
PREFACE 

TH:E main object of this publication is to render more accessible the papers 

of a great mathematician, which in their original form appeared in many 

journals over a period of about 50 years. The editors have kept in view 

a second object also: that of rendering the work useful to mathematicians 

generally by providing introductions to groups of papers, or comments 

where appropriate. These editorial additions, while not always systematic 

or exhaustive, will (it is hoped) assist the reader to view Hardy’s papers in 

proper perspective. 

It is this second object which has led the editors to divide th.e pders 

into groups (or further into subgroups) in accordance with the nature of 

their subject-matter, instead of publishing them in chronological order. 

The editors have been very conscious of the difficulty of making such 

a classification, which is most acute in those instances in which a paper 

that is primarily on one topic has subsequently proved to be of great 

importance for another. There are cases in which our allocation of a paper 

to one section rather than to another has been in the nature of an arbitrary 

choice, but we 

be a matter for 

the papers of a series (such as 

hope that adequate cross-references are provided. It may 

regret that our policy has sometimes resulted in distribut#ing 

several sections, but we believe 

‘Notes on 

that any 

the Integral 

arrangement 

Calculus’) among 

which kept them 

together would have been less satisfactory. 

We are grateful to Professor Littlewood for his permission to include all 

the Hardy-Littlewood papers, and for his approval of our policy of 

treating them on the same footing as Hardy’s own papers. 

THE EDITORS 
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EDITORIAL NOTE 

The work will comprise seven volumes 

FOR convenience of reference, papers are numbered according to years, 

e.g. 1912, 4. A complete list of Hardy’s papers will be found at the end of I 
this volume (pp. 683-99) and will be reproduced at the end of each 

volume. This list is based on that compiled by Titchmarsh (Journal of the 

Londm i’kxthematical Society, 25 (1950), 89-101). 

The date of publication of a paper, where it differs from the year men- 

tioned in the reference number, is given (for the sake of its historical 

interest) in the contents list of the volume containing the paper. 

Where reference is made, in the corrections or comments, to the pages 

of a paper, the numbers used are those of the original pagination and not 

the consecutive page numbers of this volume. The joint papers with 

Ramanujan are reproduced from The Cdlected Papers of S. Ramanujan 

(Cambridge, 1927), and for these the ‘original pagination’ relates to that 

volume and not to the first publication in a journal. 
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GODFREY HAROLD HARDY 

1877-1947 

GODFREY HAROLD HARDY was born on 7 February 1877, at Cranleigh, Surrey. 
He was the only son of Isaac Hardy, Art Master, Bursar and House Mast& 
of the preparatory branch of Cranleigh School. His mother, Sophia Hardy, 
had been Senior Mistress at the Lincoln Training College. Both parents were 
extremely able people and mathematically minded, but want of funds had 
prevented them from having a university training. 

The future professor’s interest in numbers showed itself early. By the time 
he was two years old he had persuaded his parents to show him,how to write 
down numbers up to millions. When he was taken to church he occupied the 
time in factorizing the numbers of the hymns, and all through his life he amused 
himself by playing about with the numbers of railway carriages, taxi-cabs and L 
the like. 

He and his sister were brought up by enlightened parents in a typical 
Victorian nursery, and, as clever children do, he agonized his nurse with long 
arguments about the efficacy of prayer and the existence of Santa Claus: ‘Why, 
if he gives me things, does he put the price on? My box of tools is marked 
3s. 6d.’ The Hardy parents had many theories about education. Their children 
had few books, but they had to be good literature. In the nursery G. H., who 
was slightly older than his sister, read to her such books as Don Qkxote, 
Gulliver’s Travels and Robinson Crusoe. They were never allowed to play with 
any toy that was broken and past repair. The nurse gave them some instruction 
in reading and writing, but they never had a governess, and on the whole were 
left to find things out for themselves. 

A minute newspaper written by G. H. at the age of eight was unfortunately 
lost in the London blitz. It contained a leading article, a speech by Mr Gladstone, 
various tradesmen’s advertisements, and a full report of a cricket match with 
complete scores and bowling analysis. He also embarked on writing a history 
of England for himself, but with so much detail that he never got beyond the 
Anglo-Saxons. Two exquisite little illustrations for this work have survived. 
He inherited artistic ability from his father, but it was crushed by bad teaching 
at Winchester. He had no interest in music. 

As soon as he was old enough G. H. went to Cranleigh School, and by the 
time he was twelve he had passed his first public examination with distinctions 
in mathematics, Latin and drawing. By this time too he had reached the sixth 
form-the Cranleigh standard was at that time very low-so some of his work 
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was sent to Winchester. He was offered a scholarship there on his mathematics 
alone, but was considered too young to go that year, and went the following 
vear. 

Apparently he was never taught mathematics in a class. Mr Clarke, Second 
Master at Cranleigh, and Dr Richardson, Head of ‘College’, always coached 
him privately. He was never enamoured of public school life. He was grateful 
to Winchester for the education it gave him, but the Spartan life in ‘College’ 
at that time was a great hardship, and he had one very bad illness. 

There was some question of his going up to New College, btit his mind was 
turned in the direction of Cambridge by a curious incident, which he has 
related in A Mathematician’s Apology. He happened to read a highly coloured 
novel of Cambridge life called A Fellow of Trinity, by ‘Alan St Aubin’ (Mrs 
Frances Marshall), and was fired with the ambition to become, like its hero, 
a fellow of Trinity. He went up to Trinity College, Cambridge, as an entrance 
scholar in 1896, his tutor being Dr Verrall. He was first coached by Dr Webb, 
the stock producer of Senior Wranglers. He was so annoyed by Webb’s methods 
that he even considered turning over to history, a love of which had been 
implanted in him by Dr Fearon, Headmaster of Winchester. However, his 
Director of Studies Sent him to A. E. H. Love, and this, he considered, was 
one of the turning points of his life, and the beginning of his career as a ‘real 
mathematician’. Love was, of course, primarily an applied mathematician; 
but he introduced Hardy to Jordan’s Cours d’AnaZyse, the first volume of which 
had been published in 1882, and the third and last in 1887. This must h&e 
been Hardy’s first contact with analysis in the modern sense, and he has 
described in A Mathematician’s Apology how it opened his eyes to what 
mathematics really was. 

Hardy was fourth wrangler in 1898, R. W. H. T. Hudson -being Senior 
Wrangler, with J. H. Jeans and J, F. Cameron, later Master of Gonville and 
Caius, bracketed next. He took Part II of the Tripos in 1900, being placed in 
the first division of the first class, Jeans being then below him in the second 
division of the first class. In the same year he was elected to a Prize Fellowship 
at Trinity, and his early ambition was thus fulfilled. Hardy and Jeans, in that 
order, were awarded Smith’s Prizes in 1901. 

His life’s work of research had now begun, his first paper apparently being 
that in the Messenger of Muthematics, 29, 1900. It is about the evaluation of 
some definite integrals, a subject which turned out to be one of his permanent 
minor interests, and on which he was still writing in the last year of his 
. 

hfe 
In 1906, when his Prize Fellowship was due to expire, he was put on the 

Trinity staff as lecturer in mathematics, a position he continued to hold until 
1919. This meant that he had to give six lectures a week. He usually gave two 
courses, one on elementary analysis and the other on the theory of functions. 
The former included such topics as the implicit function theorem, the theory 
of unicursal curves and the integration of functions of one variable. This 
was doubtless the origin of his first Cambridge tract, The Integration of Functions 
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of a Single V&able. This work is so well known now that it is often for- 
gotten that- its systematization was due to Hardy. He also sometimes took small 
informal classes on elementary subjects, but he was never a ‘tutor’ in the 
Oxford sense. 

In 1908 Hardy made a contribution to genetics which seems to be little -. 
known by mathematicians, but which has found its way into textbooks as 
‘Hardy’s Law’. There had been some debate about the proportions in which 
dominant and recessive Mendelian characters would be transmitted in a large 
mixed population. The point was settled by Hardy in a letter to Science. It 
involves only some simple algebra, and no doubt he attached little weight to it. 
As it happens, the law is of central importance in the study of Rh-blood-groups 
and the treatment of haemolytic disease of the newborn. In the Apologr Hardy 
wrote, ‘I have never done anything “useful”. No discovery of mine has made, 
or is likely to make, directly or indirectly, for good or ill, the least difference 
to the amenity of the world.’ It seems that there was at least one exception to 
this statement. 

He was elected a Fellow of the Royal Society in 1910, and in 1914 the 
University of Cambridge recognized his reputation for research, already world- 
wide, by giving him the honorary title of Cayley Lecturer. 

To this period belongs his well-known book A Course of Pure Mathematics, 
first published in 1908, which has since gone through numerous editions and 
been translated into several languages. The standard of mathematical rigour 
in England at that time was not high, and Hardy set himself to give the ordinary 
student a course in which elementary analysis was for the first time done properly. 
A Course of Pure Mathematics is hardly a Cows d’Analyse in the sense of the 
great French treatises, but so far as it goes it serves a similar purpose. It is to 
Hardy and his book that the outlook of present-day English analysts is very d 
largely due. 

He also played a large part in the reform of the old Cambridge Mathematical 
Tripos Part I, and in the abolition of the publication of the results in order of 
merit. 

Another turning point in Hardy’s career wits reached about 1912, when -he 
began his long collaboration with J. E. Littlewood. There have been other 
pairs of mathematicians, such as PhragmPln and Lindeliif, or Whittaker and 
Watson, who ‘have joined forces for a particular object, but there is no other 
case of such a long and fruitful partnership. They wrote nearly a hundred 
papers together, besides (with G. P6lya) the book Inepualities. - 

soon afterwards came his 
mathematician Ramanujan, 

equally successful collaboration with the Indian 
though this was cut short six years later by 

Ramanujan’s early death. An account of this association is given by Hardy in 
the introductions to Ramanujan’s collected works and to the book Ramanujan. 
In a letter to Hardy in 1913, Ramanujan sent specimens of his work, which 
showed that he was a mathematician of the first rank. He came to England in 
1914 and remained until 1919. He was largely self-taught, with no knowledge 
of modern rigour, but his ‘profound and invincible originality’ called out 
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Hardy’s equal but quite different powers. Hardy said, ‘I owe more to him 
than to any one else in the world with tine exception, and my association with 
him is the one romantic incident in my life’. 

Hardy was a disciple of Bertrand Russell, not only in his interest in mathe- 
matical philosophy, but in his political views. He sympathized with Russell’s 
anti-war attitude, though he did not go to the lengths which brought Russell 
into collision with the authorities. In a little book Bertrand Russell and Trinity, 
which he had printed for private circulation in 1942, Hardy has described the 
Russell case and the storms that raged over it in Trinity. It was an unhappy 
time for those concerned, and one may think that it all would have been better 
forgotten. It must have *been with some relief that, in 1919, he heard of his 
election to the Savilian Chair of Geometry at Oxford, and migrdted to New 
College. 

In the informality and friendliness of New College Hardy always felt com- 
pletely at home, He was an entertaining talker on a great variety of subjects, 
and one sometimes noticed every one in common room waiting to see what he 
was going to talk about. Conversation was one of the games which he lov red 
to play, and it was not always easy to make out what his real opinions 
were. 

He played several games well, particularly real tennis, but his great passion 
was for cricket. He would read anything on this subject, and talk about it 
endlessly. His highest compliment was ‘it is in the Hobbs class’. Even until 
1939 he captained the New College Senior CommQn Room side against the 
Choir School and other opponents. He liked to recall the only occasion in the 
history of the Savilian chairs when one Savilian professor (himself) took the 
wicket of the other (H. H. Turner). The paper, ‘A maximal theorem with 
function-theoretic applications’, published in Acta Math. 54, and presumably 

_ addressed to European mathematicians in general,, contains the sentences, 
‘The problem is most easily grasped when stated in the 
Suppose that a batsman plays, in a given season, a given I 

language of cricket . . . 
%tock” of innings . . .‘. 

A vivid account of Hardy’s affection for cricket and of his life in his later 
Cambridge years is given by C. P. Snow, in an article entitled ‘A mathematician 
and cricket’, in The Saturday Book, 8th Year. 

He liked lecturing, and was an admirable lecturer. His matter, delivery and 
hand-writing (a specimen of which appears on the dust-cover of A Muthe- 
maticiun’s Apology) were alike fascinating. Though no original geometer, he 
fulfilled the conditions of his Oxford chair by lecturing on geometry as well 
as on his own subjects. He also lectured occasionally on mathematics for 
philosophers, and drew large audiences of Okford philosophers to whom 
ordinary mathematics made no appeal. His Rouse Ball lecture’ on this subject, 
delivered at Cambridge in 1928, entitled Mathematical Proof, was published 
in Mind, 38, 

Hardy had singularly little appreciation of science, for one who was suffi- 
ciently nearly a scientist to be a Fellow of the Royal Society. In A Mathe- 
matitiun’s Apologr he is at some pains to show that real mathematics is useless, 
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or at any rate harmless. He says, ‘It is true that there are braaches of applied 
mathematics, such as ballistics and aerodynamics, which have been developed 
deliberately for war . w . but none of them has any claim to rank as “real”. 
They are indeed repulsively ugly and intolerably dull; even Littlewood could 
not make ballistics respectable, and if he could not, who can?’ His views on 
this subject were obviously coloured by his hatred of war, but in any case his 
whole instinct was for the purest of mathematics. I worked on the theory of 
Fourier integrals under his guidance for a good many years before I discovered 
for myself that this theory has applications in applied mathematics, if the 
solution of certain differential equations can be called ‘applied’. I never heard 
him refer to these applications. 

Nevertheless, he was a Fellow of the Royal Astronomical Society, which he 
jdined in 1918’ in order that he might attend the meetings at which the theory 
of relativity was debated by Eddington and Jeans. He even once, in 1930, took 
part in a debate on stellar structure, which involved R. H. Fowler’s work on 
Emden’s and allied differential equations. On this he made the characteristic 
remark that Fowler’s work, being pure mathematics, would still be of interest 
long after all the physical theories which had been discussed had become 
obsolete. This prophecy has since been very largely fulfilled. 

I first came into contact with him when I attended his advanced class at 
Oxford in 1920. The subjects which I remember specially as having been 
discussed at this class are Fourier series, continued fractions, and differential 
geometry, a commentary on R. H. Fowler’s Cambridge tract. Whatever the 
subject was, he pursued- it with an eager single-mindedness which the audience 
found irresistible. One felt, temporarily at any rate, that nothing else in the 
world but the proof of these theorems really mattered. There could have been 
no more inspiring director of the work of others. 

He, was always at the head of a team of researchers, both colleagues and 
students, whom he provided with an inexhaustluble stock of ideas on which to 
work. He was an extremely kind-hearted man, who could not bear any of his 
pupils to fail in their researches, Many Oxford D.Phil. dissertations must 
have owed much to his supervision. 

Hardy always referred to God as his personal enemy. This was, of course, a 
joke, but there was something real behind it. He took his disbelief in the 
doctrines of religion more seriously than most people seem to do. He would 
not enter a religious building, even for such a purpose as the election of -a 
Warden of New College. The clause in the New College by-laws, enabling a 
fellow with a conscientious objection to being present in Chapel to send his 
vote to the scrutineers, was put in on his <behalf. 

He has been described as- absent-minded, but I never saw any sign of thi8. 
If he dined at high table in tennis clothes it was because he liked to do so, not 
because he had forgotten what he was wearing. He had a way of passing in the 
street people whom he knew well without any sign of recognition, but this 
was due to a sort of shyness, or a feeling of the slight absurdity of a repeated 
conventional greeting. 
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His likes and dislikes, or rather enthusiasms and hates, have been listed as 
follows: 

Enthusiasms 
(i) Cricket and all forms of ball games. 
(ii) America, though perhaps he only came into contact with the pleasanter 
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side of it. 
Scandinavia, its people and its food. 
Detective stories. 
Good literature, English and French, especially history and biography. 
Walking and mild climbing, especially in Scotland and Switzerland. 
Conversation. 
Odd little paper games, such as making teams of famous people whose 

names began with certain combinations of letters or who were 
connected with certain countries, towns or colleges. These were 
played for hours in hotels or on walks. 

Female emancipation and the higher education of women (though he 
opposed the granting of full membership of the university to Oxford 
women). 

The Times cross-word puzzles. 
The sun. 
Meticulous orderliness, in everything but dress. He had a large library 

and there were piles of papers all about his rooms, but he knew where 
everything was and the exact position of each book in the shelves. 

Cats of all ages and types. 

Blood sports of all kinds, war, cruelty of all kinds, concentration 
camps and other emanations of totalitarian governments. 

Mechanical gadgets; he would never use a watch or a fountain pen, 
and the telephone only under compulsion. He corresponded chiefly 
by prepaid telegrams and post cards. 

Looking-glasses; he had none in his rooms, and in hotels the first thing 
he did in his room was to cover them over with bath-towels. 

Orthodox religion, though he had several clerical friends. 
The English climate, except during a hot summer. 
Dogs. 
Mutton-a relic of his Winchester days, when they had by statute to 

eat it five days a week. 
Politicians as a class. 
Any kind of sham, especially mental sham. 

He was an extraorornary mrxture or out-or-tne-way mrormatlon and rgnor- 
ante. ‘What is a milliner? Would you call the Army and Navy Stores a -. 
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milliner’s ?’ ‘No hawking! (this on Brighton front); I shouldn’t have thought 
Ehey had to forbid that nowadays.’ In doing a cross-word puzzle: ‘The word 
comes to ladders, but the clue is about stockings’. 

Returning to his mathematical career, I may refer here to the founding of 
the Quarterly Journal of Mathematics (Oxford series). Glaisher, the editor of 
the Messenger of ikfuthematics and the old Quarterly Journal, had died in 1928, 
and these two periodicals had come to an end. There was an obvious need for 
something to replace them, and it was largely due to Hardy that a new series 
of the Quarterly Journal was started in Oxford. 

The London Mathematical Society occupied a leading place in his affections. 
He served on the Council from 1905-1908, joined it again in 1914, and from 
that time, except fur two absences of a year each, in 1928-1929 (when he went 
to America) and 1934-1935, he was on it continuously until his final retirement 
in 1945. He was one of the secretaries from 1917 to 1926, President in 1926-1928 
and again for a second term in 1939-1941, and secretary again from then until 
1945. In his Presidential address (1928), Prolegomena to a Chapter oiz Inequalities, 
he boasted that he had been at every meeting both of the Council and of the 
Society, and sat through every word of every paper, since he became secretary 
in 1917. He was awarded the Society’s De Morgan medal in 1929. 

In 1928-1929 he was Visiting Professor at Princeton and at the California 
Institute of Technology, 0. Veblen coming to Oxford in his place. In 1931 
E. W, Hobson died, and Hardy returned to Cambridge as his successor in the 
Sadleirian chair of Pure Mathematics, becoming again a Fellow of Trinity. 

Perhaps the most memorable feature of this period was the Littlewood- 
Hardy seminar or ‘conversation class’. This was a model of what such a thing 
should be. Mathematicians of all nationalities and ages were encouraged to 
hold forth on their own 
delightful informality that 

work, and the whole thing was conducted with a 
gave ample scope for free discussion after each paper. 

The topics dealt with were very varied, and the audience was always amazed 
by the sure instinct with which Hardy put his finger on the central point and 
started the discussion with some illuminating comment, even when the subject 
seemed remote from his own interests. 

He also lectured on the calculus of variations, a subject to 
drawn by his work on inequalities. 

which he had been 

After his return to Cambridge he was elected to an honorary fellowship at New 
College, He held honorary degrees from Athens, Haruard, Manchester, Sofia, 
Birmingham, Edinburgh, Marburg, and Oslo. He was awarded a Royal Medal of 
the Royal Society in 1920, its Sylvester Medal in 1940, and the Copley Medal, its 
highest award, in 1947. He was President of Section A of the British Association 
at its Hull meeting in 1922, and of the National Union of Scientific Workers in 
19246, He was an honorary member of many of the leading foreign scientific 
academies. 

Some months before his death he was elected ‘associi ktranger’ of the Paris 
Academy of Sciences, a particular honour, since there are only ten of these 
from all nations and scientific subjects. He retired from the Sadleirian chair .in 
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1942, and died on 1 December 1947, the day on which the Copley Medal was 
due to be piesented to him. 

He was unmarried. He owed much to his sister, who provided him throughout 
his life with the unobtrusive support which such a man needs. Miss Hardy 
has supplied most of the personal information contained in this notice. 

In addition to the books mentioned above, Hardy wrote three more Cambridge 
tracts, Orders of Injcinity (1910), The General Theory of Dirichlet’s Series, with 
M. Riesz (1915), and Fourier Series, with W. W. Rogosinski (1944). In 1934 
he published Inequalities with J. E. Littlewood and G. P6lya, and in 1938 
The Theory of Numbers with E. M. Wright. In 1940 ‘followed Ramanujan, a 
collection of lectures or essays suggested by Ramanujan’s work. His last book 
was on Divergent Series, and was completed but not published at the time of 
his death. His inaugural lecture at Oxford, Some famous problems of the theory 
of numbers, and in particular Waring’s problem, was published in 1920. He was 
also one of the editors of the collected papers of Ramanujan, which were 
published in 1927. 

The student of Hardy’s style should also read his obituary notices* of Rama- 
nujan, Mittag-Leffler, Bromwich, Paley, Hobson, Landau, W. H. Young, J. R, 
Wilton, and that of Glaisher at the end of the Messenger of Muthematics. These 
tributes to his late colleagues must have made every mathematician wish that 
he could have seen his own career described in the same generous terms. 

Hardy was the author, or part author, of more than 300 original papers, 
covering almost every kind of analysis, which by their originality and quantity 
marked him as one of the leading mathematicians of his time. It is rarely possible 
to disentangle his own contributions from those of others. He liked collaboration, 
and much of his best work is to be found in joint papers, particularly those 
written with Littlewood and with Ramanujan. He used to say that each author 
of a joint paper gets much more than half the credit for it, No doubt the bulk 
of his work is greatly increased by these collaborations, but he was certainly 
the prime mover in much of it. He described himself as a problem-solver, and 
did not claim to have introduced any new system of ideas. Nevertheless, if we 
may judge by the references to his work in the writings of others, he had a 
profound influence on modern mathematics. 

When he began research there was probably no one at hand who could 
give him the sort of supervision-which he was to give to so many others, and it 
was some years before he found a problem of first-rate interest. 

His early series of papers on Cauchy’s principal values was overshadowed by 
the work of Lebesgue and others who were generalizing the integral in other 
directions. Nevertheless it contains some interesting formulae. Perhaps the 
most noteworthy are the inversion formulae 

m  

1 m PJ Z-. 9( > 1 mf@, 
xzydx, g(y) = - -P 77 - s 

“ydx, 77 - -QI --do 
# For references, see p. 700. The notices will be reprinted in volume 7 of these Collected 

PapWS. 
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which have come to be known as the formulae of ‘Hilbert transforms’. In later 
years he wrote many papers on transforms and inversion formulae of various 
kinds. This work lies on the borders of the theory of integral equations; he never 
worked on the central Fredholm theory itself, though he lectured on it in his 
second period at Cambridge. 

We next find him writing on the summation of divergent series, and this 
turned out to be one of the permanent interests of his life. 

The theorem of Abel, that if 

%l =a,+a,+...+ati+ (1) 
then 

lim &p?=s (2) 
X41-0 TI=l 

is classical; and in 1897 Tauber had proved a sort of converse, that (2) implies (1) 
if the coefficients a, satisfy the condition a,-o(l/n), i.e. nafl=+O. It was easy 
to pro ve the corresponding theorem for Cesiro summability, that if 

u*= 
s,+...+s 

#-+S 
n 

and a,= 0(1/n), then again (1) follows. The simple and satisfactory appearance 
of the proofs of these theorems gives them an air of finality; but in 1909 Hardy 
proved that (3) implies (1) under the less restrictive condition a, = 0( l/n), 
i.e. na, is bounded. This result, often referred to as ‘Hardy’s theorem’, was 
the first ‘O-Tauberian theorem’, the forerunner of a whole science of such 
theorems. It was followed in the next year by Littlewood’s theorem that (2) 
implies (1) if a,= 0(1/n). Later the two originators of the theory published a 
great deal of work on it together, and the whole matter has now been summed 
up in Hardy’s last book. 

His first important paper on Fourier series seems to be that in volume 12 of 
the Proceedings of the London Mathematical Society (1913,4). The modern theory 
of Fourier series, depending on the Lebesgue integral, was then being constructed -- 
by Lebesgue, FejCr, W. H, Young and others, and it was Young’s work that 
inspired Hardy particularly. The first theorem in the paper referred to is that 
any Fourier series is summable (C, 8) almost everywhere, for any positive 6, 
and there are many others in the same order of ideas. Later Hardy and Little- 
wood together developed a whole theory of ‘Fourier constants’ or coefficients, 
gcneralizing the Young-Hausdorff theorem that if If(# is integrable, where 
l<p<2, and an, b, are its Fourier constants, then 

is convergent. A typical Hardy-Littlewood theorem is that the integrability of 
If(x)141xl”-” over (- rr, rr), where ~2, implies the convergence of C( IanlQ+ lb,(4). 
A curious by-product of this analysis is that, if the two conjugate series 

C(a, cos nx+b, sin ttx), C(b, cos m--u,, sin nx) 

are both Fourier series, then C(la,l+ Ib,l)ln is convergent. 
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The theory of the Riemann zeta-function had begun with the guesses of 
Riemann (1860), and the analysis of Hadamard and de la Vallke-Poussin, who 
proved the prime-number theorem (1896). The modern theory of the function 
had just been started by H. Bohr, Landau and Littlew-ood. The great puzzle 
of the theory was the ‘Riemann hypothesis’, that c(s) has all its complex zeros 
on the critical line a(s) =+, This presented all workers in the field, as it still 
does, with a perpetual challenge, It was Hardy who first gave any sort of answer 
to it, with the discovery, in 1914, that c(s) h as at any rate an infinity of zeros 
on the critical line. The work was again carried on jointly with Littlewood, 
and it was proved that, if N,(T) d enotes the number of complex zeros of c(s) 
with real part Q and imaginary part between 0 and T, then N,(r) >AT for 
some constant A (the total number of complex zeros in this region being 
asymptotic to (T/27~) log T). It is only recently that this result has been surpassed 
by A. Selberg, with the proof that N,(T) >AT log T. Hardy used to say that 
any one who had a really new idea about the zeta-function must surely prove 
the Riemann hypothesis, but Selberg’s work seems to have disproved this. 
Another of the main features of the Hardy-Littlewood analysis, the ‘approximate 
functional equation’, was discovered later to have been anticipated to a certain 
extent by Riemann himself, though the applications which they made of it go 
far beyond anything in Riemann. 

Another subject to which Hardy made a fundamental contribution was- that 
of the lattice-points in a circle. The number R(x) of lattice-points in a circle 
of radius dx, i.e. of pairs of integers p, V, such that p2 +v2<x, is roughly 
equal to the area TTX of the circle, but closer approximations to R(x) are difficult 
to make. It had been proved by Sierpinski that, if 

R(x) =rx+P(x), 

then P(x) =0(x*), but the true order of P(X) was unknown. 
Hardy obtained an exact formula for R(x) as a’ series of Bessel functions. 

If x is not an integer this is 

where r(n) is the number of solutions in integers of @-+ v2 =-n. If x is an integer, 
R(x) must be replaced by R(x)-+(x). Th is ‘exact formula’ is very striking, 
but it is not of much use in the problem of the order of P(x). If we could treat 
the series as a finite sum, the ordinary asymptotic formula for Bessel functions 
would give at once P(X) =0(x*). It is tempting to suppose that at any rate 
P(X) =0(x%+“), but nothing approaching this has ever been proved. What 
Hardy did prove was that each of the inequalities P(X) >Kx$ P(x) <-Kx*, is, 
satisfied, with some K, for some arbitrarily large values of x. The true order of 
P(X) therefore lies somewhere between X* and x$ and later research has done 
a little, but not much, to narrow this gap. 

I must now describe Hardy’s work on partitions, the ‘circle method’ in the 
analytic theory of numbers, and his association with Ramanujan. They wrote 

10 
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five papers together, the most famous being that in volume 17 of the Proceedings 
of the London Muthematical Society (1918, 5), a section of which is reproduced 
on the dust-cover of A lbthematiciun’s Apology. In this it was shown that 
p(n), the number of unrestricted partitions of n, can not only be represented 
approximately by an asymptotic formula, but that it can be calculated exactly 
for any value of n. The ‘circle method’ on which this depends is, no doubt, 
Hardy’s most original creation. It proceeds roughly as follows. The numbers 
p(n) are the coefficients in the expansion 

f(z)=l+ 5p(n)z”= 
1 

?Z= 1 (l-z)(l-z”)(l-z”)***’ 

so that P( ) 
1 

n =- 
s 

f( ) x 
dz 

277i px nfl ’ 

where r is a path enclosing the origin and lying entirely inside the unit circle, 
and is taken to be a concentric circle of radius just less than 1. The unit circle 
is a line of essential singularities off (x), but certain points are found to have 
a particularly strong influence on the integral, and it is from these that a 
dominant term is ultimately derived. In the Dirichlet series method for proving 
e.g. the prime-number theorem, the dominant term is easily identified, and 
almost the whole difficulty lies in showing that it is dominant. In the circle 
method this is not so, and a whole apparatus, involving the Farey dissection 
of the circle and the linear transformations of elliptic modular functions, is 
needed to produce the result. It is all the more astonishing that the analysis 
should have been carried to the point at which the exact value of p(n) could be 
obtained. 

Similar methods were applied later by Hardy and Littlewood to many 
other problems, particularly to the Waring problem of the expression of a 
number as a sum of given powers, and to problems involving primes, One 
such problem which had long defied analysis was Goldbach’s theorem, or 
hypothesis, that any even number can be expressed as the sum of two primes. 
The success of the circle method in the study ofp(n) suggests a similar approach 
to Goldbach’s theorem. Letf(x) now denote EP, wherep runs through primes. 

