and nonnegative integercd so that for every nonnegative
integeri, d is a factor ofk ·2bd·i+cd +1.

In practice, everyd in C is an odd prime smaller thank.

(a) Search for positive integerb such thatd is a factor of 2b−1. Sinced is an odd prime, it turns
out that such ab will always exist1 among 1,2, . . . ,d−1. Letbd be the first2 suchb.

(b) Search for nonnegative integerc such thatd is a factor ofk ·2c+1. If such ac exists, then
one exists among 0,1, . . . ,bd −1. Letcd be the first3 suchc, if it exists.

(c) Assumingcd exists, use induction oni, to prove that for every nonnegative integeri, d is a
factor ofk ·2bd·i+cd +1.
The base case, wheni = 0, follows from 1b above.
The induction step, going fromi = j to i = j +1, follows from 1a above:

k2bd( j+1)+cd +1= [k2bd j+cd · (2bd −1)]+ [k2bd j+cd +1] (2)

By 1a,d is a factor of the left summand of (2) andd is a factor of the right summand by the
induction hypothesis.

2. For each positive integern, find d in C and nonnegative integeri so thatn= bd · i +cd. If suchd
andi exist, then, by 1c,d is a factor ofk ·2bd·i+cd +1= k ·2n+1.

To ensure that suchd and i exist for every positiven, only a finite number of cases need be
considered: Letℓ be the least common multiple of all thebd’s found for thed’s in C . Check for
each

n∈ {0,1,2, . . . , ℓ−1},

1For the mathematically literate: The well-known Fermat’s Little Theorem ensures the claimed existence.
2Thus, being mathematically precise,bd is just the order of 2 in the multiplicative group of the integers modulod.
3If d does not dividek, then 2cd ≡ −(1/k) (modd), socd is thediscrete logarithm, base 2, of−(1/k) in the integers

modulod.
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that there always is ad in C that satisfies the equation

mod(n,bd) = cd.

This process has not been formally verified in ACL2. For example, we don’t bother to check that every
member ofC is an odd prime. Instead, for each individualk andC , ACL2 events are generated that
would provek is a Sierpiński number, if all the events succeed. If some ofthe events fail, then, as
usual when using ACL2, further study of the failure is required, in the hope of taking corrective action.
The generation of these events is controlled by the macrosverify-sierpinski andverify-riesel.
These macros take three arguments: the name of a witness function that will find a factor for a given
k2n ± 1, the numberk that is a Sierpiński or Riesel number, and the coverC for k. The macros then
generate the proof, following the plan outlined in this section.

For eachd in C , bd andcd from 1a and 1b, are computed. They are needed to define the witness
function and to state the theorems mentioned in 1c, which arethen proved. For example, the proof that
78557 is a Sierpiński number defines this witness function:

(DEFUN WITNESS (N)

(IF (INTEGERP N)

(COND ((EQUAL (MOD N 2) 0) 3)

((EQUAL (MOD N 4) 1) 5)

((EQUAL (MOD N 3) 1) 7)

((EQUAL (MOD N 12) 11) 13)

((EQUAL (MOD N 18) 15) 19)

((EQUAL (MOD N 36) 27) 37)

((EQUAL (MOD N 9) 3) 73))

0))

The rightmost numbers, in this definition, form the cover, the correspondingbd’s are the leftmost num-
bers, and the middle numbers are thecd’s. SoC = (3 5 7 13 19 37 73), b73 = 9, andc73 = 3.

The theorem, from 1c, ford = 73 is

(DEFTHM WITNESS-LEMMA-73

(IMPLIES (AND (INTEGERP N)

(>= N 0))

(DIVIDES 73

(+ 1

(* 78557

(EXPT 2

(+ 3

(* 9 N)))))))

:HINTS ...)

Four properties are proved about the witness function, establishing 78557 is a Sierpiński number:

(DEFTHM WITNESS-NATP

(AND (INTEGERP (WITNESS N))

(<= 0 (WITNESS N)))

:HINTS ...)
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(DEFTHM WITNESS-GT-1

(IMPLIES (INTEGERP N)

(< 1 (WITNESS N)))

:HINTS ...)