Then {f(z))” =ww, 

where rz(n) is the number of ways in which n can be expressed as the sum of 
two primes. If we can prove that a(n) is always positive, Goldbach’s theorem 
will follow, but the difficulties prove to be even more formidable than in the 
case of partitions. Actually it is a little easier to discuss 

. 

where b(n) is the number of ways of expressing n as the sum of three primes. 
Hardy and Littlewood showed that, if certain hypotheses of the type of the 
Riemann hypothesis are made, then b(n) is ultimately positive, so that any 
sufficiently large odd number 12 is the sum of three primes. Later Vinogradofi, 
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by combining the essential ideas of the circle method with some entirely new 

ideas of his own, showed that all unproved hypotheses could be dispensed with. 
The whole method is perhaps the most remarkable example that at present 
exists of analysis carried through apparently insoluble difficulties to ultimate 
success. But the original Goldbach hypothesis still remains unproved.. 

Hardy had many other interests of which there is no space to speak at length 
here: orders of infinity, Diophantine approximation, Bessel functions, in- 
equalities. 

Hardy’s work has had a profound influence throughout the whole of analysis. 
It has resulted in the complete remodelling of some parts of the subject, and has . -. 
enriched other parts with new methods and theories of fundamental importance. 

E. C. TITCHMARSH 

12 
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INTRODUCTION TO PAPERS ON DIOPHANTINE 

APPROXIMATION 

Practically all Hardy’s researches on t<his subject were carried out in collaboration 

with Littlewood, the only exception being represented by 1919, 4. Apart from this 
paper and 1946, 1, all the papers appeared lnnder the general title Some problems 

of Diophantine approximation’, with various subtitles. 
The series began with the famous communication to the 1912 Congress. This is 

largely a statement of results, with occasional indications of the method of proof. 

Re-reading it now, one is surprised to find how many important and fundamental 
discoveries had been made by the authors, and how many delicate distinctions be- 
tween apparently similar questions they had already perceived. The results announced 
in 1912 were published for the most part in 1914,2 and 1914, 3, but some of them not 
until 1922, 6. 

Hardy and Littlewood were primarily interested in problems of distribution 

modulo 1. The simplest such problem is: given a function f(n), can we say that the 
values off(n) for n = 1, Z,... are everywhere dense (mod I), i.e. that their fractional 
parts are everywhere dense in (0,l) ? In 1914, 2 it was proved that this is the case 

if&) is a polynomial with at least one irrational coefficient (other than the constant 
term). Results were also proved for the simultaneous distribution of the values of 
several polynomials; these results are generalizations of Kronecker’s theorem, which 

is itself the particular case when the several polynomials are all of degree 1. More 
precisely, Kronecker’s theorem? states that if 1, e,,.., Brn are linearly independent 
over the rationals, there exist integers n for which the numbers 

d,,..., ne, 

are arbitrarily near (mod I) to any WA prescribed numbers. Hardy and Littlewood 
proved that the same holds for the WZ~ numbers 

n”O* (q = I ,..., p; j = l,...,m), 

and their method applied in principle to more general polynomials. 

Once it is known that the values of a function f(n) are everywhere dense (mod l), 
the further question arises of their uniformity of distribution. For this we require that 
the frequency with which f (n) falls (mod 1) into any given sub-interval of (0,l) shall 

be proportional to the length of that sub-interval, Two other problems which prove 

t For some remarks about various results related to Kronecker’s theorem, see the comments on 1914,2. 
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to be closely related to the uniformity of distribution are those of estimating the Burn 

and the sum 

S(N) = 2 {f(n)}, where {t) = t-[t]-4, 
n=l 

N 
s(N) = 2 @f@j. 

?3=1 

(1) 

These various questions form the basic themes of most of the papers, and they are 
treated by a variety of methods. This is not-surprising, for they are questions which 

lie very much on the borderline between the theory of numbers and analysis, and 
can often be approached from either side. 

As early as 1912 Hardy and Littlewood had proved the uniformity of distribution 
(mod 1) of the values of a polynomial with an irrational coefficient, and had announced 

als a consequence the estimate E( 1 +it) = @lo@) as t + y-- ---..-_-- The proofs of these results ----.---_ -- _ SJ 
never appeared, since Weyl’s &moir of 1916 rendered their publication unnecessary 
(see 1916, 9). Weyl reduced the question of uniformity of distribution to that of 

estimating sums of the type (2), and gave a simple and powerful method for finding 
such estimates when f(n) is a polynomial. 

In 1914, 2 Hardy and Littlewood also laid the foundations of the ‘metrical’ theory 

of Diophantine approximation, in which results are proved to hold for almost all 
values of a real parameter, in the sense of Lebesgue measure. Y. -_a.- ,_ _- 

The second big memoir (1914,3) was entirely devoted to the study of the exponen- 
tial sum (2) in the particular case 

f(n) = Bn2+qin. 

It was proved that if 8 is an irrational with bounded partial quotients in its continued 
fraction, then s(N) = O(N*), and that this is best possible. Other results were deduced 
on other hypotheses concerning 8. The basic principle of the proofs was the so-called 
(approximate functional equation of the Q-function’, which enabled them to relate 
s(N) to the continued fraction expansion of 8. 

One possible application of Diophantine approximation which Hardy and Little- 

wood kept in mind was the provision of explicit examples to illustrate general 
theorems in the theory of functions or the theory of series, and to show to what 
extent they are best possible. Some such applications were given in 1914, 3; but in 

1916, 3 other examples which are less intimately related to Diophantine approxima- 
tion were shown to be equally effective. 

Two other large memoirs (1922, 6 and 9) were devoted to the triangle problem. 

This is the problem of approximating to the number N(v) of points with integral 
coordinates in the triangle 

x > Q, Y > Q, wx+w’y < 77 

as 7;7 -+ 00, where ct), o’ are fixed positive numbers whose ratio 8 = W/W’ is irrational. 
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It is easily Been that 

where 

f’ denoting the fractional part of +L Thus &(q) is a sum similar to the sum S(N) 
in (1). 

Two methods were used in the study of&(q), one elementary and the other ana- 
lytical. The elementary method is based on a transformation formula and is on similar 

general lines to the method of 1914, 3, It was proved that 

4h) = d1) for any irrational 8, 

M?) = O(log 7) if 0 has bounded partial quotients, 

and that both of these are best possible. The analytical method uses contour integra- 

tion and the double zeta-function 

5&, a, w, 0’) = 2 2 (a+mw+m’d)-*. 
m=O m’=O 

For the estimation of 2$(v), the analytical method is no more effective than the 

elementary method, and is if anything slightly less powerful. But it led the authors 
to a remarkable explicit formula for &(q) in the form of an infinite series; a formula 
which can be compared with that of Voronoi for the divisor problem or with that of 

Sierpifiski for the circle problem. 
The sum 1 {no}, w 1c h’ h is a particular case of (3), was deeply studied in the years 

1922-5 by Hecke, Behnke, and Ostrowski, as well as by Hardy and Littlewood. The 

analytical character of the function 

$(a) = 2 {d}n-8 (4) 
n=l 

depends very much on the arithmetical character of 0. When 0 is a quadratic irra- 

tional, Hecke proved that 4(s) is meromorphic and specified its poles; and the same 
results were found by Hardy and Littlewood by a different method (1923, 3 and 4). 

When 8 is any irrational, and A is defined by 

(where the (xy are the denominators of the convergents to 0), Hardy and Littlewood 
proved that the series (4) is convergent for 

8s > X/(A+1) 
and that +(s) has the line !Rs = X/(X+1) 

as a line of singularities if A > 0. 
The paper 1919, 4, by Hardy alone, is not related to the rest of the work, but is 

of considerable historical interest. Here Hardy proved the basic property of the so- 
called Pisot-Vijayaraghavan numbers. Suppose 8 (> 1) is any algebraic number and 
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A is any real number except 0. Suppose that 

AP+O (modl) 

as n -+ 00. Then the conclusion is that 8 is an algebraic integer with the property that 
all the algebraic conjugates of 8 (whether real or complex) have absolute values less 
than 1, and A is an algebraic number in the field generated by 8. 

Further comments are given immediately after the individual papers. 
I conclude by listing a few problems in the subject, connected (directly or in- 

directly) with the Hardy-Littlewood body of work, which are still unsolved. 

(1) Little is known about the order of magnitude of 

iv 
2 

e277ing0. 

n=l 

as N + 00, where 19 is a fixedirrational number of some specific type; say, with bounded 
partial quotients. One easily deduces from Weyl’s inequality that for such 0 the sum 
is O(Ng+E), but it is doubtful whether this is the full truth. There is the same problem 

for almost all 8. Any new results may well prove to be significant for Waring’s 

problem. 
(2) The tetrahedron problem, that is, the analogue in three dimensions of the 

triangle problem. The bounding plane is now 

wx+tdy+w’% = 7, 

where 7 -+ 00. It is appropriate to assume that or), w’, U” are linearly independent 

over the rationala. It is easily proved that the error term is o(~~), but it is not known 
whether this is best possible. 

(3) The nature of #(s) in (4) when A = 0 (or more particularly when 0 has bounded 

partial quotients), but 8 is not a quadratic irrational. It was conjectured in 1923, 4 
that +(s) has 93s = U as a line of singularities, but this has never been proved. 

’ (4) In 1930, 3 it is proved that if 8 = &z+l), where a is an odd integer, then 

as N -+ 00. The proof of this remarkable result is curiously indirect; it involves con- 
tour integration and the use of Ces&ro means of arbitrarily high order. In the same 
paper it is stated that for any quadratic irrational 8, the above sum is 

as N + 00, where A(8) = 0 for the special values of 0 just mentioned, but is not 
always 0. The problem is to give a simpler and more direct proof of these results. 

(5) Littlewood’s problem on simultaneous Diophantine approximation: to prove (if 

it is true) that for any real 0, + and any E > 0 there is a positive integer n satisfying 

For references, see Davenport, iKzU&zatiA~~, 3 (1956), 131-5. 
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(6) Khintchine’s problem on uniform distribution. If S is a subset of (0,l) with 
measure IS 1 in the sense of Riemann (or Jordan), then the frequency of those n for 

which n8 lies in S (mod 1) is ISI, and this holds for every irrational 0. The problem is 
to prove (if it is true) that the same holds for aEmost all 6 if S has measure ISI in the 
sense of Lebesgue. See Khintchine, Math. 2. 18 (1923), 289-306. 

XI. D. 

Abbrtkzted titles 

In the comments which follow the individual papers, references to Cassels’s Tract, to Hardy 

and Wright, and to Koksma are meant to refer to: 

J. TV. S. Cassels, An introduction to Diophuntine upproximtion (Cambridge Mathematical Tract 
No. 45), Cambridge, 1957. 

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, 
Oxford, 4th ed., 1960. 

J. F. Koksma, Diophantische Approximutionen (Ergebnisse der Math. IV, 4), Springer, Berlin, 
1936. 
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SOME PROBLEMS OF DIOPkANTINE APPROXIMATION 

20 

BY G. H. HARDY AND J. E. LI~LEWOOD. 

1. Let us denote by [ ] x and (x) the integral and fractional parts of the real 
number x, so that 

( ) X =x-[xl, OS(~X)<l. 
,  

;  Let 8 be an irrational numb& and u any number between 0 and 1 (0 included). 
; Then it is well known that it is possible ti find a sequence of positive integers 

% n2, n,, .*’ such that 
i 

(d>-,u 

asr+oo. Now let f(n) denote a positive increasing function of n, integral when n 
is integral, such as 

7a, n2, 99, ,.., 2n, 3*, . . . . n!, 28: ***, 2”, A., 

and let f7 denote the value of f(n) for n = n,. The result just stated’suggests the 
following question, which. seems to be of considerable interest :-For w?u.zt forms of 
f(n) is it true’thdt, for any irrational value of 9, alzd tiny value of c1 such that 
0 s Q < 1, a sequence n, can be found such that 

It is easy to see that, when the increase of f(n) is sufficiently rapid, the result 
suggested will not generally be true. Thus, if f(n) = 2n, and 0 is a number which, 
when expressed in the binary scale, shows at least k O’s following upon every 1, it is 
plain that 

(299) < 9 + xk:, 

where X& is a number which can be made as small as we please by increasing k; 
sufficiently. There is thus an (‘ excluded interval ” of values of a, the length of 
which can be made as near to 8 as we please. Iff(n) = 3n we can obtain an excluded 
interval whose length is as near Q as we please, and so on, while if f(n) = n! it’ is 
(as is well known) possible to choose B so that (n! a) hax a unique limit. Thus 

(n ! e) * 0. 

2. The first object of this investigation has been to prove the following 
theorem :- 

Theorem 1 R {f f(n) is a polynomial in n, zuith integral coeficients, thert a 
seqwnce cm be founii fw which (,fr8) + a. 

1912, 4 (with J. E. LittIewood) Proceeding8 of the 6th Inter- 
natiml Cmgress of ikfathematicians, Cambridge, 1912, i. 223-0. 



We shall give the proof in the simple case in which 

f() n = n2, 

a case ‘which is sufficient to exhibit cIearIy the fundamental ideas of our analysis. 
Our argument is based on, the following general principle, which results from the 
work of Pringsheim and Lndon on double. sequences and series* : 

If fT ,  81 +r, 81 "* 

are a finite number of functions of the p&dive integral variables r, s ; and ;f 

We shall first apply this principle to prove that a sequence 92, can be found 
so that 

(qe) + 0, (n”Te) + 0 

simultaneously. We shall, in the argument which follows, omit the brackets in (n@), 
etc., it being understood always that integers are to be ignored. 

We can choose a sequence mr so that t1,8 -0. The corresponding values n2,8 
are infinite in number, and so have at least one limiting point $ ; f: may be positive 
or zero, rational or irrAtiona1. We can (by restricting oumelves to a subsequence of 
the &) suppose that 

If 1: = 0, we have what we want. If not we write 

fr,8 =(% + n8)gr, #T,& =(% + n8pe* 

Then lim lim f?,, 8 = lim n8e = 0, 
gew r-w 3-w 
lim lim &, 8 = Iim (E + na,O) = 2F. 

8-w r-w s-w 
Hence, by the general prii&ple, we can pick out a new sequence pr such that 

p,e-+o, pre+2t. 

Repeating the argument, with n, +p8 in the place of n, + n,, we are led to a 
sequence qr. such that 

and it is plain that by proceeding in this way sufficiently often we can arrive at 

a sequence n., k such that 1 

for any integral value of k, 
nr, k @ + 0, nar, k e + & 

Now whatever number f is, rational or irrational, we can find a sequence k8 
such that 

ass+oo. Then 

Pringsheim , Sitzu ~ngsbmichtf? der k. b. Akademie der Wiss. xu 

len, vol. 53, pv 289 ; London, Math. Annah, i6id. , p. 322. 
Ntinchen, WI. 27, p* 101, and Math. 
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Applying the general principle once more we deduce a sequence of values of 7z for 
which (ne) + 0, (n2S) + 0 simultaneously. 

When we have proved that there is a sequence n, for which r&0 + 0, it is very 
easy to define a sequence +nr, where Y, is an integer depending on j*, which gives 
any arbitrary a as a limit, We thus complete the &oof.of Theorem 1 in the case 
f’(n) = ?P. An analogous method may be applied in the case of the general power 18~. 
As in the course of this proof we obtain a sequence for which 

simultaneously, we thus prove the theorem when u = 0 for the general polynomial f(n). 
The extension to the case a > 0 may be effected on the same lines as in the case 
f(n) =nk, but it is more elegant to complete the proof by means of the theorems of 
the next section. 

It may be observed that the relation 

nB -+ 0 

may be satisfied urtiformly for all values of 8, rational or irrational ; that is to say, 
given any positive G, a number AT (e) can be found such that 

for every B and some n, which depends on E and 8 but is less that m(e). Similar 

results may be established for n2B, n38, . . . + The chief interest of this result lies in 
the fact that it shows that there must be some function $(n), independent of 8, which 
tends to zero as n + a0 and is such that for every 8 there is an infinity of values of n 
for which 

n20< +(n)*. 

3. The following generalisation of the theorem quoted at the beginning of 5 1 
was first proved by Kroneckert :- 

If 8, (p, $9 .” are my number of linearly independent irrationals (Le. ;f rio 
relation -of the type 

where a, b, c, . . . are integers, not all zero, holds between 8, +, +, . . ,), and if a, & y, . . . 
are any numbers between 0 and 1 (0 incltuded), then a sequence n, can be found 
such that 

n#+u, n&+3, n&+y, .- 

This theorem, together with the results of 0 2, at once suggest the truth of the 
following theorem :- 

Theorem 9. If 8, +, $, . . . are linearly in.dependen t irrationals, and 
4 

w, I%* yz3 ..* (Z=l, 2, .*., k) 

+ It is we11 known that? in the case of n8, #(n) may be taken to be l/n. No such simple resul& holds 

when CL> 0 : exception has to be made of certain aggregates of values of 8, On the other hand, if B is a 

Axed ‘irrational, the relation nd + a holds uniformly with respect to CL. A11 these results suggest 
numerous generalisations. 

t Werkc, vol. 3, pa 31. The theorem has been rediscovered independently bg various authors, e.g. by 
Borel, F. Riesz, and Bohr (see for example Borel, Legona mr Zes se’ries divergenta, p. 135, and F. Riesz, 

Comptee Rendus, vol, 139, p. 459). 
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k sets of numbers all lying bet?,ueen 0 and 1 (0 inclzcded), thert it is 1)ossible to jnd 
a sequence of values of n for which 

This theorem we prove by means of two inductions, the first from the case of hi sets 

ah I% yz3 .a9 to the case of k + I sets in which the numbers of the last set are all zero, 
the second from this last case to the general case of Ic + 1 sets. The principles which 

we employ do not differ from those used in the proof of the simpler propositions 
discussed in. 5 2. 

4. The investigations whose results are summarised in the preceding sections 
were oiiginally begun with the idea of obtaining further light as to the behaviour of 
the series 

2 ePi20TTi 1 2 e?Z30d ? . . . 

from the point of view of convergence, summability, and so forth. If we write* 

Sn 12) = 2 e(p-3)2@&, s,(3) = C eV28Ti, s,,(4) = 2 (- l)Y-1 &B?ri 

usn vsn vsn 

it is obvious that, if sra is any one of sJ2), . . . , then sn = 0 (n). If 0 is rutionul, either 
& = 0 (1) or S,& = A, + 0 (I), where A is a constant : the cases may be differentiated 
by means oi the well known formulae for “ Gauss’s sums.” Similar remarks apply to 
the higher series in which (e.g.) Y2 is replaced by u3, y4, l . The results of the ’ 

preceding sections have led us to a proof of 

Theorem 3. If B is irrational, then S, = o (n) : the same result is true for the 

corresponding higher sums. 

The argument by which we prove this theorem has a curious and unexpected 
application to the theory of the Riemann c-function; it enables us to replace Mellin’s 
result c(l +ti)= O(logIti)t by 

~(l+t;)=o(logitI). 

Theorem 4, Theorem 3 is the best possible theot-em of its kind, that is to say 
the o (n) which occurs in it cannot be replaced by 0 (n#), where + is my deJinite 
function of n, the same for all O’s, which tends to #zero as n + 00. 

*But although Theorem 3 contains the most that is ‘true for all irrational B’s, it 
is possible to prove much more precise results for special classes of 8’s. Here we use 
methods of a less elementary (though in reality much easier) type than are required 
for Theorem 3, the proof of which is intricate. 

In Chap. 3 of his Culcul des Rksidusl M. Lindelijf gives a very elegant proof of 

the formula 

u The notation is chosen EO as to run parallel with Tannery and MOWEI notation for the Q-functions : n 
is not hecessarily an integer. 

+ Landau, Hand&h der Lehre even der Verteil~unog der Primzahlen, p. 167. 

$ pp. 73 et seq. 
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of Genocchi and Schaar. Here p and q are integers of which one, is even and the 
other odd. By a suitable modification of Lindelijf’s argument, we establish the 
formula 

where B is an irrational number, which we may suppose to lie between - Z and 1, 
A is one of 2, 3, 4, X, a corresponding one of the same numbers, and 0 (1) stands for 
a function of n and 8 less in numericA value than an absolute constant. 

We observe also that the substitution of 6 + 1 for B merely permutes the indices 
2, 3, 4, and that the substitution of - 6 for 8 changes sn into its conjugate. If now 
we write t9 in the form of a simple continued fraction 

1 1 1 
s+G+a,+.,.’ 

and put 

we obtain 

e 
1 1 

=a,+ 
e 
l=aa’ ‘m’ 

and so on. We can continue this process until n&9,& l . n ~-1, when the first term 
vanishes, and we are left with an upper limit for I s,& I* the further, study of which 
depends merely on an analysis of the continued fraction. 

We thus arrive at easy proofs of Theorems 3 and 4 for k = 2. We can also prove 

Theorem 5. If the partial quotients a, of the continued fraction for 8 are 
limited * then sN (d) = 0 (&), In partic;ular this is true if 8 is a qundratik swd, , 
pure or mixed. 

5. The question naturally arises wheth& Theorem 5 is the best possible of its 
kind. The answer to this question is given by 

Theorem 6 I If 6 is any irrational tiuw&r, it is p~h!Xe to J(illd a constctnt H 
and un inJinity of values of 12 such that 

1 s, (8) 1 > H dn* 

The same is true ojc till Cesdro’s means formed front the series. 

The attempt to prove this theorem leads us to a problem which is very interesting 
in itself, namely that of the behaviour of the modul.ar functions 

~qOW, xg”“, r, (- q-1 (f2 

as q .tends along a radius vector to an ‘( irrational place ” eeni on the unit circle. If 
f(q) denotes any one of these functions, it is trivial that 

f(q)‘=0 I<1 -‘Id)-% 

24 

* This hypothmis may be generalised widely. 



228 G, H. HARDY AND J. E, LITTLEWOOD 

If p tends to a rational place, it is known that f(q) tends to a limit or becomes 
definitely infinite of order +. By arguments depending upon the formulae of 
transformation of the S-functions, and similar in principle to, though simpler than, 
those of 5 4, we prove 

Theorem 7 l Wh q tends to any irrational place on the circle of convergeme, 

No better result thm this is true irt yenerd. If q + @, where 9 is one of the 
irratimzals deJCined in Theorem 5, theyz. 

m=o {(l -Iqj)-f]. 

Further, whatever be the value of 8, we cm $4 a cmstant &l ctnd an i@&y of mlues 
of 1 q 1, tending to unity, such that 

In so far as these results assign upper limits for if(y) I, they could be deduce’d 
from our previous theorems. But the remaining results are new, and Theorem 6 is 
a corollary of the last of them. Another interesting corollary is 

Theorem 8. The series 

where 8 
Cesdro’s 

is irrationnl, 
772&2?2S. 

be convergent, sunzmnble by any uf 

On the other hand, if tx > +, these series are each certainly convergent for an 
everywhere dense set of values of 0. They are connected with definite integrals of 
an interesting type : for example 

where - = &k), whenever the series is convergent, 

6. We have also considered series of the types 2 (no), 2 @PO), . . . l . It is 
convenient to wrife 

Arithmetic arguments analogous to those used in proving Theorems 3 and 4 
lead to 

Theorem 9. If 0 is any irrational mmtber, then s, = u (n). The sume result 

holds for the series in urhich v is replaced by v2, Ys, l . . , yk, . . . *. Further, this result is 

the best possible of its Kind. 

+ This result, in the case k= 1, has (as was kindly pointed out’to us by Prof. Landau) been given by 
Sierpinski (see the Jahrbuch fibber die Fortschritte der Math., 1909, p. 221). Similar results hold for the 

function 
sfa-[$+a]-4 

which reduces to (5) for a = 0. 
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When k = 1, we can obtain more precise results analogous to those of $ 4, 5. 
The series X (no) behaves, in. many ways, like the series XenW% The r6Ze of the . 
formula of Genocchi and Schaar is now assumed by Gauss’s formula 

where p, p are odd integers. Taking this formula as our starting point we easily 
prove Theorem 9 in the case k= I, Further, we obtain 

Theorem 10. If 0 is an irrational number of the type dejned in Theorem 5, 
then sn = 0 (log n). 

This corresponds to Theorem 5. When we come to Theorem 6 the analogy 
begins to fail. We are *not able to show that, for every irrational 0 (or even for 
every B of the special class of Theorem 5), sn is sometimes effectively of the order of 
log n. The class in question includes values of $ for which this is so, but, for any- 
thing we have proved to the contrarj3 there may be values of -0 for which So = 0 (1). 

And when we consider, instead of sn, the corresponding Ces$ro mean of order 1, this 
phenomenon does actually ,occur. While engaged on the attempt to elucidate these 

questions we have found a curious result which seems of sufficient interest to be 
mentioned separately. It is that 

r 

‘y-a TJ, $jj@< !&W > 
L 

C ivep = +g72 + 0 (1) 
vsn 

,i,j,,+ I I- , 1 ,, i&*,4 ‘t/ ),*I “i 

for all irrational values of B. When we consider the great irregularity and obscurity 
of the behaviour of C (v#], it is not a little surprising that C {vtY)z (and presumably 

the corresponding sums with higher even 
regularity. 

powers) should .behave with such marked 

7. The exceedingly curious results given by the transformation formulae for 
the series 23 enagri, C {no] suggest naturally the attempt to find similar formulae for 
the higher series. It is possible, by a further modification of Lindelijf’s argument;, 
to obtain a relation between the two sums 

where K = h/(32/278). The relation thus obtained gives no information about the 
first series that is nut trivial. We can however deduce the non-trivial result 

Similar remarks apply to the higher series ILPkewi and to the series C ink@), where 
k > 1. But it does not seem probable that we can make much prqress on these lines 
with any of our main problems. 

In conclusion we may say that (with the kind assistance of Dr W. W. Greg, 
Librarian of Trinity College, and Mr J.. T. Dufton, of Trinity College) we have 
tabulated the values of (KM) for the first 500 values of n, in the cases 

e =ko =+31622776..., O=e. 

The distribution of these values shows striking irregularities which encourage a 
closer scrutiny. 



COMMENTS 

This communication to the 1912 Congress? is mainly a summary of the principal results of 
1914, 2 and 1914, 3, though the proofs of Theorems 9 and 10 were not published until 1922, 
6 and 1922, 9, 

0 4, The footnote to Theorem 5 does not mean that the same result can be proved under 

a more general hypothesis, but that other hypotheses could be made about 8 which would 
imply similar (but weaker) results. Such results were given in 1914, 3 and 1922, 5, 

8 6. The statement concerning C(I&}~ is erroneous and was corrected in the last sentence of 
1922, 6. The correct form appears as Theorem 11 of 1922, 9. 

8 7, For some remarks on more general transformation formulae, such as that for ZeVsgTi 
mentioned in the text, see the comments on 1914, 3. 

The final sentence ddes not seem to have given rise to any further investigation, and it 
would be of interest to know in what senses the fractional parts of n28 are less well distributed 
than those of d?. 

t Some of the F8SUltS had been briefly communicated to 
meeting on 8 February 1912 (see Proc. 11 (1912), xxi-xxii). 

the London Mathematical Society at its 
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SOME PROBLEMS OF DIOPHANTINE APPROXIMATION. 
BY 

G. H. HARDY and d. E. LITTLEWOOD, 

TRINITY COLLEGP, CAMBRIDGE. 

I . 

The fractional part of nk8. 

1. o - Introduction. 

I. 00. Let us denote by [x] and (x) the integral and fractional parts of x,, 

so that 

Let .r3 be an irrational number, and a any number such thaf o <a < I , 

Then it is well known 

n , ,  $1 n3,- l m  
such that 

that it is possible to find a sequence of positive integers 

(I * 001) (wea 

as r--too. 

It is necessary to insert a few worda of explanation as to the meaning 

to be attributed to relations such as (I. oar), here and elsewhere in the paper, 

in the particular case in which a = 0. The formula (I. OUI), when a > o, asserts 

that, given any positive number E, we can find ru so that 

The points (n, 0) may lie on either side of a. But (n, 0) is never negative, and 
so, in the particular. case in which ~11 = o, the 

manner, asserts more fhan this, viz. t-hat 

formula, if interpreted in the obvious 

28 1914, 2 (with J, E. Littlewood) Acta Mathematics, 37, 15!?%91, 
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The obvious interpretation therefore gives rise to a distinction between the value 

a= o and other values of CI which would be exceedingly inconvenient in our 

subsequent analysis. 

These difficulties mat be avoided by apreeirig that, when CY = o, the formula ” A 
(I. OOI) is to be interpreted as mea.ning ‘the set of pints (n, 0) has, as its de 

limiting point or points, one or both of the points 1 and O’, that is to say as imp- 

ying that, for any r greater than rO, one or other of the inequalities 

o+t,O)<e, r-s< (n,8)<1 

is satisfied. In the particular case alluded to above, this question of interpreta- 

tion happens to be of no importance: our assertion is trui: on either inter- 

pretation. But in some of our later theorems the distinction is of vitAal im- 

portance. 

Now let f(n) denote a positive increasing function of n, integral when n is 

integral, such as 

The result stated atI the beginning suggests the following question, which seems * 
to be of considerable interest: - For what forms of f(n) is it true that, for any 

irrational 0, and any value of a such that o ~a < I, a sequence (n,) can be found 

~cch that 

It is easy to see that when the increase of f(n) is mfficiently rapid the 

result suggested will not always be true. Thus if f(n) = P and 0 is a number 

which, expressed in the .binary scale, sho.ws at least k o’s following upon every I, 

it is plain that 

when & is a number which can be made as small as we please by increasing k 

sufficiently. There is thus an* Dexcluded intervaln of values of a, the length of 

FJrhich can be made as near to + as we please. If f (n) = 3n we can obtain an ex- 

cluded interval whose length is’ as near to 3 as we please, and so on; while if 

f( ) ,q =n! it is (as is well known) possible to choose 0 so that (n! 0) tends to a 

unique limit. Thus (n!e)--o. 

At the end of the paper we shall return to the general problem. The im- 

mediate object with which this paper was begun, however, was to determine whe- 
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ther the relation (I l 002) always holds (if 0 is irrational) when f (n) is a po’wer of 

n, and we shall be for the most part concerned with this special form of f(n). 

I . 01. The following generalisatidri of the theorem expressed by (I.@ was 

first proved by KRONECKER~ 

Theorem 1.01. If 0, F o,, -- . Orn are linearly independent irrationals (i. e. if no 
relutiun. of the type 

a,8,+a,O,+~.~+a,O,+a,+l=o, c 

where a,,a,,-a,.+1 are integers, not all zero, holds between 0, , 0, ,. - l Om ) , and Us, 

Q , ,  l ’ 
l CS~ are numbers such that o < ap < I, then a sequence (n,) can be found such that 

USr-~. Further, in the speciul case when all the 2s are zero, it is unnecessary to 

make any restrictive hypothesis concerning the O’s, or even to suppose them irrationc;tl. 

This theorem at Once suggests that the solution of the problem stated at 

the end of I: . oo may be generalised as follows. 

Theorem 1 .OlL If O,, O,, -- m 0, are linearly independent irratiunals, and 

the a’s are any numbers such that o < CY < I, - then a sequence (nc) can be foztnd 

such that 

l KRONE~IWR, Berliner Sitamgsberichte, 11 Dec. 1884; We&e, vol. 3, p. 49. 
A number of special cases of the theorem were known before, That in which all the 

~1% are zero was given by DIBICHLET (Berliner Sitzungsberichte, 14 April 1842, Werke, vol. 19 
p. 635). Who first stated explicitly the special t-heorems in which ti$ = r $e have been unable 
to discover. DIRWHLET (1. c.) refers to the simplest as &ngst bekannt, : it is of course an immediate 
consequence of the elementary theory of simple continued fractions. See also MINROWSKI, 
xDiophantische Approximations, pp. 2, 1. KRONECKER’S general theorem has been rediscovered 
independently by several writers. See e. g, BOREL, LeGons SW Ees shies diztsrgentes, pm 135; F. RIESZ, 
Comptes Rendus, 29 Aug. 1904. Some of the ideas of which we make moat use are very similar 
to, those of the latter paper. It should be added that DIRICHLET’S and KRONECKER’S theorems 
are presented by them merely as particular cases of Inore general theorems, which howeve; 
represent extensions of the theory in a direction different from that with which we are con- 
cerned. 

A number of very beautiful applications of KRO~ECKER’S theorem to the theory of the 
RIEMANN c-furiction have been made by I-I. BOHR. 
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Further, if the u’s ure all zero, it is unnecessary to suppose the O’s restricted in 

any way. 

I + oz. This theorem is the principal result of the paper: it is proved in 

section I , 2, The remainder of the paper falls into three parts. The first of 

these (section x . I) consists of a discussion and. proof of KRONECKER’S theorem. 

We have thought it worth while to devote some space to this for two reasoni. 

In the first place our proof of theorem 1.011 proceeds by induction from k to 

k + I, and it seems desirable for the s’ake of completeness *to give some account 

of the methods by which the theorem is established in the case k= 1. In the 

second placem the theorem for this case possesses an interest and importance rsuffic- 

ient to justify any attempt to throw new light upon it; and the ideas involved 

in the various proofs which we shall discuss are such as are important in the 

further developmentIs of the theory. We believe, moreover, that the proof we 

give is considerably simpler than any hitherto published. 

The second of t.he remaining parts of the paper (section I, 3) is devoted to 

the question of the rapidity with which the numbers (nxOP) in the scheme (I . OII) 

tend to their respective limits. Our discussion of the problems of this section ig 

very tentative, and the results very incomplete;1 and something of the same 

kind may be felt about the paper as a whole. We have not solved the problems 

which we attack in this paper with anything like the definiteness with which 

we solve those to which our second paper is devoted. The fact is, however, that 

the first paper deals with questions which, in spite of their more elementary 

appearance, are in reality far more diffimlt. than those of the second. Finally, 

the last section (I, 4) contains some results the investigation of which was sug- 

gested to us by an interesting theorem proved by F. BERNSTEIN? The disting- 

uishing features of these results are that they are concerned with a single irrat- 

ional 0 and with sequences which are not of the form (AT), and that they 

hold for almost all values of 0, i. e. for all values except those which belong to 

an exceptional and unspecified set of measure zero. 

I.I- Kroneckefs Theorem. 

wh 

I: . IO. 

ether or 

KRONECKER’S 

not all the. Q’S are zero. 

theorem falls naturally into two cases, according 

We begin by considering the simpler 

as to 

1 Some of the results that we do obtain, however, are important from the point of view 
of applications to the theory of the series 2 enkoi and that of the EIEMANX c-function. It was 
in part the poasibility of these applicati&s that led us to the researches whose results are given 
in the present paper. The applications themselves will, we hope, be given in a later paper. 

p M&h. - Annalen, vol. 71, p. 421. 
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when all the cr’s are zero. Unlike most of the tPheorems with which we are con- 

cerned, this is not proved by induction, and there is practicalIy no difference 

between the cases of one and of sevefal varia.bles. The proof given is DIRJCH- 

LET’& 

Let 2 denote the number which differs from q bv an integer and which is 

such that -+<S+. Then the theorem to be prove: is equivalent to the theo- 

rem +hat, given any integers q and N, we can find an 72 not less than N and 

such that 

Let us first -suppose that N = I. Let B be the region in m-dimensional space _ 

for which each coordinate ranges from u to I. Let the range of each coordinate 

be divided into g equal parts: R is then divided into Q” parts. Consider now 

’ the Q” + I points 

(Ye,), (Y8,),--, (v&n); (Y=O, I:, 2, n q”>* 

There must be one part of R which contains twu points; let the correspondibg J 
values of Y be V, and w,. Then clearly 

19/q, I(%- m%II.dq, l ,I(~,-%)~mf(~/q, 

and I Yl - %(>I. 

We have therefor only to take KA= IY~--Y~I. We observe that we have also 

n<p% 

a result to which we shd have occasion to return in section I. 3. 

If N > I we have only to consider the points (Y NO,), (Y N O,), q = l instead of 

the points (Y&), (vOJ,-. 

I . II. We turn now to the case when the ~1% are not all necessarily zero, 

In this case the necessity of the hypothesis that the B’s are linearly independent 

is obvious, fur the existence of a linear relation between the 8’s would plainly 

involve that of a corresponding relation between the a’s; naturally, also, the added 

restriction makes the theorem much more difficult than the one just proved. 

Our proof proceeds by induction from nz to ry1+ I; it is therefore import’ant 

to discuss the case m = 1:. The result for this case may be proved in a variety 

of ways, of which we select four which seem to us to be worthy of separate dis- 
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cussion. These proofs are all simple,, and each h’as special advantages of its own. 

It is..important for us to cotisider very carefully the ideas involved in them with 

a view to seletit’ing those which lend themselves most readily to generalisation. 

For example, it is essential that our proof should make no appeal to the theory 

of continued fractions. 

(a). The first proof is due to. KRONECKER. It follows from the result of 

1 . 10, with m = I, or from the theory of continued fractions, that we can find 

an arbitrarily large q such that 

(I. III) q 0 - p = d/q. 

It 

nearest 

is 
to 

possible to express 

q a, in the form 

any integer, 

where rt and n, are integers, and 1 nl (q/z. 

and in particular the integer 

From the two equations 

we obtain 

?t6 
q(nB+n,)=-+qa++& 

u 2 
I4l-F 

and so 

Or 

If we write 2! = n, + q and use (T. III), we see that 

lb4 -+wq, ql2 < fv < 34/z; 

so that 

lW>- a I < 3/y 
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for some value of Y between q/z and 34/z. This evidently establishes the truth of 

the theorem. 

If we attempt to extend this proof to the case of several variables we find 

nothing to correspond to the equation 

But KRONECKER’S proof has, as against the proofs we shall now discuss, the very 

important advantage of furnishing a definite result as to the order of the ap- 

proximation, a point to which we shall return in I .3. 

(b). Let E be an arbitrary positive constant. By the result of L , xo, we 

can find an n such that o < 0, < E or I - E < 0, < I:, where 0, = (no). Since t) is 

irrational, t), is not zero. Let us suppose that o < 0, < E; the argument is sub- 

stantitilly the same in the other case. We can find an rye such that 

m8,(a<(m + I)@,, 

and so 
I 0 ml --I<+$; 

j(nmO)-al<&, 

which proves the theorem. 

(c)J Let S denote the set of points (no). X’, its first derived set, is closed. 

It is moreover plain that, if a is not a point of S, then neither is (a + n8) nor 

(a -- n 8). 

The theorem to be proved is clearly equivalent to the iheorem fhat S con- 

sists of the cont!inuum @,I). Suppose that this last theorem is false. Then 

there is a point a which is not a point of S’, and therefore an interval co& 

taining a and containingg no point of S. Consider I, the greatest possible 

such interval containing a, 3 The interval obtained by translating I through a 

distance 8, any number of times in either direction,” must, by what was said 

above, also confain no point of X’. But, the interval thus obtained cannot. over-’ 

lap with I, for. then I would not be the ,>great,est possible* interval of .its kind. 

’ This proof was discovered independently by F. RIE~Z, but, BO far as we know, has 
not been published. 

a In ittJ interior, in the strict sense, 
’ The existence of Buch a #greatest possibler interval ia eaeil$ established by the classicA 

argument of DEDERIND. 

* Taking the congruent interval in (0, I), This interval may possibly consist of two separ- 
ate portions (0, &), and (Ez, I). 
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Hence, if we consider a series of [I/S] translations, where d is the length of I, 

it is clear that two of the corresponding [#J + I intervals must coincide. 

Clearly this can only happen if 0 is rational, which is contrary to our hypothesis. 

(d). We argue as before that, if the theorem is false, t*here is an interval 

I, of length z E and middle point a, cont.aining no point of X’. By the result 

of x.10 we can find n so that, if tl,=(nOj, then o<O,<s or I-&<O,<I. 

By the reasoning used in (c) it appears that the interval obtained by trans- 

lating I through a distance O,, any number of times in either direction, must 

contain no point of S. Rut since each new interva1 overlaps with the preceding 

one it is clear that after a certain number of translations we shall have covered 

the whole interval o to I: by intervals containing no point of S, and shall thus 

have arrived a#t a contradiction. 

I: . 12. Let us compare the three last proofs. It is clear that (6) is consid- 

erably the simplest, and that (d) appears to contain the essential idea of (b) 

together with added difficulties of its own. It appears also that, in point of 

simplicity, there is not very much to choose between (c) and (djl and that (c) has 

a theoretical advantage over (d) in that it dispenses the assumption of the 

theorem for the case CI = o, an assumption which is made not only in (b) and (d), 

but also in (a). When, however, we consider the theorem for several variables, 

it seems that (b) does not lend itself to direct extension at all, that the com- 

plexity of the region corresponding to I in (c) leads to serious difficulties, and 

that (d) provides the simplest line of argument. It is accordingly this line of 

argument which we shall follow in our discussion of the general case of KRON- 

ECKER'S theorem. 

I . 13. We pass now to the general case of KROBEOKER’S theorem. We shall 
give a proof by induction. For the sake of simplicity of exposition we shall 

deduce the theorems for three independent irrationals 0, q, +, from that for 

two. It will be obvious that the same proof gives the general induction from n to 

$2 + I irrationals. 

We wish to show that if we form the set S of points within the cube 

o(~<r,o<y<r,o<z,<r, which axe congruent with 

then every point of the cube is a point of the first derived set S. It is plain 

that, if (CI, Is, y) is not a point of 8, then neither is ((a + no), (a + ny), (y + nq)) 

nor ((a- n@, (p - nrp), (y -T#)). If now our theorem is not true, there niust exist 

a sphere, of centre (a, 8, r) and radius e, which contains 1 no point of S. By 

1 Within or upon the boundary. 
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the resuPt of I. IO, there is an n such that the distance 6 of ((no), (ncp), (n+)) 

or (O,, rp,, I/J,) from one of the vertices of the cube is less than e/1/2. Let. us sup- 

PUSB, fQr eXM@e, that the vertex &question is the point (o, o, 0). Consider 

the .straight line 

( I  l 131) 
X -a Y-P 2-Y -=-=-1 

0 i [Pl IP 1 

and the infinite cylinder of radius 6 with this line as aPxis. It is clear that the 
finite cylinder C obtained by taking a length 6 on either side of (ol,‘g, y) is en- 

tirely contained in the sphere and therefore contains no point of S. Hence the . 
cylinder obtained by translating C through (O,, cpl, ql), any number of times in 
either direction, also contains no point of S’, so’ that, since each new position of 

C overlaps with the preceding, the whole of the infinite cylinder, or rather of 

the congruent portions of ‘the cube, is free from points of S. 

Let uti now consider the intersections of .the totality of straight’ lines in 
the cube, which are congruent with portions of the axis of the cylinder, with 

an arbitrary plane x=x,. We shall show that they are everywhere dense in 

ttle square in which the plane cuts the cube, whence clearly follows that no 

point of the cube is a point of S, and SO a contradiction which establishes the. 

theorem. 
The intersections (y, x) are congruent with the intersections of the axis 

(I. 13x) with 

X =x, -#- y, ( Y = ..* t -2, -1, 0, I, 2,4, 

and so they are the points congruent with 

But, under our hypothesis, (pl /O, and +I /O, are linearly independent irrationals, 

and so, by the theorem for two irrationals, this set of points is everywhere 

dense in the square, The proof is thus completed. 

I s 14. We add two further remarks on the subject of KRONECICER'S theo- 

rem, in which, for the sake of simplicity of statement, we confine ourselves to 

the case of two linearly independent irrationals 0, cp. 

(a) Suppose that. O<CC<I, o<p<r. KRONECKER'S theorem asserts the exis- 

tence of a sequence (na) such that (n, 0) - a, (n#rp) - @. Let us choose a se- I 
quence of points 

(% PJ, (P = I, 2, 3,-m*), 
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qL>% a,>a, q4-% /p-+Bm 

There is, for any value of p, $ sequence (n,,) such that 

as 8-m. From this it is easy to deduce the existence of a sequence (n,) for 

which (no?) and (n& tend to the limits CI and /? and are always greater than 

those limits, so that the direction of approach to the limit is in each case from 

the right hand side.’ Similarly, of course, we can establish the existence of a 

sequence giving, for either 0 or rp, either a right-handed or a left-handed ap- 

proach to the limit. 

If we apply similar reasoning to t-he case in which ~11 or @ or both are zero* 

we see that, when 0 and c-p are linearly independent irrationals, we may abandon 
the convention with respect to. the particular value o which was adopted in I . oo, 

and assert thaf there is a sequence for which (~9) - a and (nq) - @, (x and p 

having any values between o and I, both values included, and the formulae 

having the ordinary interpretation. This result is to be carefully distinguished 

from that of I . IO. The latter is, the former is not, true without restriction on 

the O’s, as may be seen at once* by considering the case in which rp = -0. 

(b). It is easy to deduce from KRONECHER’S theorem a. further theurem, 
which may be stated as follows: B if we take any portion y of the square o <x < r, 

o < y < I, bounded by a finite number of regular eurws, and of area 6; and if we -- --- 
denote by N, (n) the number bf the points 

(W), bfrp)), b = f, 2, ‘. ’ nL 

which fall inside y; then 

N,(n) w 4% 

as n-a. 

This result, when compared with the various theorems of this paper, sug- 

gests a whole series’ of further theorems. The proofs of these appear’likely to be 

very difficult, and we have, up to the present, considered only the case of a 

single irrational 0. We have proved that, if N,(n) denotes the number of t#he 

points 
(W9), (v= I, 2, l m n), 

’ The reasoning by which this is established is essentially the same as that of 1 n 20. 
a This is a known theorem. For a’proof and references see the tract ‘The Riemann 

Zeta-function and the Theory of Prime Kumbers’, by Ii. BOHR and J. E. LITTLEWOOD, shortly to 
be published in the Cumbridqe Tracts in Muthematics and Muthmatiml Phqsica 

37 



Some problems of Diophantine Approximation. 165 

which fall inside a segment y of (o, I), of length 6, then iV7 (n) cv 6~. This re- 

sult may be compared with that of Theorem 1 .483 at the end of the paper. 

But results of this character will find’ a more natural place among our later 

investigations than among those of which we are now giving an account. 

I l z* - The generalisation of Hronecker’s theorem 

I . 20. We proceed now to the proof of theorem 1 . 011. Our argument is 

based on the following general principle, which results from the work of PRINTS- 

HEIM and LONDON on double sequences and series? 

1.20. If 

then we cm find a sequence of’ Ms (rlg9, rzlt, -. - Tkn) such that, as n - cro, _ 

We shall show that, if this principle is true for all values of ry1 and a part- 

icular k, tPhen it is true for k + I. As it is plainly true for k = I, we shall 

thus have proved it generally. 

We shall abbreviate ‘lim lim -0 l lim’ into +‘lim’ , or, when there is 
rl -a r,-00 rk-00 

VI p r2 1 l b rk 

no danger of confusion, into ‘lim’. 

Let . 
llm i ( p rl 1 rz 3 ’ * ’ rk+l) = fp (rk+l)- 

ri 3 rz 3 - ’ rk 

Then by hypothesis 

fp bk+l) - A, 

as rk+l - 00 w Let us choose an integer rk+f n, greater than P, for which 3 

1 jp (rk+l, w) - ,$I 1 < 2-+--l, (p = 1, 2: l ” ml* 

By the principle for k variables, we can find rln, rsn : . . . rkflP .a11 greater than 

2 ?s, and such that 

l PRING~~HEIM, Mtinchener Sitzungsbevichte, vol. 27, p. 101, and Math. dnnalen, ~1. 53, p 289; 
LONDON, Math. AnnaZen, vol. 63, p. 322. 



I We thus obtain a sequence of sets (rln, ~2~;. - rk+l,n), such tht every member 

of the nfh set is great&than P and 

If ( p h, r2nc ’ rk+&--Ap)<z-n, @=I, z,-m). 

This sequence evidently gives us what we want. 

An important special case of the principle is the following: 

1 ,201. If for all values of t we am find a -sequence nit, n2t,- a, n,t, . - l such 

that 

r,,bJrt) -* -4, t 7 (13 - I, 29 - * ’ m), 

us r-00, and if 

A A pt- yt (P = I, 2,. .* m), 

as t-q then there is a sequence (n,) such that 

f&b)--Apr (p= 1, 2,- m), 

as s-a. 

This is in reality merely a case of the principle that a limiting-point of 
limit#ing-points is a limiting-pot&. 

I 

I . 21. F7e consider first the case in which all the ~2s are zero, and the 0% 

are unrestricted. Jn this case the proof is comparatively simple. 

Theorem 1.21. There i;~ a sequence (n,) such that, as r - 00 

I (nFO,,)-0, (x= I, 2,-k; p-1, 2,-m). 

We prove this theorem by induction from k to k + I: we have seen that it 

is true when k- I. We suppose then that there is a sequence (& such that 

I 
( I  l 211) (p;OJ- 0, (x = I, 2,-b k; p- I, 2,- m). 

The sequence 

fias at least1 one limiting point rp,, q2,.4 V F~; hence, by restricting ourselves to a 

subsequence selected from the sequence (/la), we can obtain a sequence (u,) such 

that, ads s - 00, 

b~~p)-% (x < k); (vk+l Up) - tpP; (p = I, 2, - - a m). - 8 
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We then have, for *A. (k + I, 

where the C’s are constants, X, + X, + 9 m* + XL= x, and xq <k. In virtue of 

(I . ZII) we can evaluate at once every repeated limit on the right hand side, and 

it is clear that we obtain Iry, or o according as 3c = k + I or 3c < k. It follows 

from the general principle 1 l 20 that we can find a sequence @A), (r= I, z,..*>, 

srlch that, as r - cro , 

Rub, by the’orem 1 .01, we can find a sequence (A,) ‘such that 

(n,qp)-o, !p= 1, 2?m); 

and we have only to apply the prrnciple 1.201 to obtain the theorem for k + 1. 

I , 22, We pass now to the general case when the ~1’s are not all zero. We 

have to prove that if O,, O,, . . - 0, are linearly independent irmtionds, there i8 

a sequence (n,) such that, us r - GO, 

We shall prove this by an induction from k to k + I which proceeds by two 

steps. 

(i). WC assume the existence, for a particular k, any number m of o’s, 

and any corresponding system of LX’S, of a sequence giving: the scheme of limits 

n 

nB 

. 
nk 

l .  .  l .  l :  

. l 

and we prove the existence, for any number m of O’s, and any corresponding 

By&em of a’s, of a sequence giving the, scheme 

40 
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n 

n” 

. 

It will be understood that neither m, nor the O’s, nor the cr’s are necessarily 

the same in these two schemes, all of them being arbitrary, 

(ii). We then sImw that we can pass from the last- written scheme of limits 
t.o the generd scheme in which the elements of the last row also are arbitrary. 

I , 23. Proof of the first step. To fix our ideas we shall show that we can ’ 

pass from a sequence (n,) giving’ 

to a sequence (m,) giving 

It will be clear that the argument is in reality of a perfectly general type, 

Suppose we are given aI11 &, pII, &, and that 0, rp, cy’, , (x’, , & , &, are line- 

arly independent irrationals. Then by hypothesis we can find a sequence giving 

the scheme 

Further, the set of points ($8, n:cp) has at least one limiting-point (A, [L), and, 

by restricting ourselves to a subsequence of &), we may suppose that we have 

also 

1 In what follows WV shall omit the brackets in (12 6,. . .; it ia of court to he under- 
stood that integers are to be ignored. 
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We express all this by saying that we can find a sequence (n,) giving the scheme 

The sequence (&), where k,= z n,., gives us t*he scheme, 

I 2a,, zp’,, 0, Q, 0, 0, 

( I  l 222) 4 4, 4 p’z 1 0, o 1 
8;1, 8~1. 

By the general principle 1 .%I, we can find ai sequence (Zr) giving t,he scheme 

where ‘lim stands for ’ . llm 
rl, r2, - n l r8 

Consider the repeated limit 

which is easily evaluated with the aid of the table (I . 221). The limit of a term 

n& 0 is k: that of a ‘cross-term 

is zero, since n&t9 tends to an a’ or a @‘, and ntj a’ and nFj 8’ tend to zero. Thus 

we obtain the repeated limit 8k. In all the other repeated limits the cross-terms 

give zero in the same way, and we see that the sequence (I,) gives the scheme 

81 , 8,~. 

Consider now the repeated limits 
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All the cross-terms contribute zero as before, and we obtain the scheme 

(8 + 2 m) a’, , (8 + wp’,, o,o, o,o, 

(8 + 4mw,, (8 +*4wp’2, 0, 0, 

(8 + 8m)a 9 (8 + 8m)p, 
Or 

6cr’, + (m + I)ZC& 6& + (m + Ij2&, oj o, o, o, 

It; is possible, then, to find a sequence giving this scheme. But now, since it is 

possible to find a sequence of m’s such that 

(m + 1) F-9 w==L @I, 4&, 4&, 8L 8/l), 

it follows (in virtue of the firinciple 1.20) that we can find a sequence giving 

the scheme 

w, $f,, 0, 0, 0, 0, 

4&, 4/L 0, 0, 

0, 0. 

This gives us what we want (and something more) provided it is possible to 

choose 

This is the case provided 0, y, cr,, &, CI,, & are linearly independent irrationals: 

it remains only to show that this restriction on a,, &, IX,, & may be removed. 

lt is obvious, in virtue of the principle 1.20, that this may be done provided 

we can find a sequence (~11~~ &, aZlt, &) such that, for each n, 0, r(l, u17L, /L, 

aZn, pztr are linearly independent irrationala, and such that 

mn -a,; P In - B 13 azn--a2, P 2n- I”s 2’ 
l 

Now it is easy to see thaf there must be points (aIn, pin, a& &) interior to 

the ‘cube’ with (CQ, & , a,, ,&) as centre and of side 2+, and exterior to that 
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with the same centre and of side z+--l, and such that 0, rp, aIn, /?ln, Olga, /Se* 

ztre linearly independent irrationals. By selecting one such point correspondin& 

to each value of n we obtain a sequence of- the kind desired? 

I . 24, Proof of the second step. Here also we shall consider a special case 

l 
for simplicity: the argument is redly general. We shall show that we can pass 

from a sequence giving the scheme 

to one givipg 

As in I . 23, we ma-y suppose, without real loss of generality, that 0, rp, 

a1 9 /$ are linearly independent irrationals. Let (n, ) be a sequence giving 

n3 0 

0 

0 

a2 

2 
- a, 
3 

B 2 

1 This argument depends ostensibly on ZEERMELO’S ‘Auswahlsprinzip (or WHITEHEAD and 
RUSS~XL’S Wultiplicative Axiom’). This difficulty can however be surmounted with ? little trouble. 
It should perhaps be observed that we have ignored several. similar. points early in the paper: 

in all of these the difficulty is comharatively trivial, and we hav.e only called attention to it 
in the present instance because it occurs in a more serious form than is usual in constru@ive 
mathematics. 

An alternative line of argument from that in the text proceeds as follows. It is easy 
to show that if at most a finite nuvber of primes are omitted, any four of the sequence 
log 2, log 3, log 5, log 7, log II,* l ‘, together with B’and y, form a set of six linearly independent 
irrationals. Moreover it can he deduced from known resulta concerning the distribution of the’ 
primes that we can find a sequence (logpa, logqn, logm, logsn), where pn, qti, in, and art are 
primes, such that 

(bgpts) - a1 , (log @> - PI 1 (log ?h) - Q p (log sn! - h- 
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Then 

lim(n, + n.) B = lim (I- ~3, -+ n,O) = a1 
r, s r 2 

lim (n, -I- n,)V9 = lim (n, ay, -I- n:O) = 4x,, 
r, 3 T 

]im (n, + 7tJW = lim (b2~a, +nf@ = a,; 
r> s T 2 

with similar results for q. It follows by the principle 1.20 that there is a se- 

quence giving the desired scheme, and the proof of the induction, and therefore 

that of the theorem, is completed. 

x.3. - The order of the approximation. 

I. 30. We have proved that under certain conditions we can find a sequence 

(n,) such that 

(1’ 301) (n;OP)-+MxP (x=1,2,-k; p=1,2,-m). 

There are a number of interesting questions which may be asked with regard to 

the rapidity with which the scheme of limits is approached. 

The relations (I .301) assert that, is we are given A, there is a function 

@(k,m; O,,t?,,*~&; aII,a12,‘-*GLkm; n)l such that 

for some n <.a. It is hardly necessary to observe, after the explanations of I . oo, 

that this inequality requires & modification when &p = o, which may be express- 

ed roughly by saying that olXP is then to be regarded as a two-valued symbol 

capable of assuming indifferently the values o and I. 

(i) Does Q) necessarily depend on the 0% and U’S: can we for example, find 

a D independent of the Q’S? It will be seen that this last question is answered in 

the affirmative, 

(ii) Can we assert anything concerning the order of Cp qua function of L,’ 

the variables 0 and a being supposed fixed? The same question may be asked 

concerning any @ which is independent of the-a’s; it should be observed, more- , 
over, that the best answer to the latter question does (not necessarily, give the 

best answer to the former. 

’ For shortneaa WQ shall writ9 this d (k,m, 8, all). 
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Our attempts .to answer these questions have not been successful, and such 

results as we have been able to obtain are of a negative character, The ques- 

tion then arises as to whether we can obtain more definite results by imposing 

restrictions ‘on the O’s or the IX’S, by supposing for example that all the CI’S are 

zero, or that the B’s belong to some special class of irrationals. 

(iii) The relations (I .301) imply the truth of the following assertion : there 

is a function rp (k, m,O, a, n) which tends to infinity with n, and is such th.at 

for an infinity of values of n. A series of questions may then be asked concern- 

ing rp similar to those which we have stated with reference to a. 

I .3 r. We shall begin by proving two theoreIns which are connected with 

the questions (i). The first of them deals with the case in which all the a’s 

are zero, and it will be convenient to use in its statement; as in I . IO, not the 

function (x), but the allied function X. 

Theorem 1 l 31. There is a; function clr (k, m, A), depending only on k, m, and L 
;1, such that 

for Some n<Q,. 

For suppose that this theorem is false. Then to every r corresponds a set 

of O’s, say .8,, &, . . . rl’)m, such that the inequalities 

are not all true unless n > r. The set of points (~9, , #., , m l . ,.H,,) has at least 

one limiting point (O,, O,, . m 1 O,), and by restricting ourselves to a subsequence 

of r’s we can make 

From this it follows that we can choose a number n, which tends to infinity 

with r but so slowly that 

Clearly we may suppose that n,~_r, and so we have, for an infinit,y of values 

of r, loll 5-r and 
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From (I ,311) and (I .313) it follows .that the inequalities 

cannot all be true unless n > n,, and 80, since n,-+a, cannot be true for any 

value of n. This contradicts Theorem 1 .Oll. 

In the case k = I it is possible ‘to assert much more tban this. It is known, 

and is proved in I. IO, that in Ghia case we may take 

(1 l 3x4) CD = @] + 1p 

This problem, in fact, mav he regarded as completely solved. When k > I, how- c 
ever, the case is very different. We have not even succeeded in finding a defin- 

ite function @ (A), the same for all O’s, such that 

for nA@i It would be not unnatural to suppose that the tibest possible)} 

function1 Q) .is less than K A, where K is an atbsolute constant. But we have been 

unable to prove this or indeed any definite result as to its order in A. 

r ,32. Theorem 1.32. If the 8’s are linearly independent irrutionals, it is 

possible to find a fzcnction @ (k, m, 0, A), independent of the a%, such thut 

for some n <CD. 