(DEFTHM WITNESS-LT-SIERPINSKI

(IMPLIES (AND (INTEGERP N)

(<= 0 N))

(< (WITNESS N)

(+ 1 (* 78557 (EXPT 2 N))))))

(DEFTHM WITNESS-DIVIDES-SIERPINSKI-SEQUENCE

(IMPLIES (AND (INTEGERP N)

(<= 0 N))

(DIVIDES (WITNESS N)

(+ 1 (* 78557 (EXPT 2 N)))))

:HINTS ...)

As suggested above in 2, these properties can be proved by showing every integer is “covered” by one of
the cases given in theCOND-expression used in the definition of the witness function.

(DEFTHM WITNESS-COVER-ALL-CASES

(IMPLIES (INTEGERP N)

(OR (EQUAL (MOD N 2) 0)

(EQUAL (MOD N 4) 1)

(EQUAL (MOD N 3) 1)

(EQUAL (MOD N 12) 11)

(EQUAL (MOD N 18) 15)

(EQUAL (MOD N 36) 27)

(EQUAL (MOD N 9) 3)))

:RULE-CLASSES NIL

:HINTS ...)

To prove this, we first demonstrate that these cases are exhaustive whenn is replaced by mod(n,36)
(where 36 is the least common multiple of all the moduli above). This can be checked, essentially, by
computation.

(DEFTHM WITNESS-COVER-ALL-CASES-MOD-36

(IMPLIES (INTEGERP N)

(OR (EQUAL (MOD (MOD N 36) 2) 0)

(EQUAL (MOD (MOD N 36) 4) 1)

(EQUAL (MOD (MOD N 36) 3) 1)

(EQUAL (MOD (MOD N 36) 12) 11)

(EQUAL (MOD (MOD N 36) 18) 15)

(EQUAL (MOD (MOD N 36) 36) 27)

(EQUAL (MOD (MOD N 36) 9) 3)))

:RULE-CLASSES NIL

:HINTS ...)
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The actual modular equivalences that need to be proved depend on both the number 78557 and its cover.
Although the theorem that is being proved is obviously true,there does not appear to be a way to prove it
once and for all in ACL2, not even usingencapsulate. Instead, a pair of theorems very much like the
ones we have described needs to be proved from scratch for each different Sierpiński or Riesel number.
As experienced ACL2 users, we are concerned that ACL2 will simply fail to prove this theorem for some
combination of numbers and their covers. However, we have used these macros to generate the proof for
each of the Sierpiński and Riesel numberswith coverslisted in the appendix, and all of the proofs have
gone through automatically. Note that the appendix essentially4 contains all the Sierpiński and Riesel
numbers known to us.

3 Numbers Without Covers

There are odd positive integers, shown to be Sierpiński (orRiesel) numbers, that have no known covers.
ACL2 proofs have been constructed for these numbers.

For example [1],k = 4008735125781478102999926000625 is a Sierpiński number, but no (com-
plete) cover is known. For all positive integer,n, if mod(n,4) 6= 2, thenk ·2n+1 has a factor among the
members of(3 17 97 241 257 673). To showk is a Sierpiński number, a factor ofk·2n+1 must be found
for all positive integer,n, such that mod(n,4) = 2. Such a factor is constructed using these facts:

• k= 447457554 is a fourth power

• 4x4+1= (2x2+2x+1) · (2x2−2x+1)

Let i = 44745755, sok= i4. Then

k ·24n+2+1 = 22(i ·2n)4+1

= 4(i ·2n)4+1

= [2(i ·2n)2+2(i ·2n)+1] · [2(i ·2n)2−2(i ·2n)+1] (3)

The left factor of (3) algebraically reduces to show

4004365181040050·22⌊n/4⌋ +89491510·2⌊n/4⌋ +1

is a factor ofk ·2n+1, whenever mod(n,4) = 2.
A Riesel number,k, with no known cover, is given in Appendix A. In this example,k= a2 is a square

and

k ·22n−1 = a2 ·22n−1

= (a2n)2−1

= (a2n+1) · (a2n−1)

shows how to factork·2m−1 whenm is even and positive. A (partial) cover, listed in Appendix A, gives
a constant factor for eachk ·2m−1, whenm is odd and positive.