That this theorem is true for the special case k = I, m = I, follows from the 

argument (a;) in I. II. It is easily proved in the most general case by an argu- 

ment resembling, but simpler than, that of I. 31. 

If the theorem is untrue, it is possible to find a sequence of sets ( flxP) 

(r =I,Z,- ) for which the inequalities of the theorem do not all hold unless n > T. 

The sequence of sets has at least one limiting set (Or,& let tis choose r so that 

Then clearly the inequalities 

cannot all be true unless PZ > r, and so, since r is arbitrarily large, cannot all 

be true for any n. This contradicts Theorem 1.011. 

’ That is, the function which has, for each value of k, the least possible value. For the 
existence of this function it is necessary that the sign < above should not be replaced by <. 
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I .33* Let us -consider more particularly the ca,se in which k: = x, 

The equation (I .314) .suggests that it may in this case be possible to choose 

for @ a function of the form 

J2 (m, 8, cL) E. 

This we believe to be improbable, but we have not succeeded, even when vz = I, 

in obtaining a definite proof. What is certain is that no dorresponding result is 

true of the @ of Theorem 1.32. It is impossible to choose a function f2 (m, 0) 

independent of k, and a function J,D (m, A) independent of the O’s, in such a way 

that the @ of this theorem may be taken ‘to be of the form 

This is’shown by the following theorem.! 

Theorem 1.33. Let Zy (A) be an arbitrary function of 1 which fends steadily to 

infinily wilh A. Then it is possible to find irrational numbers 0 for which the asser- 

tion ‘there is a functibn 

tD (6, a) = 52 (6) q (A) 

such thul, whert ;1 is chosem, the inetjuulily 

is satisfied, for every a, by sore n less than @’ is false. 

Suppose that the assertion in question is true. Taking a = I/& we see that 

(1 ’ 331) o<(nCr)<a/n 

for some n less then a, 

Let pv14y be the wth convergent to the simple continued fraction 

x - 
.a1 

+ 
I 

a3 

+.*. 

which represents 6,. so that pI = I, qI = a,; and let us consider the system of 

‘intermediate convergenti’ 

L Xn proving a result of this negative character we may evid&y confine oursel~~ to the 
special case in which m = I. 
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intercalat’ed between .pzn/qzn and pzn+2/qzn + zm These fra&ons are all less than 

o and increase ulith r. Also 

where &n+2 is the complete quotient. corresponding to tzzn + 2, and 

QlBn+2 = b&+2 q2n+ 1 + q2w 

Let 

(1 ’ 333) k 2 qL+2 
n=-r. 

Q2n+2-8' 

where s is a particular value of r which we shall fix in a moment. We shall 

suppose t~2~+2 large, and s also large, but small in comparison with a2n+2. In 

these circumstances 1, will be approximately equal to z QZ,&+ 1 l 

We shall now prove that if 

(1 ’ 334) 0 < (Q(j) < 2/n, 

then 

11 rn 335) Q > 92rw 

From (I l 334) it follows that there is a fraction P/Q such that 

(1 l 336) 

On the other hand 

(1 ’ 337) 

o<fj 
P 2 -- Q <n,Q’ 

fl mv 2 --=- 
P%s h n 2n,e 

If P/Q actually gave a better approximation by defect to 0 than ~2,Jq2~,~, it 

would follow at once that & > q2n,s* We may therefore suppose the contrary; . 

and then it follows from (I ,336) and (I ,337) that 

Hence 

But 

0 < ‘r)zn,~ Q - q2n,s P < 2 Q2n, A 
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and 

I: 
il 

a’2n+2 qzn+ 1 + q2n - 
It z 

2 a'2,1+2-~ 
>q2,2t1 t 

$2 72,8 -=~n+5q2n+l<(t~+I)q2ntl~ 

Hence Bn,s Q - @n,a P is les~~ than s + z, and &d 

(1 l 338) pet+&- qzn,s P = 0 (U < 4 < 3). v - 

On the other hand 

p2n,u 42n,e-9 - q2ng p2n,8-@ = Q; 

and so 

pm,8 (8 - qwr-0 ) = qzn,u cp -- p2n,s-4 

Hence either Q = q2n,s-e, or Q- q2jt,s-I, is divisible by qz<#; and the latter hypo- . 
thesis plainly involves that Q > q2,1,s, 

On the other hand, if Q =qq12,8-,, then P = ~2~,~--~? and 

p a’zn+a-8 + Q 

‘which contradicts (I ,337). Hence in any case Q > qzn+ 

It is now easy, to complete the proof of the theorem. We have at fortiori 

Q> 8. Also, if G zn +2 is large, and s large, but small in comparison with azn+ 2, 

kta will clearly be less than 4 Qzn+ 1 l We may suppose for definiteness th& 

6 = [l/azrr+zl- 
We choose a value of (1 such that the inequality 

ab+2> W(4 q2n+i):i 

is satisfied for an infinit,y of values of n, Then 

But if Q, and u fovtiori s, is less than II,, we must have 

and this is obviously impossible when n is sufficiently large. This completes the 

proof of the the&em. 
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It should be observed that the success of our argtiment depends entirely on 

our initial choice of CL iti such a way that (n 0) is sm.all. It would not be euough 

th,at a ahould be 8mEtl1, that is to <say that (n 8) ahould be nearly equal to I 
either o or I: thi8 can of conr~e be secured by choice of an IZ -less than U, CI, 

being indeed independent of 8. 

I. 34, We turn now for a moment to the questions concerning r/l. Jf we have 

found a function @(A) which is continuous and monotonic, the inverse function is 

plainly a cp* The converse, however, is not true, and we cannot, from the existence of 

a cp of given form, dcaw any conclusion as to the order of 0 for a# values of A. 
This is clear from the fact that, fo put it roughly, the existence of ;P ‘aaRer@ 

an inequality which need only hold very occasionally, and which therefore gives 

US information as to the behaviour of QI ody for occasional values of A, Thus 

the existence of a U asserts much more than that of the corresponding rp. Since 

moreover it will appear (in the third paper of the series) that in applic&ions of 

the present theory it is always the properties of ‘I,, and not those of q~, which 
are relevant, we are justified in regarding theorems concerning rp as of rather 

minor importance. There are, however, one or two results which are worth noticing, 

and which are not deductions from the corresponding results concerning Q‘,. It 
should be observed that whereas we wish @ to increase as slowly as -possible, we 

wish rp to increase as rapidly as possible. 

Theorem 1,340, It is possible to choose the ~1% so that pp (m, 0, a, n) increases 

with arbitrary rapidity. Moreover the cc’s may lw chosen in un arbitrarily small neigh- 

bourhood of any set (q, aa, n -. u,). 

We omit, the proof of this theorem, which is easy. 

Theorem 1 l 341. If k = I a*rtd m = I, then, provided only that 19 is iwatjonal, 

we may take 

(a function independent of both 6( and a). 

This fallows at once from the argument (a) of I . II. It is natural to snp- 

pose that, when wx > I, we may take 

where 10 (m) depends only on m. But this we have not been able to prove. 

A comparison of Theorems 1 l 33, and 1.341 shows very clearly the differ- 

mce between theorems involving Q, and those involving q~, and the greater depth 

and difficulty of the former. 
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I .35. Theorem 1,33 shows that it is ‘hopeless to expect any such Gmple 

re&lt concerning @ as is asserted concerning rp in Theorem 1 l 341. It is however 

possible to obtain theorems which involve @ and correspond to Theorem 1.341: 
l *  

if we suppose that certlain classes of irrationals (as well as the rationals) are 

excluded from the range of variation of 0. In the two theorems which follow it . 
is supposed that WJ = I and k = I. 

Theorem 1.350. Let 8 be confined to the class of. irrdonals whose partidl 

qziotients are limited, QC set which is everywhere dense. Then *we may take 

tD = a 52 (0). 

Theorem 1. 351. Let 0 be confined to the class of irratidnals tihose pahd 

quotients u n mtisfy, from a certccin value of n onwurds, the inepality 

Then we may tuke, 

0 = a (log a)1 + d’ L2 (0) 

where 8 zta any number greater than 8. 

The interest of the last theorem lies in the fact that the set in question is 

of measure I,~ 80 that we may take @ to be of the form il (logA)1+&J2(0),8 

where & is an arbitrarily small positive-number, for almosf all values of 0. 

The proofs of these theorems are simple and depend merely on an adapt- 

ation of KRoNBcKER’g argumenf reproduced in x S II. Suppose first.that the par- 

tial quotients of 0 are* limited. We can choose H so that, when K is assigned,. 

there is always a denominat.or qrn of a convergent to 0 such that c 

We take q ==qma It follows from KRONECEER’S argument that there is for any CI 

a number Y such that 

’ Sy a theorem of BOREL and BERNSTEIN. See BOREI,, Rendicod di Putemto, vol. 27, pa 247, 
md Math. Am., vol. 72, p. 578; BERNSTEIN, Math. Ann;, vol. 71, p. 417. 

’ It is not difficult to replace k(log A)l+& by 1 log X (log log I)l+&, or by the ~orrespontl- 
ing bat snore complicated functiona of th-e logarithmic scale. 



The proof of Theorem 1.361 is very similar. We suppose that 

There is a constant 4 such that pm > eg*, r and from these facts it follows easily that I 

q, < A (log n)l+ @ 

for sufficiently large values of A. The proof may now be completed in the same 

manner as that of Theorem 1.350. 

It is natural to suppose that these theorems have analogues when m >. I. But 

our arguments, depending as they do on the theory of continued fractions, do 

not appear to be capable of extension. 

x*4* - The general sequence (f(n) 0) ad the particular sequence @‘VI) 

1.40. We return now to tke general sequence (f (n) 8): it will be convenient 

to write in for f (n). We suppose then that (k,) is an arbitrary increasing sequence 

of numbers whose limit is infinity? 
It would be natural to attempt to prove that, if 61 is irrational and CI is aBy 

number such that o < CI < I, a. sequence (n,) can be found such that 

but awe saw in I. oo that this statement is certainly false, for example when 

;1 rr =. zn or R,=lz? 

The result which is in fact true was suggested to us by a theorem of BERN- 

STEIN,’ which runs as follows: 

If il, is albays m integer, then the set of vrtlues of 0 for which 

ia of meuaure zero. 

This result, when considered in conjunction with what we have already 

proved, at once suggests the following theorem. 

.l In the introductory remarks of I .OO we etated our main problem subject- to the restrict- 
ion that hn is an integer. No such m&Action, however, ie requited in what folIowE. 

q l? BERNSTEIN, Zoc. cit. 3 
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Theorem 1.40. The set 01 w1at.m of 19, for which the set of pints (in 8) is 
not everywhere dense iti the interval (0, I), is of measure zero. 

In other words, the main question asked *in I. oo may be answered affirm- 

atively if we make exception of a set of measure zero. 

I. 41. The proof will be based upon the following lemma.. 

Lemma i .41. #uppose thut a finite number of is~terrals are exclu$ed from the w 
continuum ‘(0, I), and that the length #of the remainder 8 is 1. Let a be any number 

betwen o and I, and consider the set T of [A] inter&s of length 811 (6 < I) whose 

centres are at the points 

Then the length o/ the wmmon prt of S and T is 

dl +&I,, 

where en -0 cts a---d. 

The truth of the lemma is almost obvious. A formal proof may be given 

as follows. Let the lengths of the intervals excluded from S be 1, , I,, . . , , ZP. If 

now we extend each of these intervals a distance I/Z A at eactl end,e we obtain 

a system of p intervals of length 

We denote what is left of (0, I) bv S’. 

If (a + r)/l falls in S, the whYole of the corresponding interval of T falls iu 

S. Hence tie part of S inside T has a length not less than ~,a/& where p i# the 

number .of points (a + r)/l in S’. If v,, Y,, , . . , vP are the numbers of these 

point8 which fall ‘in the intervala excluded from S, we have 

2p-1, 

1 It is of course to be understood that1 .an interval, or a part uf m iuterwl, which falk 
outside (0, I), is to be replaced by the congruent interval ineidle, 

’ we suppose’ 1 large enough to emwe that. thi8 extension does wt cwae any overlay- 
ping. I f  any part of an extended interval should fall outside (0, I), as wil2 happen if an inter- 
val container o or 1, we of course replace t’hiis part by the congruent part of (0, I). 
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Hence the length in question is greater than 

A similar argument, which we may leave to the reader, furnishes a corre- 

spending upper limit for the length; and the lemma follows, It is plain that 

r. 42. We can now prove the following theorem, which is a generalisation 

of BERNSTEIN’S, but is itself contained in Theorem 1.40. 

Theorem 1.42. If I is any intervul contuimd a’n (0, I), the set 0 of pints 
0 such that no one of the points (A, 0) falh inside I, is of measure zero. 

Let a be the centre of I and 6 its length; and let Tm be the set T of -the 

lemma, with 1 =A,. If, for anv value of m, 0 falls in Tn, then (A,& falls in 

I, and so 8 belongs to the set complementary to 0. 

Let 

S ,=T,+T,+--t-T,, 

and let Zfl be the length of &. Finally let Zfl-+ I as n-m l We have to show 

that I= I. 

We noIv apply the lemma, taking S to be the set RY 
the length of the and T to be Tm. If m is large enough, 

of S(,, and’ T, is greater than 

complementary to S,, 

common part (RR, Tm) 

Any point which belongs either to this set or to S, itself belongs to s~nze S,. 

Hence 

and so 

1 ) I,, + 6 (I - In) - E ; 

which is impossible unless l- x. 
I. 43. We can now complete the proof of Theorem 1.40. Let IV, be the 

set of v~~lues of 0 lsuch that some one of the intervals 

contains no point (LO). Then E, is of -measure zero, and 80 
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is of measure 

E=E,+E,+E,+...... 

z0ru. 

If now the set (&J?> is not everywbere dense in (o, r), there ia an interval 

i which contains no (LO). We can choose n so that Borne interval (f, T) 

falls inside i. Then t? belongs to E, and SO to Em Thus the theorem is estab- 

lished. 
I. 44. Perhaps the most interesting special sequence falling under the ge:en- 

era1 t$pe (f w1 is that in which J(n) = CP, where a is a positive integer. When 

8 is expressed as“ a decimal in the scale of a, the effect of multiplication by a 

is merely to displace the digits. To study the properties of the sequence (a‘nH) 

is thereforeequivalent ta studying the distribution of the digits in the expression 

of B in the scale of a: it is to this fact that &his form of f(n) owes its pecu]jar 
interest. 

Let b be one of the possible digits O, I, 2, l . ., a - x, and’let ~(n, m) denote 

the number of decimals of 7c figures whose digits include exactly nz b’s, Then 

(1 ’ 441) 

We write 

(1 ’ 442) 

n! 
Phm)=ml (n-m)r(U-I)?‘-m* . l 

80 that p is. the excess of the number of Vs above the average. 

We shall base our investigatjbn on a series of lemmas. 

Lemma I . 441. Given any psitive number 6, we can find a p&be numbw 

6 such that 

where 

for 1 p I< &n and all sufficiently lurge values of n. 

We omit the proof of this lemma, which depends merely on a straightfor- 

ward applioation of STIRLIN~S Theorem. 

Lemma 1 .442. Given any positive number E, we can find a positive nu7nbcl~ 

j- such that 
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jur 1 p 12 8’32 and all suiiicienlly large dues of n. 

Suppose, e. g*, it> I en. Then 
2 

I 

p(n,m+xj 
a---z--a& 

n z!z! ---m < . 2 cI’ 

wbm) b--wm+I) @-I)(*+I_aE) ? 
2 

and from this it is easy to deduce the truth of the lemma when ji > &n. A sim- 

ilar proof applies when !t < - sn. 

Lemma 1 i 443. Let c be a positive constant. Then 

(1 l 4431) 

(1 ’ 4433) lim a-“&+,m)<r. 
n-y=, 

/I < c I/n 

Of these three inequalities the first is plainly a consequence of either the 

second or third. It will be, enough t-o pru.ve the second. 

We have 

(ti- 1) n/u 
a-n~p(n,m)=a-n~+a-“~=s,+s2, 

P> v- -c ?t v- -c n en 

say. By Lemma 1.442, 

And 1)~ Lemma 1.441, .I 
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The term of order x/l/k may be ignored. The remainder is less than 

-c 

which is less than I. Thus the lemma is proved. In a similar manner we can 

prove 

Lemma 1.444. rf v ifiq a function of n such that u/ I/n - 00, then 

whire K ‘depends only on a. 

I*45 We are now ‘in a position to prove our main theorems. We observe. 

first that all irrational1 numbers 0 between o and 1, whose decimals have just m b’s 

in their first n figures, may be included in a set of intervals whose total length is 

a -n P fn.4. 

For let t?,, O,, . . . . , 8,, where Q =a”, denote the terminating decimals of n fig- 

ures. The set of intervals (Or, 0, + a-n) just fills Up the whole interval (0: I). 

Among the numbers Or there are ~(n, m) lvhich have just rt2 b’s, which we may 
(%a11 i= It -- 

319 521 l ’ ‘J &I;  
and the set of intervals (&. ES + aen) fulfils our requirements. 

Theorem 1.46. Let 8 be any positive nu.mber. Then the set of nT&ers 0 

for which 

Let $ denote the complementary set. Any number belonging to s satisfies 

for an infinity of values of n, 8’ being any positive number less than & c a. 

l The end points of the intervals will be rationa numbers satisfying the condition. In 
what follows we may confine ourselves to irrational values of 8, since the rational values forIn 
in any ca80 a set of measure zero, 
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All O’s for which this inequality is true for LI particular n may be enclosed 

in a set of intervals whose total length is 

0 '451) 

We can choose a positive number d” such that 

ztrld then choose n, so that the expression (I: .45x) is less than 

for n > n,. -- To provk the theorem it is enough to show that the result of sum- 
ming this expression for n = n,, n, + I, . , . . . . can be made as small as we plea#se 

by choice of .n,; and it is obvious that this conclusion cannot be affected by the 

presence of the term a:-*. But 

d I’ 26’ d” -28’va----->o; -- 
u v a 

and plainly 

can be made as small as we please by choice of n,. Thus the theorem is proved. 
Theorem 1.45 includes as a particular case 

Theorem 1.451. If nb is the number of h’s in the first n figure& of the ex- 

pressiun of (“I as Q decimal in the scale of a, then 

for almOst all mlues of 0. 
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I .46. Theorem 1.45 shows that the deviation, from the average n/a, of 

the number of occurrences of a particular figure b in the first n places, is not 

in general of an order materially greater than V& If we were to suppose that 

there was a steady deviation from the average (instead of a merely occasional 

deviation), we would naturally obtain a more precise result. Thus reasoning 

I analogous to, but simpler than, that which led to theorem x .45, leads also to 

Theorem 1.46. If rp(n> - 00 with n, then the set of 0’s fur which 

is of measure zero. m 
This theorem, however, is included in a much more interesting and general 

theorem which we shall now proceed ‘to prove, which, to put it roughly, assigns 

a lower lim’it for the deviation‘ in either direction. 

x . 47. Theorem 1 ; 47. If G is any positive constant, the set of O’s for which, 

p(n) > -&, 

and the set fur which !c (n) < c I/n, are of measure zero. 

Let1 

By Lemma 1.443, there is a positive number &, such. that 

lima-” j$p(n,m)=~--&,. 
n-* p > -c&b 

And if c < c, < c,,, it is clear that -e 

ii&-=&7(n,m)=x-&,,, 
?I-= p>--c,G 

where 

Let E, be the set of the theorem. We can enclose E, in a set of intervals 

of total length 

l lt follows from the elementa of the theory of errora that the ‘most probable error’ is of 

order h, 
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a -n1 &I(?%,, ?n)< I--f&* 

p> v-- 

2 

-c 731 

CunGder now any one of the 

N=Cp(n,m) 

intervals of this set, each of which is of length a-*1; and let % = (~3). 

ranges in the interval in question,. 5 ranges in the whole interval (0, I). 

If tl belkgs to E,, the corresponding 5 has the property that * 

,Ll (n’) > - c I/n, + 7%’ 

As 0 

for all values of n’; and so, if n’ is large enough compared witb n,, 

where 

c’ = c (I + z---l). 

We may now enclove the E’s in a set of intervals whose total length is. 

less than 

I 
I: -- d 

2 
c’ ; 

and therefore 

corkdera 

w0 may 

in a a& 

enclose the 8’s which lie in the particular interval under 

of interval6 
I 

Whose total length is less than a-*a (I- - & ) . 
2 

If we do this for each of the N intervals, we have enclosed the B’s in a set of 

intervals of length less than 

Repeating this argument, it is 

intervals of total length less than 

clear that we can enclose the B’s in a set of 
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the indicea n, being integers which tend to infinity with v, as rapidly as we 

please. Plainly &J < c, and so 

As this tends to zero as Y- 00 J our theorem is proved. 

From Theorem 1.47 we can at once deduce 
Theorem 1 .471. The set of Ok such that to each 0 corresponds a c for which 

p b> > - cl& is of measure zeru. 
Let E, denote the set of Theorem 1.47. The set of this theorem is plainly 

the sum of the sets E, , E, , E,, l . .; and so is of measure zero. 

I .48. So far we have considered merely the occurrence of a particular 

digit b in the decimal which represents 8. But our results are easily extended 

so as to give analogous information concerning the. cwurrence of any combin- 

ation of digits, Tho method by which this extension is effected is quite simple 

in principle, and it will be sufficient to show its working in a special case. 

Consider the succession 317 of digits, in the scale of 10. In the scale of 
rooo, the number 317 corresponds to a-single digit z; and, if 0 is expressed in 

the scale of 1000, it will, by theorem 1.451, be almost always true that the 
number nz of occurrences of z, among the first n figures, satisfies the relation 

Now the combination 3x7, in the expression of 8 in the scale of IO, will 
occur when, and only when, the digit T occurs in the expression of one or other 

of the three numbers 

8, IO& 1008 

in the scale of 1000. Hence it is almost always true that the number of occur- 
rences of the combination 317, in the first n digits of the expression of 8 in the 

scale of x0, is asymptotically equivalent to 

n 
looom 

We may ROW, without further preface, enunciate the following theorems, 
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Theorem 1 .48. lt is almost always true thai, .when a number 0 is expressed 

in aq scale of notation, the number of occurrences of any digit, or any combination 

of digits, is asymptotically equivalent to the average number which might be expec’ted. 

Theorem 1.481. It is almost always true that the deviation from the average, 

in the first n places, is nut of order exceeding m. 

Theorem 1 .482. It is almost always true that the &viation, in both directions, 

is sometimes of order exceeding z/G. 

Theorem I .483. The nuwiber uf the first n numbers (aV) which fall inside 

an interval of length 6 included in the interual (0: I> is almost always asymptu~icallly * 
equivalent to 6% 

The laat theorem is merely a’ translation of theorem 1.48 intAo different 

language, and a corresponding form may of course be given to theorem 1.481 

and 1 .482. 

1 .4g. Throughout this section (I .4) we have confined ourselves to results 

concerning a single irrational f). Some of our theorems, however, have obvious 

many-dimensional analogues. It will be sufficient, for the present, to mention the 

foliowing, which are generalisations of Theorems 1 I 40 and 1.483 respectively. 

The interval (0, I) is now replaced by an m-dimensional ‘square’, 

Theorem 1. 49. The set of values (O,, 0, . .. O,), fur which the points 

(Lo:, L&;’ l ;inOm) are nut everywhere dense in the square, is of measure zero. 

Theorem 1.491. The number of the first n points (avt),# uy O,, = -. avO,>, which 

fall inside a portion of the square, uf areu 6, is almost always asymptotically equi- 

valent to 6 n. 

We leave the proofs to the reader. The first theorem may be proved by 

an obvious adaptation of the proof of Theorem 1.40, and the second deduced 

from Theorem 1. 483 by a process of correlation very similar to that employed 

n 1.48. 
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CORRECTIONS 

p. 175, The last displayed formula but one should read: 

1 1 1 --- 
a,+ a,+ aa+**- 

23. 177. The parenthesis in (1.338) should read: (0 < p < 5). 

p* 185, Aemma; 1,444. Under the sign of summation, read: 1~1 > Y. 

p. 185, laatfvmula. Read: 1~1~ 

p. 186, (1.451). Read: 1~1 > Y,, 

p. 188. In the second displayed formula, read nfr for n. 

COMMENTS 

8 1.00. A simpler notation, which has come into use since the time of this paper, renders un- 
necessary the use of fractional parts and the special convention when a= 0. Instead of writing 

one now writes 
-E < ln,iLa < e (modl), or l+J-~ll < E (mod I). 

8 1.01, As mentioned in the footnote on p. 157, the form of Kronecker’s theorem which is stated 
by Hardy and Littlewood as Theorem 1.01, and generalized by them in Theorem I ,011, is only 

a particular case of the original theorem of Kronecker (though the general case is deducible from 
it), The original theorem gave necessary and sufficient conditions for a system of linear equations 
(not generally homogeneous) to have an arbitrarily good approximate solution in integers. The 
condition in Theorem 1.01 that &,..., 6m shall be linearly independent irrationals is a particuIar 
case of Kronecker’s condition on the urithmaeticaZ m%k of a system of linear equations. It is 
customary now to express the condition in the form: 1, &..., 8,, are linearly independent over 

the rationals. 
A good account of Kronecker’s theorem, in the form considered by Hardy and Littlewood, 

is given in ch. 23 of Hardy and Wright. Here several later proofs are given and their merits 

compared. This account supersedes most of 8 1.1 of the present paper, 
Theorem 1.011 implies the existence for any E > 0 (under the conditions stated) of infinitely 

many integers n such that 

I 0 + P --orK,J<e (modl) forl<p<m,lgK<k. 

P. Szti~z (Acta Math. Acd Sci. Hwngaricae, 4 (1953), 115-18) has proved that there exists 

a number JI(&...,&; k) such that there is an integer m with the property in every interval 

(4 t+w. 

8 1,14 (a). We have here an early result on one-sided, or asymmetrical, Diophantine approxima- 
tion. It will be seen that Hardy and Littlewood realised the important distinction (in the case 
of homogeneous approximation, when the Q?~ and BP are zero) between approximation from one 

side and from both sides. For an investigation into this question, see C. A. Rogers, Proc. London 
Math, sm. (2), 52 (1951), 186-90. 

§ 1.14 (b). The two theorems stated here are early results on uniform distribution (mod 1). In 
the first, it is to be understood that 1, 8, # are linearly independent, as in Kronecker’s theorem. 

The second result includes as a particular case the uniform distribution of V@ (mod 1) for any 
irrational 8, This seems to have been first proved by P. Bohl in 1909 in work on perturbation 

problems, and independently by Sierpiriski and Weyl at about the same time (see Koksma, pa 92). 
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In his important memoir of 1916 (Math. Annalen, 77 (1916), 3 13-52) Weyl gave his criterion 
for uniform distribution in terms of exponential sums, and this provided a powerful technique 
for proving the uniformity of distribution of many sequences. On the relationship between this 
memoir and the work of Hardy and Littlewood, see 1916, 9. The method of exponential sums 
also enabled Weyl to prove a stronger form of Theorem 1.011 asserting simultaneous uniform 
distribution; see Koksma, p. 93, Salz 10. 

The Bohr-Littlewood Cambridge tract, announced in footnote 2 on p. 164, never appeared. 
But the Bohr-Littlewood manuscript formed the basis for Tit&marsh’s tract on the Riemann 
zeta-function and (to some extent) for Ingham’s tract on the distributionof primes. Tit&marsh’s 
tract developed later into The theory of the Riemnn xeta-function. (Oxford, 1951), and this 
contains the applications of Kronecker’s theorem to the zeta-function mentioned in footnote 1 
on p. 158 of the present paper. 

More recently, Kronecker’s theorem was the starting-point for an important body of work by 
Turk (see his book: Eine neue Methode in der Anal@s und deren Anwendungen, Budapest, 1953). 
I f  1, Ol,..., 8, are linearly independent, Kronecker’s theorem asserts that for any real al,*.., ‘31, and 
any E > 0 there exist integers v  for which 

I 
1+ 2 e*(@-crl) > m+ 1 -E* 

j=l I 

But it is impossible to give any bound for v, or to name any interval in which some v must fall, 
unless the hypothesis is strengthened by assuming some quantitative measure for the degree 
of linear independence of o,, , . l , flnt. The general idea of Tur&n’s work is that if one is content with 
a much weaker inequality, it is possible (under reasonable conditions) to give good limits for Y 
and (what is equally important) to omit the requirement of linear independence. The work 
has applications to the zeta-function and to a variety of questions in analysis and in analytic 
number theory. 
5 1.31. The specific problem (p. 174) of finding a function Q(h) such that for any 8 there is a solu- 
tiun of 

In2e] < Aa1 (mod 1) 

with n < @(h) has been answered most effectively to date by Heilbronn (@art. J. of Muthe 19 
(1948), 249-56). He proved that if A is large (as one may suppose) the result holds with 
@(A) = h2+-&, where 6 is any fixed positive number. A similar and more general result, but one 
that is less precise for this particular problem, had been found by Vinogradov in 1927 (see 
Koksma, p, 119). The conjecture, described by Hardy and Littlewood as ‘not unnatural’, that 
perhaps one could take D(h) to be proportional to h, is, however, false. For take fl = a/p, where 
p is a large prime of the form 4x+ 1 and a is a quadratic non-residue (modp). On choosing h 
so that G)(h) = p - 1, we should deduce from the conjecture that there is a quadratic non-residue 
(modp) which is bounded independently of 23, and this is obviously false. 

5 1.33. The conjecture at the beginning of this section, which Hardy and Littlewood say they 
believe to be improbable, is in fact false. This is a particular consequence of results found later 
by Blichfeldt (see Koksma, p. 86, Satz 6). 

3 1.34. There were earlier results, not mentioned by Hardy and LittJewood, of the same character 
as Theorem 1.341, Thus Chebyshev proved in 1866 that there are infinitely many n > 0 for 
which ~n&--~~ < 2/n (modl) (1) 

(Koksma, footnote on p. 76). This is equivalent to #(n) = @ in the present notation. Minkowski 
proved that provided 01 is not of the form IZ~ &--mm,, there are infinitely many integers n for which 

In&al < - 4; I (modl); 
n 

here n is not restricted to positive values. This result is best possible of its kind. The best possible 
result when n is restricted to positive values was found by Cassels (Math. Annulen, 127 (1954), 

27 
288-304); the constant which replaces 2 in (1) above is m, and the proof is difficult. 
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The conjecture concerning t$(@ when m > 1 is false, as follows from the results of BZichfeldt 
mentioned above. There is, in fact, a vita1 difference in problems of non-homogeneous approxima- 

tion between the one-dimensional case and the many-dimensional case. 

8 1.4. This section is an early contribution to the subject now called ‘metrical’ Diophantine 
approximation. Almost the only previous papers were those of Bore1 and Bernstein quoted on 

p. 179. For a recent account of the subject, see Cassels’s Tract, ch. 7. The later part of the section, 
beginning with 3 1.44, is concerned with ‘normal decimals’, and on this subject the reader should 
consult ch. 9 of Hardy and Wright. 

The notion of an exceptional set of Lebesgue measure zero can be refined by considering the 
Hausdorff measure of the exceptional set. See, for example, Eggleston, Proc. Lolzdolz Mu& Sot. 
(2), 54 (1952), 42-93. 
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SOME PROBLEMS OF DIOPI-IANTINE APPROXIMATION. 
I  

RY 

G. H. HARDY and J. E. LITTLEWOOD, 

TRZ~ITY COLTAGE, CAMBRI~IQE. 

II . 

The trigonomet&cal series associated with the elliptic 

3-functionsm 

2. 0. - hltrodnction. 

2. 00. The series I 

00 
2s b-1) 1 2 , 1 + 2 2qn2, I + 2 f& (- I)” qn2, 

1 1 1 

where q = eniT, are convergent when the imaginary part of z is positive, and 

represent the elliptic a-functions 

When z is a real number x, the series become oscillating trigonometrkal series 

which, if we neglect the factor z and the first terms. of the second and third 

series, may be written in the forms 

l The notation is that of TANNERY and &TX’S Thht-ie des functiim etliptiques. 1% shall 
refer to this book as T. and M. 

1914, 3 (with J. E. Littlewood ) Acta Mathematics, 37, 193-238. 67 



194 G. H. Hardy and J. E. Littlewood. 

These series, the real trigonometrical series formed by taking their real ut’ 

imaginary parts, and the series derived from them by the introduction of con- 

vergence factors, possess many remarkable and interesting properties. It was 

the desire to elucidate these properties which originally suggested the researches 

whose results are contained in this series of papers, and it is to their study 

that the present paper is .devotedJ / 

2. or, We shall write v L 

It is obvious that, if sn is any one of a,‘,, & &, then 

(2. 0x2) c I- n = O(n). 

Our object is to obtain more precise information about tell; and we shall begin 

by a few remarks about the case in which x is rational. In this case So is 

alwnvs of one or other of the forms 

o(l), An + O(I), 

where A is a constant. It is not difficult to discrimina#te between the different 

cases; it will be sufficient to consider the simplest of the three sums, viz. &. 

We suppose, as plainly we may do without loss of generality, that x is 

positive. Then x is of one or other of the forms 

according as the denominator of 5 = Ex is congruent to o, I, 2, or 3 to mod- 
2 

ulus 4. 

1 So~ne of the properties in question are stated shortly in our paper ‘Some problems of 
Diophantine Approximation’ published in the Promdings of the fifth Idemational &ngmss of 
Mdhematicians, Cambridge, J 912. 
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Now it is easy to verify that 

is of the forms 

according as 8 co, I, 2, 3 (mod. 4); and from this it follows immediately that 

8:: is of the forms 

(k I: h i)An + O(r), 

zt An + O(I), 

k iAn + O(I)? 

in these four cases. Thus, for example, the series 

oscillates finitely if x is of the form (zk + I) / (2,~ + I) or ZA / (4 p + 3), and 

diverges if x is of the form (zA + X)/Z/L or zA/(4,~ + I)/ 

2. I. - 0 and o Theorems. 

2. IO. We pass to the far more difficult and interesting problems which 

arise when x is irrational. The most important and general result which we 

have proved in this connexion is that 

(2, 101) &a = 0 (n) 

for any irrational x. This result may be established by purely elementary 

reasoning which can be extended so as to show that such series as 

I This result (or rather the analogous result for the sine series) is stated by BROMWTCH, 
Ziz$nite Series, p. 485, Ex. IO. We have been unak.Ae to find any complete discussion of the 

question, but the necessary materials well be found in DIRJCHLFT-DEDEKIKD, tTorZesungen iiber 

Zahlenthm-ie, pp. 285 et aep. See also RIEYANN, Werke, p. 249; GENOCCHI, Atti 6% Twino, vol. IO, 
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also possess the same property. We do not propose to include this proof in the 

present paper. Although elementary, it is by no means particularly easy; and it 

will find a more natura.1 place in a paper dealing with the higher series (2. 102). 

In the present paper we shall establish the equation (2. IOI) by argumentIs of a 

more transcendental, though really simpler, character, which depend ultimately on 

the formulae for the linear transformation of t#he a-functions, and will be found 

to give much more precise results for particular classes of values of z. 

2. ZL It is very easy to see that, as a rule, the equation (2. 101) must be 

very far from expressing the utmost tOhat can be asserted about sm. 

It follows from the well known theorem of RIESZ-FISCHER that the series 

(2. III) 

are FOURIER’S series. Hence, by a theorem of W. H. YOUNQ~, it follows 

that they become convergent almost everywhere after the introduction of a 

convergence factor 7~~’ (6’> 0). As 8 and 6’ are both arbitrarily small, the 

series themselves must converge almost, everywhere. Hence the equation 

(2. 112) 

must hold for almost all values of X. It is evident that the same argument 

may be applied to 8: and st, and to the analogous sums associated with such 

series as (2. 102). 

If, instead of the series (2, III), we consider the series 

(2. 1x3) 2 
cos n”mx 

I: 
sin &TX 

nf (log ,,+ 
9 

nf (log n)fr+6 
9 

and use, instead of YOUNG’S theorem, the more precise theorem that any 

FOURIER’S series becomes convergent almost everywhere after the introduction of 

a convergence factor 1: /log ~8,~ we find that we can replace (2. x12) by ihe’ 

more precise equation 

’ HARDY, ~~mOc. pond. ~afhw Hoc., vol. 12, p. 370. The theorem was ah discovered hde- 
pendently by M. R[ESZ. 
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and it: is evident that, we can obtain still more precise equations by the use of 

repeated logarithmic factors. These we need not state explicitly, for none of 

them are as precise as those which we shall obtain later in the pa,per. These 

latter results have, moreover, a considerable advantage over those enunciated 

here, in that the exceptional set of measure zero, for which our equations may 

possibly cease to hold, will be precisely defined instead of being, as here, 

entirely unspecified. The main interest of the argument sketched here lies in 

the fact that it can be extended to series such as (2. IOZ)? 

2. rzo. We proceed now to the analysis on which the principal, results of 

the paper depend. These are contained, first in the equation (2. XOI), and 

secondly in the equation 

(2. 1201) s,&=o(l/n), 

which we shall prove for extensive classes of values of x. 

In Chap. 3 of his CaZcuZ des Rthidus, LINDEL~F gives an extremely elegant 

proof of the formula 

(2. 1202) 

where p and p are positive integers of which one is even and the other odd? 

Our first object will be to obtain, by an appropriate modification of LINDEL~F'S 

argument, ardogous, though naturally rather less simple, formulae, applicable 

to the series &n2nix, where x is irrational, and to the other series which we 

are considering. 

We shall, however, consider sums of a more general form than those of 

which we have spoken hitherto, viz. the sums 

l The argument may even be extended to series of the type SAS” where & is not 
mcemwily a mdtiple of x; but for this we require a whole series of theorems concerning 
Dmmnm’s series. 

3 The formula is due to GEN~CCHI and SCHAAR. See LINDET~%, 2, T,, p. 75, for references 
to the history of the formda. 
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Here x and 0 are positive and less than I, x is irrational, and n is not neces- 

sarily an integer. These sums are related to the functions 3, (v, z-), l I 1 as &, . . l 

are related to &(o, z-), . . l 

2. IZI. We consider fhe complex integral 

taken round the contour C shown in the figure. We suppose that the points 

o, n are in the first instance avoided, as in t.he figure, by small semicircles of 

iH / 

where P is the sign of CAUCHY’S principal value, and the dashes affixed to the 

sign of summation imply that the terms for which Y = o and Y = n are to be 

divided by 2. 

We shall find it convenient to divide the contour C into two parts G, and 

C,, its upper and lower halves, and to consider the integrals along C, and C, 
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separately. When we attempt to do this a difficulty arises from the fact that, * 
owing to the poles of the subject of integration ak x =o and z = n, the two 

integrals are not separately comergeM. This difficulty is, however, trivial and 

may be avoided by means of a convention. 

Suppose that f(x) is a real or complex function of aI real variable x which, 

near 3: = CI, is of the form 

G 
- + y (4, 
X-CI 

where cp(xj is a function which possesses an absolutely convergent integral across 

x = U; and suppose that, except at x = CY, / (x) is continuous in the interval 

(a, A), where a<a<A. Then CAUCHY’S principal va,lue 

A 

P *j(x)ax 
J 

a 

exists; but f(x) has no integral in any established sense from a to CI or from CI 

to A. We shall, however, write 

P 
J 

9f (x)dz = lim 
e-0 

a 

P ‘f(x)dx= 
J 

. 
llm 
e-0 

A 

J 

“f(x)dx + C log E 

and it is clear that, with these conventions, we have 

a A 

p f(x)dx+P 
J’ 

4 

J 
f(x)dx=P f(x>dx. 

s a a a 

It is clear, moreover, 

integrals such as tOhose 

that a similar convention may 

which we are considering; thus 

be applied to complex 
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200 Cr. H. Hardy and J. E, Littlewood. 

(taken along the line o, iH) is to be interpreted as meaning 

We may now write (2. 1211) in the form 

where xlow C, and C, are each supposed to be described starting from o. In 

the first of these two integrals we write 

and in the second 

2'1 
cotnx=-c-----r---* 

,-22n’L- I 

The two constant terms in these expressions give rise to integrals which may be 

taken along the real axis from o to n, instead of along C, and C,; uniting and 

transposing these terms we obtain 

(2. 1213) 

where 

n 
n I 

z 
f ev”nix CO8 2wco - 

i 
ez2nx cos zxd..dx= II -j- I,, 

I 
0 0 

I 1= P 
i' 

efni= cos 2 x n r') 
e- 2Zd _I 1 dx 9 

Cl 

iY2fiix I e cos 2 2 7-c 0 
2 Z P 

i 
e2zni, 1 a2 l 

1 

ca 

We now write 

I e2kzni 

e- zzni _ 1 
= e2zni + e4z3-ck + . . . + e2(k-l)zni + _eZzni 

I 

in I,, and 
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in I,. If we observe that 

12 

= 2 
s 

ezanix co8 2vm co8 227&h, 

I, 

we see that (2. 12x3) may be transformed int.o 

k-1 jG 

(2. 1214) i]tev2nixcus 2~nt9---2 2 
i' 

e*2-:ix cos wnx cos 2x~rOdx = K, + K,, 
I I 

0 o 0 

where 

e -2 kz,zi 

I - e---3rJ-d ax l 

2. 122. We shall now suppose that H 4 a,, so that the parts of C, and 

C, which are parallel to the axis of x go off to infinity. Tf x = $ + iv, and v 

is large and positive, the modulus of the subject of integration in K, is very 

nearly equal to 

f exp 
i 

-zq?(k+gx--0) ; 
i 

while if x=6--iv, and 7 is again large and positive, the modulus of the sub- 

ject of integration in K, is very nearly equal to 

From this it follows immediately that, if 

(2. 1221) k>nx+O, 

the contributions to K, and K, of the parts of C, and C, which we are causing 

to tend to infinity will tend to zero. 
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We are now left with two integrals each of which. is composed of two 

parts taken along rectilinear contours, and ‘we may write 

Of the four rectilinear integrals thus obtained two, viz. the two taken along 

the imaginary axis, cancel one another. In the other two we write , 

z = n + it, 2: = n -it 

respectively, and then unite the two into a single integral with respect to t; 

and when we substitute the result in (2. 1214) we obtain 

where 

2. 123. We now write 

and we proceed to show that 

(2. I23I) 

uniformly in respect to 0, hy which we imply that there is an absolute con- 

stant A such that 
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for 0<x<1, oQWI, all values of ?i, -- and all values of k subject to the in- 

equality (2. 1221). 

We may plainly ignore the factor ien2~~~ in K. The factds in curly brack- 

ets is equal to 

z(cos znjz0 cash &-CO sinh znxat + i sin anzO sinh 2tzO cash 2nx4. 

The factor e--fa”Gi” we separate into its real and imaginary par& When we 

multiply these two factors together our integral splits up into four, of which 

the integral 

(2. 1232) 

ul 

i‘ 
cos PACX cash zt~9 sinh znxzt 

,-ant 
__ e--2& at 

I 
I 

is typical; and it will be sufficient to consider this integral, t!he same arguments 

applying to all four. 

The function I / (r - e-2nt ) decreases steadily as t increases from I to a0 l 

Hence, by the second mean value theorem, the integral (2. 1232) mav be writ- Y 
ten in the form 

(2. 1233) 

T 

A ‘cos tkx cash 2td sinh znxzt @knW, 
*, i 1 

where A (as always in this part of the paper) denotes an absolute numerical 

constant, and T > I. In (2. 1233) we replace the hyperbolic functions by their 

expressions in terms of exponentials; and the integral then splits up into four, 
of which we need only consider 

the arguments which we apply to this integral applying u fortiori to the rest. 

The integral (2. 1234) may, bv another application of the second mean value d 
theorem, be transformed into 
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Now, if T and I” are any positive numbers whatever, we have 

T4 Tt I& 

cos t%c.x dt = I 
t/X s 

cm au2 du; 

TG 

and the integral last written is less in absolute value than an absolute constant. 

We have therefore proved the equation (2. 1231), and it follows that 

n 

(2. 1236) 2' ev2"ixcos 2 v7c0---2 6*2ai=cos 2YncX CQS zz7EOdz 
I 

s K' + 0 I/$ 

0 

2. 124~ The next step in the proof consists in showing that, in the equat.ion 

(2. r236), k may be regarded as capable of variation to an extent O(I) on either 

side, that is to say that we may repla,ce k by any other integer k’ lying between 

k--A and E + A, without affecting the truth of the equation. That this iS 

so if k is increased is obvious from what precedes, as the inequality (2. 1221) is 

still satisfied; but when k is decreased an independent proof is required. 

We consider separately the effects of such a variation on the two sides of 

the equation (2. 1236). As regards the left hand side, it ia plain that our 

assertion will be true if 

n 

s 
e2,ix cus 2x7~ dx = 0 v- 

I 
; 

0 

uniformly for all values of m and 616, and therefore certainly true if 

7a 

J 

‘1 

OV 

- 
@isf2X3TiU~~ x I -1 

X 
0 

’ The ~4 in thig formula ia of cmme not the mme numericaI con&ant ag before. 
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But 

and this expression is evidently of the form desired. 

We have now to consider the effect of a variation of k on the right hand 

side of (2. 1236). The difference produced by such a variation is plainly of 

the form 
1 

0 
‘I g-2kd - e-2k’nt 1 

e2dbmfO) at 
x __ e-2nt 

v - =0(+z0 _f* 35 
Thus finally we may regard the k; which occurs on either Hide of (z. 1234 

capable of variation to an extent# 0 (I), 

2. 125. We proceed now to replace the integrals which occur on the 

hand side of (2. 1236) by integrals over the range (0, 00)~ We write 

a3 

1 ft e 

Now consider the integral 

r ezznix cos 2 unz co9 2x9~0 dz, 
w 

taken round the rectangular contour whose angular points are n, n + N, 
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n+N+iH, n+iH. The modulus of the subject of integration is less than 

a constant multiple of 

~-2J-rq(~x-.v--~). 
t 

and from this it is easily deduced that, if . 

the contributions of the sides (n, + N, n + N + iH) and (?z + ZV + iH, n + iH) 

tend to zero as N and H tend to infinity, and so that the second integral 

which occurs in our expression for I, may be replaced by one taken along the 

line (n, n + ice). In order that this transformation may be legitimate for 

Y--O, I...., #--I we must have 

(2. IZjI) k’<nx+ 1-0. 

It is important to observe that this condition and the condition (2. 1221) 

cannot always be satisfied with E = I?; but that the difference between the least 

k such that E > nx + 0 and the greatest E’ such that k’< nx + I -0 cannot be 

greater I than I 2 

On the assumption that (2. 1251) is satisfied, we have 

a0 
I  

’ i C e( nz-t2)rcix-Znxnt cos 2(n + it)760 

sinh (2 k’--1)7zt 
sinh zt 

dt 

say; and so, bearing in mind the results of the analysis of 2. 124, 

00 
n 72-l ’ 

(2. 1252) 2 7’ y2Jrix cos ZY720- re 22 ,, 
J 

et2aix COS 2unz cm zxn0 dx 
0 Q 0 

’ Lt in these fact8 which render necessary the analysis of 2. 124. 
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2. 126. We next write 

.,r-i!,Jd+Lff, 

0 6 1 

and we proceed to show that 
-- 

L II E 0 v 
I 

-9 

X 

SO that L may be replaced by L’ in (2. 1252). The argument is practically the 

same as that of 2, 123. We have to consider a number of integrals of which 

w 

(2. 1261) 
i 

cm t%rx cash ztw9 e--2*xrrt 
sinh (d- I) rrtdt 

sinh at 
i 

is typical. Writing 2 e-“j / (I - e-2.zt) f or cosech z t, observing that the factor 

r/ (I -e-2nt) is monotonic, and using the second mean value theorem as in 

2. 123, we arrive at the result desired. 

We may accordingly replace L by L’ in (2. 1252). And our next step is 

to show that the Z which occurs in this modified form of (2. ~252) may be 

regarded as capable of variation to an extent 0 (I). Here again our analysis is 

practically the same as some of our previous work (in 2. 124), and there is 

therefore no need to insist on itUs details. We may now write (2. 1252) in 

the form 

(z r262) 

where 

(2. 1263) 

n 
I 

ev2nix co3 2 vmo- ezairix COS 2Y7t:Z COS 2X7d dX 
I 

0 

I 

i 

s 

e3-cix(nz-f+2ftXd ~0s 2 (n 

0 

no 
sinh @IL-z) St 

sinh 7G t 
at ; 
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and, as the k’s which occur in these equations may all be regarded as capable 

of variation to an extent 0 (I), there is no longer any reason to distinguish 

between k and k’. 

2. 127. Again 

- 2 e-2nxJtt sinh (zk- I) nt cm 2(n + it);70 

=zcos 2n~8 cash ztzOsinh(znx-2k+ x)rrt 

+ 2i sin 2727~0 sinh 2trrO cash (znx- zk + I)&. 

We select the value of k for which 

--r<mx-2k+1<1; 

a#nd the integral (2. 1271) splits up into two, of which it will be sufficient to 

consider the first, viz. 

1 
(2. 1272) i cm zn7-50 J‘ 

&X(n”-12) cash 2~0 
ainh (znx- zk + 1)7rt 

sinh it 
dt . 

This is of the form 

(2, 1273) 

1 

0 (1) ‘,-/?Gx cash ztd 
sinh crzt 
sinh zt 

dt 
’ 

0 

where a= Iznx- zk + 11. It will be enough to consider the real part of this 

integral, the imaginary part being amenable to similar treatment. 

The function 

sinh amt 
sinh srtt 

(O<or<I) 

decreases steadily from a as t increases from zero. Hence 



Some problems of Diophantine Approximation. 209 

-1 
d 

cos XXP cash ztzO 
sinh crat 

at 
sinhct =Q s 

cos sxtB cash ztw9 dt 

0 0 

r 

= CI cash 2zd 

s 
cos xxts dt, 

z’ 

z and z’ denoting positive numbers less than I. Since o<a<x, 050<1, the 

first, factor here is of the form O(I); and the second is (cf. 2. 123) of the form c 
I 

OV 5. 
X 

Hence finally 

v  

- 

Q--Q=0 :, 
X 

and so the left hand side of (2. 1262) is itself of the form 0 5. 
X 

2. x28. But 

Substituting this expression in (z. 1262), and observing that k may now be 

supposed to be the integral part of nx, we obtain 

Theorem 2. 128 If o<x< I, o<0(1, then 

where 0 

- 

k denotes a function of n, x, and 0 which is in absolute value less 

than a constant multiple of 

We have omitted the lower limits of summation, and the dashes, which 

are now plainly irrelevant. 

We can also prove, by arguments of the same character as those of 

55 2. 121 et seq., 

l LINDEL~~F, 2. c., pm 44. 
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Theorem 2. 1281. Under similar mndil ions 

1s of the proofs, It will hardly be necessary for us to exhibit any detai 

and we will only remark that the integral 

of 2. 121: is replaced by one or other of the integrals 

It is on the transformation formulae contained in Theorems 2. 128 and 2. 1281 

that all the results of this part of the paper will depend. 

2. 13. We have the following system of formulae: 

s; (x + 1, 0) = I/i s; (x , 0) , 

(2. 131) 

&(-x3 O)= &(x, 0)) 

q-x, O)= &(x, O), 

v 
- . 

&(x, O)= 2 ,-dzjx px 
X 

(-;, $) + 0 j/i, 
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Here & denotes the conjugate of slz. 11 ; will be convenient in what follows to 

write 0 
r 
x 

in the equivalent form 

O(I 

1 

Now suppose bhat x is expressed in the form of a simple continued fraction 

(2. 132) f_+I + A..., 
% u, a, 

and write 

(2. 133) 
I I 

X E-- =-- 
a, + x,’ Xl 

a, -+ x2’ ’ l ’ ’ 

01 =_-- 0 [I 0 - 0 
2 

= 0 -- 1 
X 

x ’ [I 0 - 1 
Xl Xl ’ l ‘*’ 

so that 

O<Xr<I, O(&<I 

for all values of r. Further, let 1, denote an unspecified index chosen from 

the numbers 2, 3, 4; and. let LO denote a number whose modulus is unity but 

whose exact value will vary from equation to equation. 

This being so, we have 

0 Oh) sgx, o)=&;x ---I, - + - 
if- X ( 1 x x I/ x 

co 1 O(I) __ - 
v- Sk 

ns ( ---q--x,, 8,) + - 
X I/x 

- co -P S1 .1 
l/x nx 

( -x,, 0,) + O$ 

cd - .l E- S3 
vz -nx 

( Xl, 
Q(I) 

01) + T’ 
X 

Transforming sk (x,, 0,) in the same way, we obtain 
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Repeating the argument, we find 

(2. 134) 

Now 

I 
Xr<-3 

- 1 + Xrfl 

(2. 135) 
x,+1 

xr x,+1 < - <I 
-1 +xr+1 2' 

and so xx,..,xr-o as r-00. We may therefore define v by the inequalities 

(2. I36) ?&xx,... xv-1 xy < I  <n x x1 l l l Xv-l. 

This ‘being so, the first of the equatious (2. 134) gives 

sA(x, 0) = 0 (?2Vzx,...x,-l) 
(2. 137) 

I 

z/x x ,  l l .  xv-1 

and the second gives 

(2. 1371) +, @=0(I) &+ & + ‘*’ + vxx 

1 

’ x 

1”’ y- 

We have thus two inequalities for st(x, O), the further study of which depends 

merely on an analysis of the continued fraction (2, 132). These inequalities, 

however, may be simplified. For, by (2. 139, x,x~+~ < 5, and 80 
2 

I 
= 

l/xx, .  l .  xv-1 



(2. 138) 

and similarly 

(2. 1381) 
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< 
K 

1/2x, l .  .  X,-l’ 

Hence (2. 137) may be replaced by 

sk(x, i9)=O(?dxx,. . . x+1) + 0 
I 

v 
; 

xx, .  l .  X,-l 

(2. 1371) may be replaced by 

213 

Sk (x, 0) = 0 
I 

1/zx, .  l .  x,-lx,’ 

2. 14. From (z. 138) and (2. 1381) we can very easily deduce the principal 

resulfs of fhis parf of the paper. 

Theorem 2. 14. We have 

%4(x, 0) = o(n) 

for any irrational x, and uniformly for all values of 0. In particular, if 0 = O, 

we have 

s?& = o(n) 

Since nxx, . . .x,-fl_x, the second term on the right hand side of (2. 138) 

is of t.he form 0 (I&). And since xx, . . . xVB1 -o as V- 00, the first is of the 

form Q (n). Thus the theorem is proved. 

Theorem 2. 141. If the partial quotients a, in the expression of x as u con- 

tinued fraction are limited, then 

ST&(X, 0) = 0 (VG), 

uniformly in respect to 0; and in prticular 

$,=0(G). 

These results hold, for example, when x is any quadratic surd, pure or mixed. 
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For, if (zIt < K, xv lies between 

I K 
K’ K+I 

and so 

xx,... xy-~xy>xxl*.. x,-,/K>rl(nK). 

Using (2. 138x), the result of the theorem follows. 

Thearem 2. 142, If us = 0 (ne), then 

Theorem 2, 143. If a, = O(e@) s where Q < F log 2, then 
2 

sn (x, o> = 4 
‘+ 

n2 
Q+E 
log2 ) 3 

for any positive vdue of E. 

For 

I 1 
xx* ,..x,<-~xx,...x,_l<2-2~ 

n- 9 

where p = Y or p = v - I, according as Y is even or odd.. Hence 

ly < (2 + 4 log n 
’ log 2 

But 

xx,... xv > HY-@xx, . . . X~-~, 

where H is a constant,, and so 

I 

vx x, . . , xv 
=O@ 6) = *(n: (log nJ2}* 

This proves Theorem 2.142. Similarly, under the conditions of Theorem 2. 143, 

we hare 

I = 
1/5x,.  l l xy 

()(eb fi) = 0 (n~+i&+~). 
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2. 15, Suppose now that y(n) is a logarithmico-exponential functioll’ 

(L-function) of n such that the series 

is, to put it roughly, near the boundary between convergence and divergence, 

so that bhe increase of rp (n) is rlear to that of n. Then, arguing as in 2, 14, 

we see that, if an=O{p(n>), 

I: 
1/x5,.  l .  xy 

=OVii-gq = 0 v?vp (log ?z)’ 

Now it has been proved by BOREL and BERNSTEJN” that the set of values of 

x for which 

a, = 0 -[y (?a)> 

is of measure zero when the series (2. x51) is divergent, and of measure unity 

when the series is convergent. Hence we obt.ain 

Theorem 2. 16. I/ v(n) is a logarithmico-ex~onenliaE fumdion of n such 
that 

is converyent, then 

Sn = 0 vncp (lug n) 

for almost all values of x. In prticuluq if d is positive, then 

for almost all values of x. 

It was this last result to which reference was made in 2. XI. 

1 HARDY, ora of Incfinity, p. 17. 
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2. r6. Suppose that a series 2~” possesses the property that 

+ being 8 function which tends steadily to infinity with n; and let (p be a 

function which tends steadily to zero as n - 00, and satisfies the condition that 

is convergent. Then it follows immediately, by an elementary application uf 

ABEL'S transformation, that the series 

is convergent, This obvious remark may be utilised to deduce a number of 
l 

corollaries from some of our theorems. To give one instance only, it follows 

from Theorem 2. 15 that the series 

is convergent for almost all values of x, and, for any particular x, uniformly 

with respect to 0. 

A rather more subtle deductlion can be made from Theorem 2. 14. It does 

not follow that, because an= o (n), the serieg 2 5 is convergent; and indeed 
n 

we shall see later that it is not true that (e. g.) the series 

(z. 161) 
z 

enZ&X 

n 

is convergent for all irrational values of x. But it t’s true that, if sn = o (n), 

the series 2 5 
?t 

is either convergent or not summable by any of CES~RO’S meansl; 

and t.his conclusion accordingly holds of the series (2. 16~). Similarly, if x is 

such that a, =O(I), the series 

1 HARDY and LITTLEWOOD; Pvoc. irmcl. Mzth, SOC., Vol. 11, pm 433. 
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possesses the same property. We shall see later that it is the second alternatiw 

which is true. 

2. 17. So far we have dealt with series in which the parameter 0 occurs 

in a cosine co8 znz0 or cos (zn- r)&. It is naturally suggested that similar 

results should hold for the corresponding series involving sin znxd and 

sin (2 n - r)rrO; and this is in fact the case. These series are, ,from the poirlt of 

view of the theory of funcbions, of a less elementary character: they a,re not 

limiting form8 of series which occur in the theory of elliptic functions. But it 

is not difficult to make the necessary modifications in our analysis. 

We write 

Theorem 2. 17. 

aqx, 0)= Ze ( ) l ‘nix v-ii sin (2~ -1)7d 
aAn 

u~(x,O)=~(-I)Ye@nixsin 2vd 
v<n - 

If O<Z<I, OQWX, then -A 

unifurmly in respect to 0, 

Let us consider, for example, the second of these equations. We start 

from the integral 

s 
erznix sin 22~4 745 cot zx dz, 

and we arrive, by arguments practically the same as those of 2. IZI-2. 127, 

at the equation 
m 

2 x i’ 

- 

(2. 172) ev2;rix sin 2 2, a0 ex2~ixcos sin 2xrdl dx-0 
I 

-2 2~7-a v -. 
X 

0 
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The only substantial differences between the reasoning required for the proof of 

this equation and those which we used before lie in the facts, first that some 

of the signs of the principal value which we then used are now unnecessary, 

and secondly that the two integrals dong the axis of imaginaries no longer 

cancel one another. These integrals, however, are of the form 

w 

s 
e--t2ab sin h z f z 0 

e-2 kd 

p - e-2nt at ’ 

0 

and are easily seen to be small when il: is large. They are accordingly without 

importance in our argument. 