4Given a Sierpiński or Riesel numberk and its coverC , infinitely many other examples can be constructed: LetP be the
product of the numbers inC and leti be a positive integer. Thenk+2· i ·P is also a Sierpiński or Riesel number with the same
cover.
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4 Conclusions

Given a Sierpiński or Riesel number,k, and its cover, we have described ACL2 macros that generate
events verifying that each integer, in the appropriate infinite list, has a smaller factor in the cover.

For the few known Sierpiński or Riesel numbers with no knowncovers, hand-crafted ACL2 proofs
have been constructed verifying that each integer, in the appropriate infinite list, has a smaller factor.
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[8] Waclaw Sierpiński (1987):Elementary Theory of Numbers. PWN–Polish Scientific Publishers and Elsevier
Science Publishers, Warszawa and Amsterdam. Second English edition revised and enlarged by A. Schinzel.
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A Sierpiński and Riesel Numbers

Numbers,k, verified with ACL2.
Eachk with a coverC is either mentioned in the References or claimed at various websites. Numbers

k without known covers are from [1].

Smallest known Sierpínski number
k= 78557= 17·4621, a product of two primes

C = (3 5 7 13 19 37 73)

Smallest known prime Sierpínski number
k= 271129

C = (3 5 7 13 17 241)
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More Sierpiński numbers
k C

271577 (3 5 7 13 17 241)
322523 (3 5 7 13 37 73 109)
327739 (3 5 7 13 17 97 257)
482719 (3 5 7 13 17 241)
575041 (3 5 7 13 17 241)
603713 (3 5 7 13 17 241)
903983 (3 5 7 13 17 241)
934909 (3 5 7 13 19 73 109)
965431 (3 5 7 13 17 241)

1259779 (3 5 7 13 19 73 109)
1290677 (3 5 7 13 19 37 109)
1518781 (3 5 7 13 17 241)
1624097 (3 5 7 13 17 241)
1639459 (3 5 7 13 17 241)
1777613 (3 5 7 13 17 19 109 433)
2131043 (3 5 7 13 17 241)

Smallest Sierpínski number found by Sierpiński
k= 15511380746462593381

C = (3 5 17 257 641 65537 6700417)

Smallest known Riesel number
k= 509203

C = (3 5 7 13 17 241)

More Riesel numbers
k C

762701 (3 5 7 13 17 241)
777149 (3 5 7 13 19 37 73)
790841 (3 5 7 13 19 37 73)
992077 (3 5 7 13 17 241)

Numbers both Sierpiński and Riesel
CR indicates the Riesel number cover andCS indicates the Sierpiński number cover.

k= 143665583045350793098657

CR = (3 5 13 17 97 241 257)

CS= (3 7 11 19 31 37 61 73 109 151 331 1321)

k= 47867742232066880047611079

CR = (3 7 11 19 31 37 41 61 73 109 151 331)

CS= (3 5 13 17 97 241 257)
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k= 878503122374924101526292469

CR = (3 7 13 19 37 73 97 109 241 257)

CS= (3 5 11 17 31 41 61 151 331 61681)

k= 3872639446526560168555701047

CR = (3 7 13 19 37 73 97 109 241 673)

CS= (3 5 11 17 31 41 61 151 331 61681)

k= 623506356601958507977841221247

CR = (3 7 13 19 37 73 97 109 241 673)

CS= (3 5 17 257 641 65537 6700417)

Sierpiński numbers without cover
k= 4008735125781478102999926000625= 447457554

(3 17 97 241 257 673) is partial cover for mod(n,4) 6= 2.

4004365181040050·22⌊n/4⌋ +89491510·2⌊n/4⌋+1
is a factor ofk ·2n+1, whenever mod(n,4) = 2.

k= 7341106150007754

(3 17 257 641 65537 6700417) is partial cover for mod(n,4) 6= 2.

1077836790113632192906501201250·22⌊n/4⌋ +1468221230001550·2⌊n/4⌋ +1
is a factor ofk ·2n+1, whenever mod(n,4) = 2.

Riesel number without cover
Let a= 3896845303873881175159314620808887046066972469809 and let k= a2.

The list

(7 17 31 41 71 97 113 127 151 241 257 281 337 641 673 1321 14449 29191 65537 6700417)
is partial cover for odd positven.

a·2n/2+1 is a factor ofk ·2n−1, whenevern is positive and even.
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