The integrals which occur in (z. 172), unlike the corresponding cosine 

integrals, cannot be evaluated in finite form. We have, however, 
”  

where 

09 
2 &nix 

Î  cos zvflx sin2mO dx- I(u -t tl)-I(Y-Oo), 

Now let us consider the integral 

s ez~~ix+2~niA dx 
(A > 0) 

taken round the contour defined by the positive halves of the axes and a circle 

of ra#dius R. It is easy to show, by a type of argument familiar in the t#heory 

of contour integration, that the contribution of the curved part of the contour 

tends to zero as R- 00. Hence we deduce 

and so 
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Again, it is easy to show 

where /I = I/Z z. Hence 

I(Y $O)-I(v--8 

(2. 175) 

CQ 

cos zx7cAdz + 
.i 

e-t%-cis-2tnA d t , 

0 

e-t%ix-ztnA d t P I 
=- 

A +“Ll) -3 J 
ir 

m  

=i 

i 

ez2~ix~~o~ 2(v+ t9)7tx- co3 z(u--O)m> dx 

6 

+ p: P --- 
v+0 u-0 +o $ ( 1 
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From (2. 171)~ (z. 173), and (2. 175) we at once deduce the second equation of 

Theorem 2. 17; and the others may be established similarly. 

2. 18. From Theorem 2. 17 follow the analogues for t:he sums 0 of those 

already established for the sums s. Thus we have 

Theorems 2. 18, 2. 181-d. The remits established in Theorerns 2. 14, 

2. r4r-3, 2. 15, for series ~Wolving c&rteS, are true also for the corresponding 

series involving sines. 

2. 19. The preceding results have a very interesting application to the 

theory of TAYLOR'S series. 

Let 

be a power series whose radius of convergence is unity, and let, as usual, 2M (r) 
denote the maximum of 1 f 1 along a circle of radius r less than 1. Further, 

suppose that 

M (r) = 0 (I - ~)-a, 
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and let 

G. H. Hardy and J. E. Littlewood. 

Then it ia known that1 

SW 
1 

-a--- 

r) 2* 

Further, it is known that the number ?- 
2 

occurring in the last formula cannot 

be replaced by any smaller number, that is to say that, if d is any positive 

number, a function f(x) can be found such that the difference between the 

orders of g (r) and M (r) is 5 - $ ? 
2 

But so far as we are aware, no example 

has been given of a function f(x) such that the orders of g (r) and 2V (r) differ 

by as much as 5. 
2 

We are now in a position to supply such an example. 

Let 

where 5 is an irrational of the type considered in Theorem 2. 141, so that the 

partial quotients in its expression as a continued fraction are limited. Then, if 

x = re2xi8, we have, by Theorems 2. 141 and 2. 181, 

uniformly in 0; and from this 

f  (2) = f  (rtFfl 

uniformly in 8. Hence 

,  ,  I  

it follows that 

M(r)=O1/--I-9 
I -r 

while 

l HARDY, QuarterZy JmmaE, Vol. 44, pm Mm 
* HARDY, 2 c,, p. 156. 
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Thus the orders of g(r) and M(r) differ by exactly I* If we consider, instead 
2 

of j(x), the function 

we obtain in the same way an example of 8 function such that 

M(r)=O(r-r)-a, 

These examples .show that the equation 

M(r) = 0 (I -.rj--” (a > 0) 

does not involve 

1 

. go r = 0 (I - r)-a-2; 

a possibility which had before remained open.1 

2. Ig. Theorems 2. 14 etc. also enable us to make a number of interesting 

inferences as to the behaviour of the modular functions 

z ( > fi-I- 4 
Q 2 Y Znn2, X(-I)“Qnz 

as Q tends along a radius vector” to an irrational place eait on the circle of con- 

vergence. Thus from Theorem 2. 14 we can easly deduce that, if f(p) denotes 

any one of these functions, then 

1 

J(q) = O(I -1qp; 

and from Theorem 2. 141 that, if 5 is an irrational of the class there considered, 

then 

’ ’ HARI)Y, 1. C,, p. 150. 

a Or along any ‘regular path’ which does not touch the circle of convergbnce. 
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These results are, however, more easily proved by a more direct method, which 

enables us at the same time to assign certain lower limits for the tiagnit*ude of 

If (dL and to show that Theorems 2. 14 et seq are in a certain sense the best 

possible of their kind. It is to the development of this method, which depends 

on a direct use of the ordinary formulae for the linear transformation of the 

8-functions, that the greater part of the rest of the paper will be devoted. 

2. 2. - Q Theorems. 

2. 20, We have occupied ourselves, so far, with the determinlttion of cer- 

tain upper limits for the magnitude of sums of the type sn* Thus we proved 

that sn = o(n) for any irrational x, and that sn = O(G) for an important class 

of such irrationals, including for example the class of quadratic surds, But we 

have done nothing to show that these results are the best of their kind that 

are true. The theorems which follow will show that this is the case, 

We shall begin, however, by proving a theorem of a more elementary cha- 

racter which involves no appeal to the formulae of the transformation theory. 

Theorem 2. 20. Suppose that cp (n) is a positive decreasing function of n, 

such that the series &(n) is divergent. Then it is possible to jind irrutionals x 

such that the series 

2 rp (12) en2,ix 

is not convergent. The sume is true of the series 

and of the wd and ilnaginary prts of all these series. 

Consider, for example, the real part of the first series. We shall suppose 

that, among the convergents &qy to x, there are infinitely many of the form 

W4P + I>* Let (4;) be a subsequence selected from the denominators of these 

convergents. We are clearly at liberty to suppose that the increase of ay+l, 

when compared with that bf any number which depends only on qy and the 

function q, is as rapid as we please, 

We shall consider the sum 
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A,&,-- 

& = 2 rp(n) cos (n%x), 
QV 

where A, is an integer large compared with qy but small compared with ply+l/qy. 

We shall suppose A, so chosen that 

(2. 201) 
3 Av%’ 

!p 2 !Pw-+- 
QY 

(2. 202) 

and we shall show that, in these circumstances, Is,l tends to infinity with Y, * 
and hence that the series 

2 cp (n) cos (n%x) 

cannot converge. 

We may consider, instead of X,, the sum 

s ‘1’ - 
S, i’i-,‘(, { cos (ns 7-rx) - cos (nZ a py / c&. 

Now 

where a’*+1 is the complete quotient correspdnding to the partial quotient av+l, 

and &,+I = a’,+1 qv + qv-1; and from this it follows that IS, - S,I is less than a 

constant multiple of 

and so of 

Thus Cry - S:, -0 as v-00, in virtue of (2. 202). 
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We may write X’, in tile form 

If in this sum we replace rp (r qy + s) by q~ (rqyj, the error introduced is not 

greater than 

Thus, with an error not greater than qv y(q9,), and a fartiori not greater than 

q,cp (I), we can replace SI1, by 

Now 

Y’(plzt) + y’(2qw) -I- +a. + (r{(AY-~)qy} > L 

and so 

Hence 

II 
IS I 

3 A,!7,, -- 

qv&&, qv *v 
- 2 2 $lqn)-+ 

q 1’ 

which tends to infinity with Y, in virtue o.f (2. WI). Hence S$, and so S,,, 

‘tends to infinity with VU; which proves the theorem. 

In particular it, is possible fo find irrati,onal values of x for which the series 

z co9 (nkx) 
2 

COB (dnx) 
? 

n n log n ’ l ’ ’ ’ 

are not convergent. 
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2. 2x. We shall find it convenient at this stage to introduce a new nota-: 

tion. We define the equation 

!=WL 

where rp is a positive functiori of a variable, which may be integral or con- 

tinuous but which tends to a limit, as meaning that, there exists 8 constant H 
md a sequence of values of the variable, 

question, such that 

themselves tending to the limit in L 

for each of these values. In other words, f = L! (rp) is the negation of f = o(y). 

In the notation of Messrs WHITEHEAD and RUSSELI; we should write 

J=fi(q~).= .m(f=o(rp)). Df. 

2. zz. We shall now prove the following theorems. 

Theorem 2. 22. If x is irrational, then 

Theorem 2. 221. If q~ is any posi2ive fmction of n, which ten& to zwo as 

n - 00, then it is possible to find irrutionals x such that 

These theorems show that the 

sfg = o(fiL 

f 
est.ablished by Theorem 2. 141 for a. particular class of values of X, ca.nnot-pos- 

sibly be replaced by any better equation; and that the eqna.tion 

% = 0 (n) 

of Theorem 2. 14 is t.he best that is true of all irrationals. We shall deduce 

these theorems from certain results concerning the elliptic modular functions. 

2. 23. We write 
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1 a 

3,(0, T)=z& n-2 l ( > 

1 

a3(0,~)=I+2&', 

a,(~, z.)= I + 2 r((-~)nqt 

We suppose that p, /qn is a convergent to 

and write 

We shall consider a linear transformation 

T 
6 tdz 

=+’ 

where 

In either case ad - bc = I$ = I l 

Finally, if a’,+1 is the complete quotient corresponding to a,+l, we write 

and we take 

When 

Q’n+l = da+1 qn + qn-1, 

Y = I: / (qn Q’n+l) * 

p,+l is even, p,, is odd, 

we shall say that the convergents ~~-11 qn+ pn/‘qn form a system of type 
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There are six possible types of system, viz. 

which we number 

LO, P, 3O, 4O, 50r 6O. 

The following remark is of fundamentsl importance fur our present purpose. 

In uny continued fraction whatever, one or other of the systems LQ, P, 50, 6~ must 

occw infinitely often. This appears from the fact that the second column in 

cases 30 and 40 is 0, 0, and that all COWS in which the first column is 0, 0 

fall under 10, z”, 50, or 6O. 

2. 24. In ccws x0, z”, 50, or 60 we have 

where ctl is &n 8-th root of unity, and $ stands for one or other of a, and *9, .* 

Now 

Also, if Q = eniT; ive have 

where 
IQ1 

= e-d., 

Y 
= (IjQI*b+$ -t q; y” 

= Q1fi+l > I 
2 471 2 ’ 

Hence 

IQ! < e+ <1/(4-8)<.21, 

21&l + 21&l* + -** < 2 (m 21) + 2 (* ZI)4 + .’ * 

<I-, 
2 

~.- - 

* T. am-l M., Vol. 2, p. 262 (Table XLII). 
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From this follows at once 

Theorem 2. 24. If q = r@, where x is irrational, then ’ 

I + 2 

00 
z tr2 = I 

US r-1. 

From this we can deduce Theorem 2. 22 as a corollary. For if we haid 

8,=0(G), 
the series 

would satisfy .the condition 

and 80 we should have 

- r-r) hop ( 

an equation which Theorem 2. 24 shows to be untrue. 

Again, let ‘p( I / y) be any function which tends to zero with ?/* I We have 

We choose a value *of x such that, for an infinit-y of values of n corresponding 

to one of the favourable’ cases 10, 20, 50, 6O, we have 

W-G ‘P(Qndn+d; 
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this may certainly be secured by supposing that a,+1 is *sufficiently large. We 

have then 

l~h 4l>~WYrp(dYh 

From thi8 we deduce . 

Theorem 2. 241. Given any fun&m rp which tends tu zero, it ia pssible to 

find irrutional dues of x such that 

when q=renL a& F-L. 

From Ma theorem Theorem 2. 221 follows a8 a corollary just as Theorem 

2. 22 followed from Theorem 2. 24. 

2. ~5~ It ia interesting to consider a little mc)rc closely tile case in lqhich 

5 ia an irrational for which a, = 0 (I). 

Let UH, in&ad of considering only the special value I: / (qn Qln+l) of y, 

consider the range R,, defined by 

-f-iy<+ 
Qr’+1 n -Pn 

or 

7 <y< = 3 
qn &a+1 - - “7 qn qL+1 

where 7 = q,, / q’,+1. It is clear that, for different valueB of n, these ranges 

cover up the whole range of variation of 21. If now y = 5 /(q- &+I), so that 

&(r/q, we have 

The least valuea of A, correspond to 5~ = q, I / 7; and then 

;1 L= q/i+1 > 5 

q: + q’A+1 2 l 

$uppose first that n corresponds to a system of one of ‘the type8 lo, 2O, 5O, 6O. 

Then the argument of 2. 24 shows that the absolute value of 3(o, T) lies 

between 5 and 3. 
2 2 

If 011 the other hand n corresponds to a system of type so 

Or 4Y we have 
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a,(% T) =2g: (I + Q2 + Q” + am-), 

3 5 
and the absolute value of tIhe second factor lies between - and :-.. On the 

4 4 
other hand A lies between &+I / (& -+ q’A+l) and &+I / z Q~, and a fortio~i between 

I 

z 
and 5 (K + I), where X is the greatest value of a partial quotient. Hence 

2 

in this case also 1.3 (0, T)I lies between fixed positive limits. 

Thus, as the ranges R, fill up the whole range of variation of y, we can 

determine two constants H,, H, so that 

and it is easy to see that the second factor under the radical lies between fixed 

positive limits. Hence we obtain 

Theorem 2. 25. If q = renix, the partial quotients to x being limited, and 

Y - I, then 

2. 26. In the preceding discussion, the argument which showed that 

A > i was independent of any hypothesis as to the continued fraction. Hence 

we have in any 
H 2 

a0 qn - 00. Hence we obtain 

Theorem 2. 26. For any irrutional vu& of x, toe have 

1 The formula j’X ‘p implies that IfI / y  1 ies between fixed positive limits: see HARDY, 
Orders of Ikfinity, pp. 2, 5. 
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This result may of course also be proved as a corollary of Theorem 2. 14, by 

reasoning analogous to that used in 2. 24. But the direct proof is none the 

less interesting, 

2. 27. The argument used in 2. 24, in deducing Theorem 2. 22 from Theo- 

rem 2. 24, may be adapted so as to prove an interesting generalisation of the 

former theorem. Let us write, as before 

k and suppose that k:! Sn /nk is one of CES~RO’S means associated with the series 

(2. 271) Sk - 
k+; 

n- > n . 

For if this were not so, we should have 

From (2. 271) it follotvs that the series 2 un cannot become summable (CIc) on 
1 

the introduction of a convergence factor n-4 2 And from this we deduce 

Theorem 2. 27. The series 

z n --n @&Tix 
( ) 
a<z 

-2 

cannot be convergent, or summable by any of CESARO’S means, for any irrational a+. 
We need hardly remark that the same is true of 

II ( > n-1 %ix 
n Oae 2 * , 2 (- I)n ?.&-a @nix* 

On the other hand, if a > 5, all these series converge prespue partou~ (2. II, 2.16). 
2 

1 HARDY and LITTTZWOOD, Proc. Zo&. Math. Sot., Vol. II, p 435. 
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2. 3. - An application to the theory of trigonometrical series.1 

2. 30. The problem of finding a trigonometrical series whose coefficients 

tend to zero, and which converges, if ever, only for a set of values of the ar- 

gument of measure 0, was first formulated by FATOU~ and first solved by 

LUSIN. s The results of the earlier part of this paper have led us to a solution 

of FAWJ'S problem which seems to us to have considerable advantages over 

LUSTN’S. * 

We can, in fact, prove the following theorem, which is an extension of 

Theorem 2. 27. 

Theorem 2. 30. The series 

z n-” cos (n2 n x), 2 rra sin (VP fix), 

where o < cc < f , are never convergent, or summable by any of CESARO’S mwn,c, for 

any irrational value of x? 

Considered simply as solutions of FATOTT’B pmblem, these series have, as 

against LUSIN’S, two advantages. In the first place, thev are series of a simple, 

natural, and elegant aanalytical form. In the second plaie, t.he problem of con- 

vergence is solved completely; there is no exceptional set of values of x for 

which doubt remains! 

2. 31. We proceed to the proof of Theorem 2. 30. This theorem is a 

corollary of 

t An abstract of the contents of this part of the paper flppeared, under the title ~Tri- 
gonometrical Series which Converge Nowhere or Almost Xowherea, in the &co&s of Proceed 
ings of the London ilfuth. Sot. for I 3 Febr. I 913 l 

p Acta Mathematics, Vol. 30, p. 398. 
8 Rendliconti di P&rm, Vol. 32, pa 386. 
4 The cosine series converges when x is a rational of the form (21-t I) / (2~ + I) or 

2A /(4~ + 3), the sine series when =x: in a rational of the form (211 + I) / (2~ + I) or 2A/ (4~ + I) 

(see 2. OI), In the abstract referred to above this part of t’he result (which is of course trivial) 
was. stated incorrectly. 

5 It is only since this paper was written that we have become aware of a different solution 
given by H. STEINHAUS (Cmptes Rendus de la Soci&t! Scienti,fique de Vumotie, 1912, p* 223). 

STEINHAWS also solvea the problem. of convergence for hia series completely; they converge, in 
fact, for no values of X. Thus in this respect our examples have no advantage over his; the 
advantage; if anywhere, is OTI his side. In respec’t of simplicity etc. our examples have the 
advantage over his aa much as over LusIE;‘s. 
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Theorem 2. 31. I f  q =reni*, where x is irrational, then, as r - I, both the 

real and the imuginary parts of 

f  (q) =1+2&” 
1 

Tn fact, when once this theorem has been established, Theorem 2. 30 follows 

from it in the same way as Theorem 2. 22 followed from Theorem 2. 24. And 

the proof of Theorem 2. 31 is in principle the same as that of Theorem 2. 24, 

though naturally more complicated. 

Our notation will be the same as in 2. ~3~ We shall prove first that, ilrt 

cases P, z”, so, and 6O, we ?imve 

0 i Ia&, r>i > K$, 

(ii) 

for all integral values of wt, .K and 6 being positive constants, provided either 

( 1 CI an+1 > I 
UT 

(PI an+1 = I:, an+2 -= I. 

We shall express this shortly by saying th& IO, 20, 50, 60 are favow&le cases, 

except possibly when 

an+1 = 1, &L&+2> 1; 

a ‘favourable case’ being one in which we can prove the inequalities 

We have 

(2. 312) %b, 4= 
A-T% 

No, T)- 

If a n+l> L 

IQ1 I_ e - nQh12~n < e-z < I, 
23? 

and if a,+1 = I:, an+2 == I,, 
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In either case 

and so 

(2. 313) 

Again 

(2. 314) 

(2. 3%) 

From (2. 312), 

G. 11. Hardy and J. E, Littlewood. 1 

I 
q nfl 

la(0, T)J& lam9(0, T)I<arctsn~+~. 
4 

da + bz- It” (qn + i) I qk+1, 

la + bq-k=z 

-- 

: v&>K$, 

1 

am (a + br)-2 s--~~~~Yc 
\ 1 

(mod. :7fi) l 

(2. 313), (2. 3rq), and (z. 315) it follows, first that the modulus 

of 9, (0, z) is greater than a constant multiple of y-f (as has been shown already 

under 2. 24), and secondly that 

(2. 3x6) (mod.; Y&j, 

I 
where -7~ 

I 1 

denotes a number whose absolute value is less than J- n’. Hence 
I2 XL2 

am 8, (o, z) must differ by at least 

m ST Y;c -m-z- 
8 I2 24 

from any multiple of f 76; 
2 

and so the cases which we are considering are a.11 

favourable, 

2. 32. We shall now prove that, as n - a0 , fccvourable cases must recur in- 

finite1 y often. This will complete the proof of Theorem 2. 31. 

We represent the state of affairs, as regards the oddness or evenness of 

pn and qn9 in a way which will be made most clear by an example. If every 
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pn is odd, and qn is alternately odd and even, we represent the continued frac- 

tion diagrammatically in the form 

00 0 0 o.... 

0 E 0 E O.... 

- and so in other cases. 

Suppose first t.hat 0 0 occurs infinitely often above. Then one or other 

of the systems 

must occur infinitely often. If the first, which is system P, either favourable 

cases recur infinitely often, or the ensuing partial quotient is always I. We 

represent this state of affairs by the symbol 

00 
OE' I 

rn this case our diagram continues 

OOE 
0 E 0; I 

and as is case SO, either favourable cases recur continually, or the next 

quotient is also I:, so that we have 

OOE 
OEO' I I 

But then the first four letters represent a system of type z” followed by two 

quotients a,,+1 = I, an+2 - I; and this ie a favourable case. 

continually, favourable cases recur continually. 

We consider next the result of supposing that recurs continua.lly. 

This is case 40. If the diagram continues with an 0 above, it must continue 

in the form 

000 
EOE 
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and then we can repeat our previous argument. The only alternative is that 

it should continue. 

OOE 
EQO 

- and as the last four 

must (in the unfavourable 

The next quotient 

a favourable case. 

letters form 

case.) be I. 

a system of type 
Hence we obta.in 

OOEO 
EOOE' I 

GO, the next quotient 

must also be r:; and so the system -of type 6O gava in reality 

We have thus proved that<, whenever the succession -0 0 recurs continually 

above, we obtain an infinity of favourable cases. It only remains to consider 
the hypotbesis that pt is altertlately odd and even. 

If we have 0 E above, we have one or other of the systems 
[E Z)* (E E); 

systems 50 and 60. Thus we have a favourable case unless an+1 = x . If the 

system is of type 50, we are led to 

OEO 
I I OOE 

- so that the system is favourable. On the other hand, if it is of type 6O, 

we are led to . 

OEO 
E 0 0. I 

As the next numerator is even, the next denominator is odd. Hence the next 

and we have seen that this case must be favourable. ’ 

We have now examined all possible hypotheses, and found that they all 

involve the continual recurrence of favourable cases. Thus Theorem 2. 31 is 

established. 

z. 33. -From this theorem we can, as wa8 explained in 2. 31, deduce 

Theorem 2. 30 as a corollary. The latter 

which we llave not seen stated explicitly. 

theorem ha.s an intVeresting consequence 
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The series 

-2 nea (30s (n% X) , 2 n-a sin (nB z x), 

I: 
where cu< 2, me not bURIEB’s series. 

For if they were they would be summable (C I) almost everywhere, by a 

theorem of LEBESWE. 1 It follows that trigonometrical series exist, such that 

is convergent, for every positive 6,2 which are not, FOWRIER’S series. This 

is ,of interest for the following reason. If 2 (aA + bL) is convergent, the series 

is the FOURIER’S series of a function whose square ia summable.? Further if 

p is any odd integer, and 

is convergent, then the function has its (I: + p)-th power sum&bleW4 It 

would be natural to suppose that the RIESZ-FISCHEB T&wP~ might ,be capable 
of extension in the oppoaite direction. One might expect. for example, to find 
that a series for which 

is convergent must be the FOURIER’S series of a function whose 
( 1 
I + 5 -th 

23 
power is summable. That thk is not true has been shown by YOUNG, by 

means of the series 

l Math. Amah, Vol. 61, p. 251. See also LeGon sur Zes at%8 trigonome’triques, p. 94 
where however the proof is inaccurate. A FOURIER'IJ series i8 in fact Bumtnable @a), for any 
positive 3, almost everywhere (HARDY, Proc. Lo& &ktI~ Sot, Vol. 12 p. 365). That our series 

are not FOURXER'~ series when u < f  can in Iact be inferred merely from their nonmconver- 
2 

gence, since to replace ‘ybc a by r&-B, where p is any number greater than a, would, if they were 
FOURIER'S series, render them convergent almost everywhere (YOUNG, Comptes Rendus, 2~ Dece 1912). 

t Or even for which 

is cdnvergent. 

2 
IanI’ + lb7Ll2 

(log n)l+b 

* This is the 'RIESZ-B'ISCHIER Theorem’. 
' 'w. H. bUNG, BOG. hd. &fiZth. h., vol. 12, p. 71: 
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238 G. EL Hardy and J. E. Littlewood. 

z 
~0s nx: + sin nx 

d (log TX,: 

- here p = 3. Our examples however show a good deal more, viz. that as 

soon as the z which occurs in the RIESZ-FISCHER Theorem is replaced by any 

higher index, the series ceases to be necessarily a, FOURIER'S series at all. 

2. 34. There are other classes of series the theory of which resembles in I 
many respects that of the series studied in this paper. One such class comprises 

such series as 

2 cosec nrtx, 2 k dn cosec n7rx 

and the corresponding series in which the cosecant is replaced by a cotangent: 

these series are limiting forms of q-series such as 

Another class comprises the series 

and the corresponding series in which (nx) - I 
2 

is replaced by n& 

proved 3 considerable number of theorems, re 
which ‘tv~ hope to give a systematic account on 

blating 
some 

to these various series, of 

We have 

f u t4re occasion. 
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CORRECTIONS 

p. 211 (2.132) md 23. 226 (fourth dbplayed formula). &ad: 

1 1 
X= - -*a*. 

al-l- a,+ 

p. 231. The fourth root in the first displayed formula should be a square root. 

COMMENTS 

The basic result of the paper, Theorem 2.128, was later named the approximate functimal 

equation. of the theta-fuwtion. It is not, however, of the same character as the approximate 

functional equation of the Riemann zeta-function, discovered later by Hardy and Littlewood 

(1923, 5). The former is an approximate transformation of one finite sum into another, the 
latter is an approximate expression for &+it), when 0 < 0 < I, as the sum of two finite sums. 

The original proof of this result, given in the present paper, is unnecessarily elaborate. Simpler 

proofs were given later by Hardy and Littlewood themselves (1925, 4), by Mordell (J. London 
Math. Sot. 1 (1926), 6%72), and by Wilton (ibid, 2 (X927), 177-80). Model1 uses contour integra- 

tion round a parallelogram, but with the vertical sides replaced by sides inclined at an angle 
h to the real axis. Wilton uses Poisson’s summation formula 

in much the same way as Dirichlet used it in his evaluation of Gauss’s sum. Wilton also gives 

a numerical estimate for the constant in the error term. 

8 2.10. The transformation formula for a sum of the form 

2 
&,iX 

(see 2.102) expresses this sum in terms of a similar sum with h replaced by K, where 
1/k+1/JC = 1. If Ic is a positive integer greater than 2, the transformation does not give any 

useful information about the magnitude of the original sum. A very general transformation 

formula, applicable to a wide range of sums of the type 

was given by van der Corput (Math. Amzakn, 87 (1922), 66-77, and 90 (1923), 1-18). For 
a somewhat simpler treatment, see Wilton, J. Lmadon Math. Sot. 9 (1934), 194-201 and 247-54, 

For an account of the part played by such formulae in some problems of analytic number theory, 
see Rankin, Quart. J. of Math. (2) 6, (1955), 147-53. 

For references to later work on sums of the form 2 ellanix, see Koksma, ch, 9, 5 3. 

$ 2,120. The exact formula (2.1202) is attributed (following Lindelijf) to Genocchi and Schaar. 
But it is an easy deduction from the value of Gauss’s sum, and may well have been known to 
Gauss or Dirichlet. 

Q 2.13, In the estimate (2.138), the last term can be omitted, by virtue of (2.136). 
It may be helpful to restate (2.138) and (2.1381) in the usual symbolism of continued frac- 

tions. If 
Pn 1 l 1 

an 
= - -*.*- 

a,+ a,+ an’ 

the choice of v made in (2.136) is effectively equivalent to 

Yv < n < Qv+f (1) 

(it is actually equivalent to 4: < n < qi+l, where yi is the ‘complete quotient ‘, as defined in 
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8 2.22) and instead of (2.138) and (2.1381) we get 

8, = O(min(nq,-f, af+& (2) 
This renders the deduction of Theorems 2.14, 2.141, 2.142 more immediate. 

5 2.14. In Theorem 2.143, the constant log 2 could be replaced, in both occurrences, by 
log 9( 3 + &), The inequality xx,... x, < 2-i’, 

used by Hardy and Littlewood, could be replaced by a stronger inequality with I/W,, on the 
right, where u, is the vth Fibonacci number. This leads to the above improvement. 

Theorem 2.143 has the defect that it gives no information if p is large, and in particular it 
leaves open the question whether any postulated explicit upper bound for a, as a faction of n 
implies some explicit upper bound for s, which is better than o(n). This is in fact true, For 
suppose 

an = Wxpf (NY 
where f (n) is any increasing function. Then 

Qn = o(eXpc~ p(n)), 

where C1 is a constant and F(n) = f( 1) 4 l . . +;f(rz). It follows from ( 1) above that 

v+l > Q(C&gn), 

where G is the function inverse to p. Hence, by (2) and the fact that qV > exp(C,v) always, 
we have 8, = OhGV = O(nexp(-Q)) = O(nexp( -C5 G(C210gn))). 

This is the desired explicit upper bound. 
Further results of the type of this section were given in 1922, 5. 
The dependence of 8,(x, 8) on 0 was investigated by Behnke, who proved the curious result 

that for any irrational x there is some 6 for which 

sn(x,O) = O(d). 
See Koksma, p. 111. 

§ 2.19. Xn connexion with this application to the theory of functions, see 1.916, 3 and comments, 

9 2.3. Again see 1916, 3 and comments. 
. 
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ION: no SOME PROBLEMS OF DIOPHANTINE APPRoXIMAT 
A REMARKABLE TRIGONOMETRICAL SERIES 

By G. H. Hardy and J. E. Littlewood 
TRINITY COLLEGE, CAMBRDGE, ENGLAND 

Receioed by the Academy, Augurt 7,Wtb 

1. The title of this note is perhaps not very appropriate: we retain 
it because the &tents of tde note form a natural sequel to those of 
three papers which we have published under same title elsewhere,’ 
and in particular those of our second paper in the Ada Mathematics. 
We there discussed in detail the series 

c 
eani* + Z@rirr 

I (1 1) . 

and other similar series associated with the elliptic Theta-functions, 
and used our” results to elucidate a variety of difficult points in the theory 

1916,3 (with J. E. Littlewood) Proceedinga ofthe National Academy of Sciwww, 2,68S6. 115 
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of Taylor’s series and trigonometrical seriks. We have since discovered 
t*hat even simpler and more elegant illustrations may be derived from 
the series 

c e mrin log n + 2fhrin 
(1 2) l 

This series behaves, for different values of the parameters CY and 3, 
far more regularly than does the series (1 A). To put the matter roughly, 
the beha.viour of the series does not, in its most essential features, depend 
upon the arithmetic nature oj &. 

2. 0ur fundamental formula is 
w 01 

O3 
c 

UPn pn 1 
=- 

V 

2nin -p-?g 

log a - 
r P+------ 

log a > 
Y - 

2 

C-Y)” 

l 

(2 1) . 0 -W o n! (up+n - 11 

Here a > 1, p is real, and R (y) > 0. The formula becomes illusory ’ 
when p is zero or a negative integer, but the alterations required are of 
a trivial character. The formula is easily proved by means of Cauchy’s 
Theorem: similar formulae were proved by one of us in a paper pub- 
lished in 1907? 

We now write y = Q + it, where t > 0, suppose that 0 -3 0, and ap- 
proximate to the series of Gamma-functions by means of Stirling’s 
Theorem. We thus obtain 

where 

Ht -P 

log a 
e-'"'f(z) = F(a)+&), (2 2) l 

w 
f(z) i C nP-t eain log n f; 

I 
(2.21) 

2T nP cy - 
= log a’ 

(2 1 H = (log a)P+4, 2 = re ;B , r = e -au/l , 0 = a log : 
0 

, (2.22) 

so that r--, 1 when +Q 0;' 

F(a) = 2 ume-cu-tsan; 

0 

and + (a) is of one or other of the forms 

1 
A + Q (l), 0 log - , 0 (0ff), 

( ) P 

according as ~24, p= 3, or p>+* 
3. It is known3 that, if p >O, . 

F (u) = 0 (u-~), F (0) = n’(~-)~ (3 1) l 

(2.23) 
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when Q -3 0, the second of these formulae meanine that F (e) is rtot 
of the form o (C), and the two together that 

O<h=limBP(B)< =* (3 2) . 

These relations all hold uniformly in f. It follows that, if p > 0 and 
r = ] x 1 --) 1, the jwzction f (2) is exactly oj the order (1 - r)-‘, a& this 

unijurmly in 0. Incidentally, of course, it follows that every point of 
the unit circle is a singular point: but this is known already.6 

The series furnishes an example in which the orders in the unit circle 
of the functions j (z) = IZ a,~” and g (z) = 2 ] a, 1 zH differ by exactly 3, 
the maximum possible.6 

When p = 0,f (z) is bounded, but does not tend to a limit when z 
approaches any point of the unit circle along a radius vector. We know 
of no other example of a function possessing this property. When p < 0, 
f (2) is continuous for [ 2 [ S 1. 

4. Let 
# 

s, = 
c 

kp-) &k log k + Z$dk . 
Y (4 1) . 

1 

and suppose first that p > 0. Then it is easy to deduce from the results 
of 83 that s, is of the form Q (nP) when 12 + 00. The correspondirig 
‘0’ result lies a little deeper: all that can be proved in this manner is7 
that s,? =o (nPlogn). But a direct investigation, modelled on that of 
the early part of our second paper in the Acta Mathsmatica, shows that 
the factor log vz may be omitted. It shduld be observed that an essential 
step in our argument depends on an important lemma due to Landau, 8 
according to which 

IS 
X 

x7 ,iz 1% (77X) dx < 23 X7++ 
(4 2) 1 

1 

for X21,. +O,q > 0. We thus tid that s, is, j& every positive v&e 
of TV, exactly of the order np, and this wiformly irt 8. The series 

(4 3) l 

is never convergent, or summable by any of Cedds mesas. 
When p = 0, s, is bounded, but the series is never convergent or 

summable. When p C 0 it is convergent; and uniformly in 8. 
5. For further applications it is necessary to consider the real and 

imaginary parts of our function and series separately, and this is most 
easily effected by introducing some restriction as to the value of CY. 
Suppose that a is an integer, not of the form 4 k + 1. Thus we may take 
a I 2, a = 2~ /log 2. Then the results of 553-4 hold for the real and 
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imaginary parts of the function or the series, In particular ike series 

- c d- cus (an lug n + 2em) ‘(p 20) (5 1) . 

is never convergent or summable for arty value of 8, and is uccurdin~ly not 

a Fourier’s series. We thus obtain a solution of what, in our former 
paper, we call Fatou’sg problem which combines all the advantages 
of those given previously by ,Lusiqg S teinhaus,Q and ourselves. 

We can also obtain in this manner exceedingly elegant examples of 
continuous nun-differentiable functions. Thus the fwzction 

r(e) =. c sin (092 log fi + 20~2) 
. 

?P 
UC B < 8 (5 2) . 

does not possess a finite diflerentiul coefici’ent for any due of 0, 

f  G. H. Hardy and J. E. Littlewood, Some probkms of Uophantine approximation: 
ti) Proc. Fifth Itt, Cmgms Math., Cambridge, 1, 223-229 (1912); (ii) Acta Math., 37, 15% 
190 (1914); (iii) IbX, 193-238. 

2 G. H. Hardy, On certain oscillating series, Qmwtmty J. Math., 38,269-288 (1907). 
8 G, IT. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Sm., 17, 

301-325, (1916). 
4 1. c. supa’ (1) (i;i), p. 225. 
6 G. N. Watson, The singularities of functions defined by Taylor’s series, Quairmty J. 

Math., 42, 41-53 (1911). 
6 G, H, Hardy: (i) A theorem concerning Taylor’s series, ibid., 44, 14’1-160 (1913); (ii) 

Note iti addition to a theorem on Taylor’s series, IM., 45, 77-84 (1914). 
7 Cf. E. Landau, Abschgtzung der Koeffizientensumme einer Poteqzreihe: (i) Arch, Math. 

Physik, ser, 3,21,42-50 (1913); (ii) Ibid., 250-255; (iii) Ibid., 24,250-260 (1915). 
* E. Landau, Uber die An&l der Gitterpunkte in gewissen Bereichen, GWlager IVach- 

richten, 687-771 (p. 7071, (1912). 
9 For references see pm 232 of our paper (1) (iii). 

CORRECTION 

The statements at the end of 8 3 and of $4 about the case p = 0 are incorrect: 
see the end of 1916, 9. 

COMMF,NTS 

The interest of this paper is almost entirely analytical, and (as the authors 
remark in the first sentence) its inclusion under the general title ‘Some problems 
of Diophantine approximation’ is not entirely appropriate. 

The substance of Q$ 1-3 is given again, in somewhat more detail, in I&He- 

wood’s Lectures on the theory of functions (Oxford, 1944), pp. 99-102. 
The substance of $5 4-5, with further results, is given in ch. 5 of Zygmundk 

Trigonometric series (2nd ed., Cambridge, 1959). See also the references on 
p, 379 of Zygmund. 
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SOME PROBLEMS OF DIOPHANTINE APPROXIMATION: 
THE SERIES Z e (A,> AND THE DISTRIBUTION OF 

THE POINTS (ha) 

By G. H. Hardy and J, E. Littlewood 
TRINITY COLLEGE,CAMBRIDCE,ENGLAND 

Gmmunicd by E.H. Moore,Deccmbrt 5, 1916 

1. In our previoui writings on the subject of Diophantine approx- 
imation, which we refer to in a short note published in the October 
number of these PROCEEDINGS,~ we alluded in several places to a series 
of further results which, we hoped, were to form the material for a-third 
memoir in the Acta Mathematics. The prosecution of this work was 
delayed, in the first instance, by our occupation on a long memoir on 
the theory of the Riemann Zeta-function, now in type and shortly to 
appear there, and subsequently by other causes; and there is; under 
present conditions, little hope of its completion in the immediate future- 
The subject has since been reopened by the appearance of work by other 
writers,2 and in particular of a very beautiful memoir by Weyl- in the 
latest number of the Mathematische Annalen. This paper contains 
allusions to our unpublished work: and it seems desirable that we 
should make some more definite statement than has appeared hitherto 
of our results and the relations in which they stand to Weyl’s. 

The main problems which we considered were three. 
2. (a) The first problem was that of proving that, if e(x) = e’““’ 

and 

L = afiR + a1 nk-’ + . . . + ak 

is a polynomial irt B with at least one irrationul coe$cient, theti 

s, = 2e(hk) = o(n). 
1 

We may plainly suppose that every CY has been reduced to its residue 
to modulus unity: and there is no substantial loss of generality in sup 
posing the first coefficient irrational. 

This theorem we enunciated first, in the special case in which A,, = 
mk, in our communication to the Cambridge Congress, characterising 
the proof as ‘intricate.’ In our second memoir in the Acta we discussed 
in detail the case K = 2, using a transcendental method which leads to 
a whole series of more precise results; and we promised a proof of the 
more general theorem in the third memoir of the series. Weyl’s memoir 
contains a complete statement and proof, both quite independent of 
ours, of the theorem in its most general form. 

1916,9 (with J. E. Littlewood) Proceediqp of the National Academy of Sciencea, 3,8&M. 119 
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The limitation on the form of X,, which appears in the theorem as we 
stated it, was introduced merely for the sake of compactness of expres- 
sion and does not correspond to any real simplification of the problem. 
Our argument indeed depends upon an induction which compels us to 
consider the problem generally. The most comprehensive result which 
appears in our analysis is as follows: given any pus&De numbers E md q 
we cm determine v (E), N (E, TJ), and a system of intervals j, includirtg all 

ratiunals whuse denominators are less than v, und of total length less thun 
v, so that ] s, 1 < en fur n > N, all values of QI exterior to the inter&s j, 
and all values of al, CY~, . . . . , ak. From this result it follows at 
once that sn = o (n) for any particular irrational a, and uniformly in 
al, a2, . . . I , ak* 

Weyl’s proof and ours are widely daerent, and each, we hope, may 
prove to have an interest of its own. The same is true of the deduc- 
tion of the formula r (1 + it) = u (log t), made by Weyl as well as by 
ourselves. 

3. (b) The second principal problem was, to use Weyl’s phraseology, 
that of the ‘uniform distribution’ (Gleichverteilung) of the points (A,) 
where (x) is the residue of x to modulus unity. Suppose that ntl is the 
number of the first n such points which fall within an interval j of 
length 6, Then the points are said to be unz’furmly distributed if tij N Sn for 

every such interval j. It is plain that a corresponding definition may 
be given of uniform distribution of an enumerable sequence of points 
in space of any number of dimensions. 

That the points (A,) are uniformly distributed when K = I and Q! is 
irrational was proved independently by 2?Sierpinski, and Weyl 
in 1909-10. The general result (with ‘the same unessential limitation 
as to the form of X,) was stated by us in our first paper in the AC&Z. 
Our proof, which has never been published, proceeded on the same lines 
as that of the thoerem of 82. But Weyl has now established a ‘prin- 
ciple’ which renders such a proof entirely unnecessary, and which has 
led him to results in this direction far more comprehensive than any of 
ours. This ‘principle’ is expressed by the theorem: i;f 

%e (mx,) = 0 (n) 

jur every positive integral value uj m, then the points (A,) are uniformly 

distribtited Gz (0, 1). The proof depends on a simple but ingenious use 
of the theory of approximation to arbitrary functions by finite trigo- 

nometrical polynomials; and there is a straightforward generalisation 
to space of any number of dimensions. 

120 



86 MATHEMATKS: HARDY AND LITTLEWUUD 

Weyl’s ‘principle’ enables him to deduce, with singular ease and ele- 
gance, theorems of ‘uniform distribution’ from theorems of the char- 
acter of that of $2, and to generalise them immediately to multidimen- 
sional space. 
courdinates are 

It enables him to prove, for example, that the points whose 

(np a*) (p = 1, 2, . . . , k ; q = 1, 2, . l w , 1; n = 1, 3, 3, . l l ) 
where al, 012, l . . l , al is any set of linearly independent irratioflals, 

are urtifu-rmly distributed in the ‘unit cube’ of kl dimensions, All that we 
had been able to prove was that the points were everywhere dense in 
the cube. 

4. (c) Corresponding questions arise in connection with an arbitrary 
increasing sequence Xx, Xz, X3, . l .  Are the points (X, CY), for 
example, uniformly distributed? The answers to such questions in 
general involve an unspecified exceptional set of values of ar of measure 
zero, instead of (as when X, = nk) a specified set such as the rationals; 
they are, in other words, only ‘almost always’ true. 

In our first paper in the Acta we proved quite generally that the set 
(A, a) is almost always everywhere dense. The corresponding theorem 
of ‘uniform distribution’ we discussed only in one especially interesting 
particular case, that in which A, = an, whex’e a is an integer. The 
theorem is in this case substantially equivalent to results obtained by 

l Borel,4 from the standpoint of the theory of probabilities, and by Faber,6 
as a corollary of Lebesgue’s theorem that a rectifiable CUIV~ a tan- b 

b. Our an-ever contains the first t almos ver 
direct and general discussion of the problem, and leads to results nota- 
bly more precise than that of mere uniformity of distribution. These 
results were afterwards made the subject of important generalisations 
by Fowler,2 whose investigations covers all cases in which X, increases 
with tolerable regularity and as fast as an exponential of the type 8’. 
Weyl’s ‘principle’ enables him to reduce this problem to a study of .the 
series me (X, a)? and leads him to the following theorem, so far the most 
general of its kind. If c > 0, 6 > 0, and A, increases by at least c 
whenever 1z increases from lz by as much as h (log h)-I-“, then 

s, = 2e(X,a) = o(n), (1) 

and the points (x, CW) are uniformly distributed, for almost all values of LY. 
In our second,paper in the Acta we stated that the equation could, 

in very many cases, be replaced by the much more precise equation 

s, = 0 (n’f3 (2) 
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for every positive E. The publication of Weyl’s work had led us to a 
reexamination of this question and to the following theorems. 

A. Ij (i) Xn+[+] -X,+=, 

0 ii 1 a1 1 2 + 1 aa 1 2 + l l l + 1 a, ] 2 = 0 (d+q, 

for almost all CW’S and every positive e. 

B. Ij (i) is rephced by (i’) L+[d+q - L+ 00, where 0 < p < 1, thett 
(iii) may be replaced by 

To these two theorems Weyl’s forms a completing third. It should be 
observed that (i) is certainly satisfied if &I - X, 2 c > 0, and in 
particular if A, is always integral, and (ii) if a, = O(PZ’), and in partic- 
ular if a, =l. 

If A, is an integer, and we separate the real and imaginary parts in 
the equation (iii), we obtain a theorem concerning. a particular system 
of normal orthogonal functions for the interval (0, l), viz., the functions 
4 2 cus 2&X, J 2 sin 2Ax. Our argument is then directly exten- 
sible to a general orthogonal system, and we are led to a new and inter- 
esting proof of Hobson’9 theorem that if &(x> is asy normalorthogonal 

system, and z n’ 1 cn I 2 is convergent for some positive 6, thevt IZC~+~ (x) is 
convergent almost everywhere. 

JVeyl’s hypothesis concerning 1, asserts, roughly, that the increase 
of X, is appreciably more rapid than that of (log n)? It is easy to see 
that this hwothesis cannot be capable of much wider generalisation. 
For, when A, = log 1z, sn is definitely of order S. It seems probable, too, 
that the index + (1 + p) of Theorem B is the correct one. 

5. We conclude by correcting an error in our recent note. The re- 
sults concerning the special case p = 0 are stated wrongly. It is not 
true that, when p = 0, f(z) and sfi are bounded; all that we can assert 

1 
is that they are of the forms 0 log- 

( 1 1-p’ 
and 0 (log M) respectively. 

That j (z) should be bounded would contradict a general theorem of 
Fatou,? in virtue of which a bounded function must tend to a limit, for 
almost all values of 8, when z = ie re tends to the circle of convergence 
along a radius vector, The error has no bearing on the general case. 
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1 &wick, W. E. H., Mess. Math., Cambridge, 45, 1916, (154-160); Fowler, R. H., Lmdm, 
pm. Afatk, Sm., (Ser. 2), 14, 1915, (189-207); Kakeya, S., Tdbku Sci. Rep. Im#. Unio:, 
2, 1913, (33-54) and Ibid., 4, 1915, (IOS-109). 

3 Weyl, H., Math. Ann., Leipzig, 77, 1916, (313-352) ; see also Gtittingcn Nuchr. Gcs. 

Wiss., 1914, (234-244). 
4 Borel, E., Pdermo, Red Circ. Mat., 27, 1909, (247-271); see also ‘notes to Borel, E., 

Lgms sur la thbrie des fonctions, 2d. ed,, Paris. 
4 Faber, G., Math. Ant, Leipzig, 69, 1910, (372443), especially p. 400. 
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CORRECTIONS 

p. 85. In the last line but one of the second paragraph, read f( 1 +i+ 
In the first line of the last paragraph, read k = 1. 

13. 86. In the first displayed formula, read rPolq. 

COMMENTS 

. Q 4. It does not appear that proofs of Theorems A and B were ever publkhed. 
For some results, valid for almost all a, when the h, are integers, see Kokmna, 

pp. 94-95. 
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A Problem of Diophantine Approximation 

BY G. H. HARDY 

I have on several occasions found myself faced by the following prob- 

lem, which appears to be one of considerable interest and difficulty. 
Suppose that a and 8 are positive and a > 1, and that (x) denotes the 
difference between x and the integer nearest to x. Then, in what 
circutista’mes can it be true that 

(a”e) + 0, (1) 
when n -+ m,, i.e. that ame = P,+E, (2) 

where pn. is an integer and E, -+ 0 ? 
The general problem seems, as I said, to be one of great difficulty. 

There is, however, one case in which the answer is almost immediate, 

namely, that in which a is an algebraic number. We have in fact the 
following theorem : 

THEOREM A l 

the root of an 
Suppose that a is a 

irreducible equation 
real algebraic number greater 

k,am+k,am-l+...+lc, = 0, 
I 
(3) 

where I&, lc, ,..., k, are integers. Then, in order that numbers 0 should 
exist which satisfy (I), it is necessary and suficient that E, = I, so that 
a is an algebraic integer, and that the muduli of all the roots of (31, other 
than a itself, should be less than 1. The numbers 0 are then all rational in 
the corpus of a; and tune) = O(bn), (4) 

where b is the numerically largest root of (3, other than a itself. 

We have 

Ax = ~Pnxn+&Xn =m+4x), 

say; and 

(5) 

where 
q n = k,Pn+klPn-l+~+m+kmPn-m, 

5 12 = kgEn+klEn-l+**g+kmEn-,, 

p’s and E’S with negative suffixes being regarded as equal to 0. The 

124 1919, 4, Journal of the Indian Mathematical Society, 11, 162-6. 
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left hand side of (5) is a polynomial of degree nz- 1, so that 

4n-a = 0 (n > m). 

As qn is an integer, and cn + 0, we must have 

4 n = 0, ln = 0, 

from a certain value of n onwards. Thus p(x) and E(X) are rational 
functions, with the denominator 

E,+k,x+-...+E,xm. 

It is evident that p(x) can be expressed in the form 

where p(z) is a polynomial and E,, E,,... are integers. From this it 
follows, in the first place, that k, = 1, so that a is an algebraic integer.* 

Now, let us denote the roots of (3) by 

a, a,, a2,***, b,, b 22.‘. 3 

the a’s having moduli not less than 1, and the b’s moduli less than 1. 
Then 

P(X) =P(x,+&x+~*x+&+ (6) 
-k - kX’ 

the A’s and B’s being rational in the corpus of a and none of them being 
zero, On the other hand E(X), since its coefficients tend to zero, can 
have no pole inside or on the circle Ix ] = 1, and so 

B ;c 
44 = e(x)+ 2 -X9 

where e(x) is a polynomial. From (6) and (7) we obtain 

(7) 

A 
Ax = p(x)+e(x)+laxf 2 

so that A E e 1 A k = 0, Bk+B;, = 0. 

But we have already seen that no A, can vanish. It follows that there 
can be no rout of (3) of the type ak. 

* If 
~+l,x+...+lm-lxm-l 
k,+E,x+...+k,x” 

is expansible in a Taylor’s series with integral coefficients, k, must be 1. 
For a proof of this well-known proposition see, e.g., P. Fatou, ‘Series 
trigonometriques et series de Taylor’, Acta Mafhematicct, vol. 30, 1906, 

pp. 335-400 (pm 369). 
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The conditions stated in Theorem A, with reference to the equation 

(3), are therefore necessary. Also 8 = A is rational in the corpus of a, 

and E,, which is, from a certain value of n onwards, equal to 2 Bib& 
is of the form O(P), where b is the numerically greatest root of (3), 

other than a itself. 
In order to complete the proof of the theorem, it is only necessary 

to show that, if (3) satisfies the conditions stated, 8’s exist which satisfy 

(1). And this is obvious; for 

an-+2 b% 

is integral for all values of n so that 

(an) = O(bn). 

Thus (1) is satisfied when 8 = 1. 

2. Theorem A is a special case of a more general theorem: 

THEOREM B, Sqpose that aj (j = 1,2,-, r) is an algebraic number, 

greater than I in absolute value, and the root of an irreducible equation 

k, jUF+E, jUp-l+m*m+kqj , , 1 = 0; (8) 

that Pj(n) is a polynomial with integral coeficients; and that 

+(n, 0) = P,(n)a~~,$-P2(n)a~e2+... i-P,(n)a~e,. 

Then, in order that it should be possible to find a system of numbers el, 8,, 
**a, 8,, all&fferent from zero, for which 

0 

when n -+ GO, it is necessary and su$icient that k, j = 1 for each value of j, 
so that aj is an algebraic integer, and that, am&g the complete system of 
roots of all the equations (8), all save a,, a2+.., ar themselves shuuld be in 
absolute value less than 1.‘ Each tIj is then rational in the corpus of the 

corresponding aj; and 
(#n, 0)) = own), 

where c is a constant and b is the numerically greatest among thi roots of 
the equations (8), other than a,, a,,..., ar themselves. 

The proof of this theorem does not differ in principle from that of 

Theorem A, the role of the polynomial 

ko+k,x+...+k,xm 
being now played by 

K(X) = fi (k,j+k~,jx+...+k~,jxrn~)8~+’ 
j=l ’ 
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where + is the degree of Pj(n). The special theorem is, from dur present, 

point of view, more interesting than the general one, and I shall there- 

fore confine myself to enunciating the latter. 

3. With Theorem A should be associated another theorem which is 

merely a special case of a theorem already proved by Borel. ** 

THEOREM C, If a and 8 are pifive, and a > 1, and 

(anO> = O(P), 

where 0 < b < 1, then a is algebraic. 

Combining Theorems A and C we obtain an interesting criterion’for 
the transcendentality of a, viz. 

THEOREM D. If a > 1, 0 > 0, and 

(&) + 0, 

then a is algebraic or transcendental according as the equation 

(a”e) = O(e-8n) 

is or is not true for some positive value of 8. 

4. It is interesting to consider in more detail the two simplest cases 

of Theorem A. 
In the first place, suppose m = 1, so that a is rational. If then (1) 

is satisfied, u must be an integer, and anO must be an integer for suffi- 
ciently large values of n. Thus the only solutions are given by 

e = p/P, 
where p is an integer.? 

The next case is that in which m = 2, Then the equation satisfied 

** E Bore1 ‘Sur une application d’un th6orhme de M. Hadamard’, 
Bull& de la ’ Socidte’ Mathe’matique de France, ser. 2, vol. 18, 1894, 

pp- 22-25. Borel’s theorem is really (when stated in slightly different 
language) that which corresponds to B as C corresponds to A. 

The criterion is a simple one: to find an application of it is quite 

another matter; and I know of no example of a transcendental a which 
satisfies (1) for any ‘value of 0. 

t This trivial case of the theorem is of interest in connexion wifh 

Weierstrass’s function. [See G. H. Hardy, ‘Weierstrass’s non-differen- 
tiable function’, Transactions of the American Mathematical Society, vol. 
17, 1916, pp. 301-X] 
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by a is of the form 
X2 -mx-n = 0; 

and it will easily be verified that, in order that this equation should have 
two real roots a and b, such that a > 1, - 1 < 6 < 1, it is necessary 
and sufficient that 

m 2 1, l-m <n < l+m. 

The simplest case is that in which m = 1, n = 1, and 

U= ;(&+l), b = +(-lis+l). 

The determination of the corresponding values of 0 presents no diffi- 

culty. We have in fact 

THEOREM E. If a is a real quadratic surd greater than I, and values 
of 8 exist which satisfy ( 1 ), then 

U2 -mu-n = 0, 

where m > I, 1 -m < n < 1 j-m. The correyndinq values of 19 are the 

numbers 

if m is odd, und the nambers 

I 
4 

’ +&m2+n) 1 
U--r 

if m is even : here r is zero or a positive integer, und p und q halves of in- 
tegers; and, when m is odd, p and q are either both integers or buth halves 
of odd integers. 

When a = &b+l) the simplest values of 8 are 

e = 1, 8 = 4s. 
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COMMENTS 

This is the only paper on Diophantine approximation which was written by Hardy 
without Littlewood’s collaboration, 

In the footnote on p. 163 it is tacitly supposed that &,..., ?cm. have no common 
factor. For the result quoted there, see also Pblya and Szeg6, Aufguben ulrzd 
Lehmtitze au8 der AnaE@s, Section VIII, Problem 156. 

The algebraic integers a (or CL) occurring in Theorem A, that is, those QI > 1 
whose algebraic conjugates a’ all satisfy I$ ] < I, have since been called the Pisot- 
Vijayaraghavan numbers; though it will be seen from this paper that their most 
important property was discovered by Hardy. 

Vijayaraghavant gave various further properties, the main one being that 
Theorem A still applies if the sequence lw?? has any finite number of limit points 
(mod 1) instead of just 0. 

Theorem C can be regarded as a first step towards the more precise theorem of 
Pisot (1946) that if a0 

converges, where a, 8 are real numbers, QI > 1 and 8 # 0, then QI is necessarily 
algebraic and of the type defined in Theorem A. For an account of this and other 
work, and references, see ch. 8 of Cassels’s Tract. For further references, see Pisot, 
Journal ftir Math. 209 (1962), 82-83. 

t For references, see J. &o&m J&h. BOG. 33 (IS!%), 252-5. 
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the 
BY 

Some problem of Diophantine approximation: A further note on 
trigonometrical series associated with the elliptic theta-functions. 
Prof. G. H. HARDY and Mr 3. E. LITTLEWOOD. 

[Received 6 July 1921.] 

1. This note contains a short addition to a memoir, with a 
similar title, published in 1914 in the Acta Mathem&*. In that 
memoir we considered the sums 

s,2 = 5,2 (5, e) = C e@ - +I' riX CQS (zv - 1) d3, 
rsn 

~~3 = s,3 (2, e) = C ev2*ix COB 21~0, 
vgt 

s,4 = ~~4 (x, e) = c ( - 1)’ ev2rix COB 2&, 
rp 

where x and 0 are real and x irrational?. There is plainly no real 
loss of generality in supposing either x or 8 to be positive and less 
than unity, if it be understood that 8 may be zero. 

Our main results may be stated as follows. We denote by 
s, = s, (x, 0) any one of the sums sm2, Q, s,? Then, in the first place, 

& = 0 (n) . I . . .  .  .  .  .  l * .**.* . . . . . . ..(l-l). 

for every irrational x, and uniformly in 8 $ And this equation is 
a best possible equation of its kind; there is no function + = + (n), 
tending to infinity with n, such that 

for every irrational x5. 

* G. H. Hardy and J. E. Littlewood, ‘Some probleme of Diophantine Approxi- 
mation’, Acta Muthem.atica, vol. 37 (1914), pp. 193-238. 

t The second and third sums reproduce one another when 8 +# is written for 8, 
They are considered separately for the sake of forma1 symmetry in the analysis. 

$ p. 213 (Theorem 2-14). It should be observed that we there use 8, in the 
more restricted mme of 8 (x, 0). 

§ p. 225 (Theorem Z&l). 
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On the other hand much more than (14) is true for special 
classes of values of x. In particular, if 

1 1 
x= G a,+ .*.’ 

and the partial quotients a, are bounded, then 

s, = 0 (6) .,I...... . ...* ..I . . . . . . l (1*3), 

and again uniformly in 8 *. And this resuIt too is a best possible 
of iti kind, for 

sn = 0 (4;) (1 4) l 

..~1~.,~1*1‘1**1.**1.... 

ia false for 8 = 0 and alny irrational XT. 

2. There was one obvious gap in our former results. We did 
not give any simple criterion fbr distinguishing the classes of 
irrationala x for which 

42 = 0 (ta=) l 1***.11 .  .  .  .  .  l . * . * . * * * . *  (2 1) . 
3 

where a is an assigned number between 4 and 1. The theorems of 
this character which we provedt were avowedly tentative and 
unsatisfactory. We did not even prove that some equation of the 
type (24) holds for every algebraic x. It is this gap which we pro- 
pose to fill in the present note. 

We denote by pnlP;R a typical convergent to x, taking 

PoOP1tlPs .% -=- __=- 
1’ Ql 

-sp 
Qo 4 !I2 a,cx;,+ 1 ' '** ; 

and write, as in our former memoir, 

I 1 
X =- 

a, + q ’ 
Xl 

=- 
a,+ x2 p .“’ 

a,’ = a,+~,, a,‘=a,+x,, . . . ) 
Q ‘= a,’ q+r+ q+2 * 

We shall say that an irritional x is af class E if 

Qn+l< A%k . . . . ..~.........~...~~ (2 2) 1 

where A= A (x) is independent of n. We shall use A generally to 
denote a number ;of this kind, not the same in different formulae. 
If x ia of class E, and k < k;‘, then x is of clam k’. ’ 

If x is of class k, 

* p. 213 (Theoran 2.141). 
t p. 226 (Theorem 2.22). 

$ pe 214 (Theorems 2d42, %143). 
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Further 

for all positive integral values of p and pm Thue a number of class, k 
might be defined as one for which (%3) is true. If a, is bounded, 
(22) is true with k =I, so that x is of class 1. In particular a 
quadratic surd is of cla& 1, and every algebraic number is of 
finite class. 

We shall now prove 

THEOREM A. If x is of class k then 

and unifurmly in 8. 
In particular we have, as a corollary, 

THEOREM B. 1f x is algebraic then s, = 0 (w), for some value 
c$ a less thas 1, and uniformly in 8. . 

We shall also prove that Theorem A is in a sense the best 
theorem .of its kind. This will follow from 

THEOREM C. It is possible to choose an x of class k and a 0 so that 

3. We require the following lemmas : 

Lemm I : 
1 

Qn+l + Xn+l!ln = xxl x2 
x l 

a . .  *  

For 

qn+1j- xn+1qn= (a,,, + 2,+1)!7?8+ G-1 = F+ h-1= 
Qn+ xn %--I 

. 
n 

x 
n 

As 
1 

q1+ wlo= a, + $1 = 2' 

the lemma follows. As an obvious corollary we have 

Lemma 2: 

4. We can now prove Theorem A. If we choose v so that 

we have* 
nxxl ,.. x,,, xv< 14 nxxl .., xvml (4 1) l 

* * , * * * I * I * * *  
3 

)+OLl 

1 
= 

2x1 

W n Ir,x, . l I x,J, 
.  .  l xv-1 

(4.21) 
* L.C., p. 213. 
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we write 
xX1x9 I.. Xv-l = 

Then 
1 -= 
xv 

au+1 + xv+1 < a+1 + 1 

by (2e2); and so, by Lemma 2, 
1 

and ah s .n = i 
.,a.. . a.. . . . , . . . ..(4~22). 

93-j (Ocjs 1). 

!b+1 < Au,+~ < A - < -A @-I, 
9 V 

It follows, from (4*21) and (4022), that 

01* s, = O(W), y=Min(l-Qj,ikj) (4 4) . .,.*I.*** I 

Now 

Hence in any case 
k 

s, = 0 (Pw) . .*.~1~.,.~~~1~*...~...*. (4 5) 3 

which proves the theorem. 
Theorem B ia an immediate corollary, since an algebraic number 

of degree m is of class m - 1 *. 

5. The proof of Theorem C also requires only a slight modifica- 
tion of our former analysis. We take 8 = 0, and write, as before, 

q = @ = @X-my = remi” (x> 0, y> 0, 0 < r < 1) l *:(54), 

%~=9~(0,7)=1+25p l (5 2) l * . . . * . . *  .  .  .  .  .  .  F l 

1 

Suppose it were true that sN = o (v). Then the series 

1 + 2 Cq”” = 1 + 2c en=* r”’ = zu, P 

+ By the classical theorem of Liouville: we, e.g. Bore& Lyons &UT la tit&ie des 
fonctiolzs (ed. 2, 1914), p 

pb 
. Z&29, It haa indeed been shown by A, Thue (‘uber 

Anniiherungewerte alge raiwher Zahlen’, Journal jiir Math., vol. 135 (1909), 
pp* 284-305) that an algebraic number of de 
posifive 6. See Bad, Lepna GUT la th&ie e la croiasmxe (1910), pp. 164166. P 

ree na is of class 4~ + E for every 

More recently C. Siegel ( ‘ Approximation dgebraisc her Za hlen,’ Math. Zeitschrijt , 
voL 10 (1921), pp. 173-213j has shown that nn algeljraic number of degree ‘112 ia of 
clams 2&i - 1. 



would satisfy the condition 

u m =uo+ul+ . ..+u.=o(mfa), 

and .we should have 

It is therefore sufficient to show that (5.3) is false for an appro- 
priate x; that is to say that 

for a sequence of values of y whose limit is zero. 
We suppos-e that 

%+1> Aqn” (5 5) . “.*~~.*......*...****~.. 

for an infinity of values of x, and consider, as on p. 229 of our 
former memoir, the range R, of values of y defined by 

1 1 
-----,sys-. I 
Pn+l !l n 

It is sufficient to fix our attention on a single value of y, viz. 

y = q/k--l, 

which plainly falls within R, when Ic > 1. 
We employ (as on p, 226 et seq.) the linear transformation 

where the sign is chosen so as to make ad - bc = 1; and here we 
make another assumption, viz. that this transformation is one of 
the types which (following Tannery and Molk) we denoted by 
lo, 20, 50, or 60, and which transform 4, (0, T) into one of the 
functions 9s (0, T) or ‘;)4 (0, T). It is plain that this may be secured 
by an appropriate choxe of x*. 

This being so we have, aa on p. 23Ot, 

whkh proves the theorem. 

* We cannot prove that 8, = 0 (na) is rcezler true for an irrational of cIas8 k; for 
it is poaaible that every n for which (5-5) ie true should give rke to a tramformation 
of type 3” or 4Y 

t The condition a, = 0 (1), 
cases 30 and 40, hera excluded. 

used there, is only required in connection with 

- 
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COMMENTS 

This is a supplemntary note to 1914, 3. The results of that paper, on 
the order of magnitude of 8,(x, 8), were proved on various suppositions 
as to the rate of increase of a,, in the continued fraction for x, as a func- 
tion of TL Here irrationals x are classified according to the values of 3c 
for which qV+Jql is bounded. This classification has been followed by 
later workers (see Koksma, pp. 27-28). 

5 3. The work of this section can be greatly simplified by using the 
estimate (2) in the comments on 1914, 3. This gives 

% = 0 ((rtq,‘))kl(k+l)(q~+~)lI(~+l)) = 0(nW+ll) 

if qV+JqF is bounded. 

8 4 (joottiote on JIM a). Our knowledge concerning approximation to 
algebraic numbers has been completely transformed by Roth’s theorem 
of 1955. In the language of Hardy and Littlewood, the theorem implies 
that every algebraic number is of class 1 +E for any E > 0. Thus we have 

if x is algebraic. 
813(x,O) = O(n++E) 
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SOME PROBLEMS OF DIOPHANTINE APPROXIMATION : THF, 

LATTICE-POINTS OF A RIGHT-ANGLED TRIANGL’I? 

By G. H. HARDY ad J. E. LITTLEWOOP. 

[Received March S&h, 1920.-Read April 22ncl, I92O,] 

I. In ha24~ th. 

f . 1. The problem considered in this paper may be stated as follows. 
Suppose that or) rend W’ are two positive numbers whose ratio 8 = w/d 

iH irrwtional ; and denote, by A the triangle whose sides nl*e the coordinrtte 
axes and the line 

circle (the problem of Gauss and Sierpinski), and the ~IG!IZ~~~ C# tljfe 
~W@W hyperbola (Dirichlet’s divisor problem), both of which have 
the subject of numerous researches during the last ten years. 
psrticular problem which we copsicier here has not, so far as we kl- 
been stated quite in this form before. It is however ertdy brought 

wt- 
been 
TlX 
AOW, 
into 

cdnnection with another problem which has attracted ti certain amout of 
attention, and which has been considered, from varying points of view, by 
Lerch,f by Wevl, 1 and by ourselves.$ L This problem, which we shall call 
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P7dde772 B, is REI follows+ Suppose that, a ususl, [SC] denotea the integral 
part of z, and that 

(1.12) {z) = x-p]--+ 

Then whd is the most that cm be said CM to thre ode of mqrzitudc of 

(1 . 13) 8 (0, 72) = i { PO 1. 
v=l 

1 . 2. We begin, in 4 2, by proving the formnln jvhich estnhlislles the 
connection between Pr&lems A and B, and showy; that the first lxol~lem 
is a qnerPsliaed and more symmetrical form bf the second. We prove in 
fact that 

(1 l 21) 

where S(q) is a sum very similar to the sum 1 . 13. 
It is trivial that 

(1 ,211) 

the area of the triangle, together with an error of- the order of the pi- 
meter, The second and third terms of (1. 21) occur naturally when we 
consider, instead of A, the similar MKI similarly situated triangle whosa 
vertex is at (1, 1) instead of the origin ; for the area of this triangle is 

4 71 rl 1 -- --- 
2w’ 2w 2w’ + 2’ 

But no closer approximation than (1 ,211) is in any way tCin1; md, 
when 8 is rational, S(q) is effectively of order q,’ so thnt a universal 
formula, professing tu be mare precise than (1 , 21X), woul~~ necessarily 1 
be false. 

In 5 3 we deduce transformation formulE for N an& 8, which are 
generalisations of a formula given without proof by Lerch, anti which 
enable us to study these sums by means of the expression of 8 as a simple 
continued fraction. In 5 4 we prove (a) that 

for any irrational 0, and (b) that (1 .22) is the most that is tine for every 
such irrational. Incidentally we obtain the corresponding results co,;- 

cerning Problem B : the first of them at any rate is in this case fftmilinr, 
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In 5 5 we consider more closely cues in which the rate of inorease af the 
quotients in the conCinued fraction is comparatively slow, alld in particular 
the case in which they are bounded ; and we prove that in this 0888 

and that this result too is a best possible result of its kind. There are 
naturally analogous results for Problem B ; that corresponding to (1 l 23) 
was stated as a new theorem in our communication to the Cambridge 
congress, but had, as was pointed out to us by Prof. Landau, been given 
aJready by Lerch. 

Up to this point our argument is entirely elementary, and both methods 
and results are of a kind to be found in our ‘previous papers on Diophantine 
approximation or in those of other writers. We have therefore aimed at 
the maximum of compression and have omitted a good deal of elementary 
algebraical calculation. The concluding section (8 6) is more novel. In 
it we prove that #Lf 8 is ulgebraic then 

(1 .24) SM = Oh% 

w?we u < 1. This result is unlike any which we have been able to prove 
before, and is obtained by entirely diffment methods, based on the proper- 
ties of the analytic function 

(I .25) s”,(s, a, 0, w’) = Fd 
1 

WI, n=o (a+mw+~@‘)” 

Thicr fun&ion will be recognised as a degenerate form of the CL Double 
Zeta-function ” introduced into analysis by .Dr. Baxn8g.* 

2. 1. 1W8 write 

(2.11) 4 = tf +f, 
w [I q = q 0 7 [I 7 +f’, 

where O<f< 1, 0 ,<f”< 1. 

+ E. W. Barnes, Ib d memoir on the DotibM3ampoa-fun&iron “, PhiE, Tnzw, lb#. &QC., 
(1)), VOI. 196 (WUl), opt 26W87 ; see in psrticular pp. SU-349. Fez a study of some of the 
propatios of the degenerate function (for which the ratio W/W’ is real) 888 a, E& .I&wdy, u On 
double Fourier seriee, and in particular those which represent the double Zeta-fun&m with 
real and incommm~b& pmamekrs “, QwrbrEy Jo74mu,z, ‘Vd, 37 (1906,, pp. 63-79. 
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Suppose first that there is no lattice-point oln the line (1 b II), 0L: AI? 
d the figure. Then the number of lattice-points inside OAB is 

Now [-z-J = - [%]-l+Q, where erc is 1 or 0 according as z is or is not 
an integer ; and ~0-f’ cannot be an integer, since then q-p~would be 
an integral multiple of O’ and there would be a lattice-point on AB. Thua 

(2 l 18) If'-pq = - [j&-f']-1 = - @-f'J+ {PO-f '} -4. 

Substituting into (2. 12), and using (2 S ll), we obtain, after a little re- 
duction 

(2 .14) 

where 

(2.141) 

and 

(2.142) m = Y{p&f’\. 
/L=l 

since 9 is bounded, the problem is reduced, substantially, to the dis- 
cussion of S(q)). 

The preceding argument requires a trifling modification when there is 
a lattice-point on AB ; there cannot be more than one, since 8 is irra- 
tional. In this cam the sum (2 l 12) gives N(q)+1 instead of N(V). 
There is one value of p for which p0-f’ is integral, and for this p the 
-8 in (2. X8) is chsnged into +. The net result is to leave the final 

form& unchanged. 

3.1. In order to obtain a formula fur the transformation of N(q) or of 
S(q), we employ the familiar device of adding together the number of 

lattice-points of the triangles OAB, O’A’B’ of the figure. 
If we take new axes O;X, O/Y, aa shown in the figure, it is plain that 

x+y= ‘J +1, [ 1 w x+y= 5 +I; [ 1 
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and the equation of &dB, referred to the new axes, is 

(3.. 11) w’x+wY = ~+w(l-f)+o’(l-f’) = 23, 

my. Repeating the arguments of 5 2, we find, for the number N’(H) of 

Y 

lattice-points of O’A’B’, 

(3 l 12) 

where 

and 

F and F’ being defined by 

(8.123) g = g +F, 
w [ 1 w $ = [F]+F’, Q,(F<l, 0 9,(F’<l. 

3.2. We suppose now that o < w’, 0 < 1. A glance at the figure 
shows that 

[$I = [5]+1- 
Substitutipg for H in terms of PJ, frcm (3. ll), we find at once that 

(3 .21) F F = 0(1-f). 

The same argument shows that 

(3 .22) F = l-fF -- 
0 

p 1 
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where J.I is an integer ; it happens 
the argument. 

It is also clear from the figum 

that the value of p is not m.ateriaI ho 

that 

1 = pJ[cJE, (3 w 23) NM+WH 

xvhere e is zero unless there is a lattice point on AB, and then unity. 
Substituting for N(q) and N’(H) from (2.14) and (3 l 12), using (2 W 11), 
(3.11), and (3 .21), and reducing, we obtain, finally, 

(3 9 24) s+sr+~ = - 

8 .3. It is important, in view of Problem B, to show that this formula 
includes a formula given by Lereh? Suppose then in particular that 
d= 1, o= 8 < 1, and kite 

(3 l 31) 
1 

where art is the integral part of *O. 
Starting with an arbitrary positive integral 32, we write 920 = M+S, 

where M is an integer and O’< d < 1, and take 

r = M+l = ne+1-& 

Then f’ = 0, F I_ $ (mod I), 

by (2.11) and (3 l 22) ; and there is no lattice point on AB, so that E = 0. . 
Suppose now that q ia a positive integer and 

ix< 
l--s 
7 < q+1.+ 

The11 II 1-s P-S -=+----=n+g+f, f=yj--$ 
6 f 

Also H = 11+1+0(1--f) lies between M+Z and M+S. Hence 

(3.32) 
M+2 

S f 2 
v-1 

= 
v=l { I 8 

z- 
*+{ 

Jf+1 +$r 

e 1 
; 

* M. ZIerch, zoc. cit. 
f  It is easy to 881~ that (l-8)/8 cannot be ink@. 
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and 

Also 

rJi=l 1 t’= 1 

say. And (n+1)8, l o.9 (n+q) 8 have all the 
qe < 1-S < (q+1)8. Henae 

(3.34) so = k (ne+re-M-*) = E (re+s-g 
p=l r=l 

Substituting from (8.52), (3.381), (8 l 33), and 
reducing, it will be found that 

integral part X, since 

:S. 34) into (3.241, and 

(8 .85) 
S(l-S) 

s+d = p-7, 

which is the formula of Lerch. 

We may clearly suppose thab 8 < 1. Suppme bhat 

(4 l 11) 

(4. 12) 

e 1 1 1 = 
a, +ct, +9 +**0' 

We have, from (3 .24>, 

(4 . 18) S$-P = O(l/@, 

the constant of the 0 being independent uf both q and 0. 

we write q = wf, so that 

5 = ip+-e(b-fJ+i--f’ = fe+o(l), 



22 

say ; so that 

(4. 14) 

G. He HAHDY and J. E. LITTLEWOUD 

s = 0(1/O) -sp 

Similarly, we have 

S 1 = 0(1/&)-S,, SQ = 0(1/e,) -sat 

where &, Ss, . . . are sums of the type& 

S 2= Y {&i-f&s $B = Fa {P&-,f8t, PS”r1 lb=1 

so that s a = o (m) ,  $a = o(fee,od, .  l e .  

It follows that 

. . 

[April 22, 

‘1 

l .  ‘, 

(4.151) s = 0 (i) +o (&) +**.+o (+-)  +we, l * *  %-1) 

1 

and 

(4.152) 8 = 0 (*) +o (+) +...+o ($) +ocfee, . . . e,-mm 
1 

We ahall require both of these equations. 

4.2, We choose v so that 

(4 l 21) tee 1 .C* 8,-l& < 1 4 fO& l .* B,-1. 

It may be verified at once * that &8,+1< & for every s. Henae on the 
one hand 

(4.22) ee 1 l .  .  0 U-l = 0(2=+), 

and on the other 

-iv 
(4 .23) $+-&+..& = O(vM+ = 0 (A) = O(vS+[)~ 

1 F 1 .** v-1 

From (4 . 151), (4 .22), and (4 .28), we obtain 

(4 . 24) s = o(s2+~)+0(2~q3 = o(f), 

aincg Y tenda to infinity with f; asnd the theorem follows from (2.14) and 

(4.24). 

+ Bea our paper “ $ume problems of Diophantine approdmation (rI) ” [Aeta M&+ 

~a&a, Vol. 8’1 {1914), pp. 19%230 (p. 212)]. 
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1920.1 Soaa~ PROBLEMB OF DIOPHANTINE APPROXIMATION. 23 

4.3. To Theorem Al correspondti, for Problem B, the well known 
theorem : 

TH~REY ml.-If 9 is irra timtal, tl en 

s@, 72) = 5 {+po; = u(72). 
p=l 

The proof of this theorem irr included in that of Theorem AI. We 
have only ho take q = kw’, where k is an iategnr, so that f’ = 0, and to 

write & = q/w = k/O, n = [(I9 

4.4. THM~REM la.-+ q(q) is my fuozctio~fi of 17 which teds steadily 
tu inJilzity with ‘I, then there is an irrational 0 sunlit that each of ths 
inequalities 

is satisjed fur a sequence of indefimite2y imreasi~zg valuer of q, 

Thus Theorem Al is the best possible theorem of its kind. 
Making the transformations indicated in 4 . 3, we see at once that it 

isr enough to prove 

THEOBEM ~%.---lf +( n is my fwtction of n wJGch tmds steadily to ) 

infinity w iih n, then there is an irrational 0 such tlmt each of the in- 

equalities 

is satis$ed focr m in$nity of values of 7t. 

To prove thie we use Lerch’s formula (3 l 35). Writing 

(4.41) nl = fne] = 7ze-s, 1~a = nlel-sl, ...3 u,+~ = d-h, 

(4 . 42) 9 8 = PS 8- Ul-&I - 28 ? L 

we have 

l (4 .43) ~(6, n) = q+-s $, n, = $o-s(Ol, 723 = ~o-~l+s(02, 7tJ 
( > 

We suppose ar+l even, and exceedingly large in comparison with the pre- 
ceding quotients ul, a,, g e + t a,, and take 0)~~ = &z7+ Then 7~9-+~ = o and 
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& is pm&ally ;2, so that &(l-&) is certainly greater thin +. Having 

fixed nT, we can determine ~t,-~, 7~2, . . . , n,, N from the equations i4.41) ; snd 

It i8 then plain that, if a,+1 is sufficiently large in comparison with the 
preceding partial quotientt3, ~(8, la) will have the sign of (- l)Y, and 

(4 .41) 

And, by choosing a 8 for which sufficiently violent increments ia the 
order of magnitude of the quotiente occur at an infinity of a@es in the 
continued fraction, we can secure the truth of (4 . 41) for an infinity of 

valu08 of 92, 

5. Results cmcmziug specid classes of irratiw2ds. 

THEORRM ~3,-- U~zder tl2e same cmtdition, 

s@, n) = O(lQg n). 

To prove Theorem 63, we ref‘or~ ta the an@is uf 4 . 1 and 4, 2, but 
utie (4,152) instead of (4.151). In this ca8e we have plainly 

s z o($-) +o ($) +...+o (i) = Q(v)* 
1 V 

we have Y = O(Iog &> = O(log q); and the theorem is proved. Theorem ~3 

follows. 0$0rdkr~ : third is &he theorem which, 88 WQ expkimd in 1.2, w~a 
claimed’ $8 a new theorem in our communication to the Cambridge cton- 
grey, but i8 rashly due fo Lerob. 

It will easily be verified that, if W8 swwrne 
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W8 obtain an error term of thea order 

s = d{ (log ‘I)P+lf.*;- 

if we assume uJb = O(@“), where p lies below a certain limit, weiobtain 

s = O(f) (a < l).” 

As so little is known concerning the order of magnitude of the quotienb 
in the continued fractions which express irraficnals of particular types, it 
is hardly worth while to go into further detail. 

THBOREMB~. -There are values of 6, with btxmded quotimts, suc?~ tlmt 
each of the inequalities 

Thue Theorems 63 and ~3 are, alsu best possible theorems of 
their kiti Ta prove this, it is plainly enough to prove Theorem M ; & 
md this we ehall do by considering the simplest irrational of all, viz. 

We writ0 

45-l 
2 

1 1 1 
=T+T+i+... 

and take the convergent8 to 0 to be 

l’hen it is wily vmikd that 
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5.3, w8 first tske PZ = qs in the formula (3 l 31). We find without 
difficulty that 

[PO@] = Qd-11 s = qse-[qge] = $+I, 

if 8 in 8v8n, and ‘[@e] F &-1-l, 6 = l--$“+l, 

if s ie odd ; and that in either case 
‘I# 

(5.81) ni= ~ c {ve/ 
v=l 

satisfies the equation 

(5 .82) a,+a,-1’ = * ( P+l+(-ly+lw+*). 

Using this recurrence equation to express 6,0 in terms of 

we find, after reduction, that 

(5 l 83) 
@W2 

as 12*/5 -g(-,),+l&+1+(-1),+1$. 
t‘ 

Sappoee now that 

(5 -84) 

We can express rc in one snd only one wsy in the-form 

92 = qc+qs+q&. l 9 +qS, = q8-t Ql, 

where a, sI, s2, . . . are descending integers differing by at laa8t 9 ; and 

Ql 
m N = as+ 2 {(q8+)oq* 

p=l 

Now q,8 differs from an integer by less than does any ,uO. Hence 

[@l+ru>q = q,l,+Wl 

ana {(Qs+d@t = q8- q,-1+&- [/Al]-+ = (-1) @+l+ {&? 

s(8, 42) = a,+(-1)W1&1+8Qp 

We now write 

&I = as,+q~cb=+qe, = qq+Qg, &a = qQ+Qa, 

and SO 011, and repeat the argument. We thus obtain 

(5 1 85) ~(0, ~2) 
= cs+aB,+aB,+ l l l +rs, 

+(-1)“8”+‘Q,+~--1)“1B1+1Q,+...+(-l)s~.-l~k-1+I~.~- 
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5 . 4. If in (5.35) we substitute the values of the a’s given by (5 . 33), 
the first two terms of (5.38) will plainly give a contributiotz boundti ior 
all values of s, so that 

(5 .41) cF~+bgl+...+rQ = - - J5 ((-1)8+(-1)~~+***+(-1)s1)+0(1). 

Again 

(5 rn 42) 

and the Burn of the second terms is numerically less than k, and a forthi 
than .s. The sum of the contributions of all such terms to (5 l 35) ie 
therefore less in absolute value than 

s@+l+slP1+l+... = O(1). 

These terms, then, may be disregarded. Making this simplifioation, and 
substituting from (5 .4,1) and (5 .42) into (5 l 35), we obtain, -finally, 

(5 l 43) s (0, ?B) = O(l)- 8 & ((-l)“+(-lr+...+(-1p) 

5 l 5. This. formula enables US to study the behaviour of ~(0, n) for 
different forms of n, and in psrticular to prove our theorem. Let us take, 
f 01’ example, 

s =4k+4, sl=4k, s,==dk--4, . . . . sk:= 4. 

Then the right-hand side of (5 .43) becomes 

se 1 -- 
41/5 + Jz ( 

+@+-@-4+**~+-e” +0(l) = (vs$-O(l) 
1-P > 

I 9 

where C =&(&o)=-$)#O; 

and s(8,7&) ia negative and greater than a constant multiple of 8. Simi- 
larly, if we were to take 

s = 4k+S, s1 = 4k--1, ...3 So = 3, 
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we should find s (0, $2) to be positive and greBter tkn a constant multiple 
of s,, Sitlw s is gr&er than. & coast& multiple of log 31, this BOAT 
plefes the proof of Theorems A4 and 84. 

5 + 6. We should perhaps, before passing to more transcendental in- 
vestigations, add a word concerning the case, so far excluded, of a mtimur2 
0. It is easy to see that, when 0 is rational, no such results as we have 
proved in the irrational case are tlrue : ~(0, 72) is effectively of order ?h, md 
the oscillatory part of N(q) of order q, . Tim, to take a simple case, the 
aeries IZ { $p 1 is 

1 -v_- 
4; 

fil ‘ 
++ 

g-i- 
3+ $-p- ii-+ l ... 

and s(#, ?2) - - +42. 

In general, for a fixed rational 8 = piq, we have s (8, 11,) - @, where 

6 . 1. The substance of our concluding section liee somewhat deeper. 
Our goal is to prove 

where u < 1. 

THBORM ~5.- U72der the same conditions 

s(8, 92) = O(na) (a < 1). 

We requiresome preliminary lemmas concerning the function- 
a 

(6.11) [&, a, 0, w’) = c 
1 

m .,L=O. (a+mo+7&)’ ’ 

where a, W, and w’ are p&k, snd s = vfit. This fun&& is a de- 
generate form of the double Zeta-fnnction of Dr. E. K Bamaa Barnes 
considers only the mm in which (as in the theory of elliptic function@ the 
ratio 0 = w/d is co?q&x. The se&e (6,. II) de&m the function in the 
fir& instance for 6 > 2. 
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und s= 1, whare it bahmes like 

l l 1 w3-w'-2a 1 
T ow s-2' 2&d S-l 

respee tidy. 

This is proved by Barnes when 0 is complex, and hi8 proof, depending 
on the formula 

is equally applicable in the case considered here. we should observe that 
(-u)S-1 c e@-l)‘w (+‘), where log (-u) has ite principal value, that the 
contour of integration is the same as in the well-known Riemann-Hankel 
formula for the ordinary Gamma.andl.Zetri .functions, and that the formula 
is vaJid for a!1 values of s except positive integral values. 

6.22. LBYMA j%- Suppose that 0 <u <.w+d, and that 8 = w]d 
is ati algebraic irmtimul. Then there ti a K such that 

tW’8 4 mow m=l ml-’ sin - 
d 

To prove this form& <we start from the integral (6.211) rend i&grate 
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that the horizontal line8 (3) pass at a distsncs greater than a constant S 
from any pie of the subject of integration, and that the loop (1) passes 
between the origin and the poles & 2&/w, & 24;’ nearest the &gin. 
This being so, it is easy to see that the contributions of the rectilinear 
parts of the contour tend to zero when the sides of the r&angle move 
away ta infin& and that 

& = I? (1 -s) lim E& 

where R is a residue of the integrand. A simple calculation shows that 
the residties yield the two series required. If 9 = O/O’ is algebraic, we 

/ ain'?-l > 7721-5 1 sin 7 1 > 37t+, 

where c is a constant depending on the degree of the algebraic equation 
which defines 8, It follows that the two series of the lemma are abso- 
lutely convergent if CT is negative and su%ciently large? We shall 
suppose in what follows that the series are absolutely convergent for 
Q < -K. The for%ula (6.221) may of course hold in a wider region 
than this. 

SUppOBe that Cl< r < ba* We may suppose the contour of integra- 
tion in (6.211) deformed in such a manner that 

I~l=l~rg(-~)l~ib+~~ 

.at every point of it, and I#Jl=h+h 

at all distant points. We have then 

1 (-@S--l 1 < k 1 u 1” pl < A I,@ @+L) VI, 

where A is a number depending on cl and q, 

f I-(&-s) 1 = O(g-f* It i 1 t p-“) = o(e-(~-lwI)~ 

S, = 0 (e+l ~~~e!~~~,l,~+$utul) = O(eeItt). 

+ It is hardly necessary to give fuller details of the’ proof, as the substance of the Iemma 
ia contained in the papr of Hardy referred to in the footnote to p. 17. 
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6.24. Lemma y irr required only in order to prove a somewhat deeper 
lemms, viz. : 

(6 . 242) 

Of these relations, (6.241) is obvious, since the series (6 , 11) is 

absolutely convergent for 6 > 2 ; 
since we ‘have 

and (6 .243) follows from (6.221), 

( 2rnT \ 
(27r)“-‘lY(l--S)si~ ,I -(iw’-U)+*(l-S)K j = O~iPIt’Il?(l--S)l~ 

w 

uniformly in 1z~, and, of course, 8 similar result in which o snd or)’ are 
interchanged. Finally, (6.242) follows from (6.241), (6 l 248): and the 
well-known theorem of Lindeliif. t Lemma y is used only to show 
that the conditions of Lindeliif’s theorem are satisfied. 

6 . 25. Our last lemma is of a different character. we write 

the numbers ZP (no two of which are equal, since 8 is irrational) being 
arranged in order of magnitude. We suppose that f is not equal to any 

there exists a number H, indepwdent of T alrtd [, such that 

# For explanations concerning the “ p-function ” of a funcfionf(s), defined initially by 
a Dirichlet’s series, see G, H. Hardy an-d M. Rieq &‘ The general theory of Dirichlet% 
series, ” Chtb-idge MuthmuticaZ Trm@, no, 18, 1915, pp. 14-18. 

t Theorem 14 of the tract referred to above. 
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We have 

the right-hand side of (6.252) may be written in the form 

say, Now” 

(6. 253) 2% 
G 

T 

If we write lP z @P, k = ep, the series becomes 

(6 .254) 

Now Bohr,t generalieing 8 remit of Landau, 1 has shown that the eerierr 
(6.254) is bounded, provided only that 

md it ia easy to verify that tbe condition (C) ieJ satkfled by our se&a 
Xl-” z P &-% . For 

1 p+1- ?P = a+m’w+dd-u-mm-nw’ = ho+ko’ = W’ (k+?@, 

say, and so, since 8 is algtibtaic and apl+l < &+I?, 

x Ap = log 
( 

E 4 
p+1- 1+ p+;- ‘) > HI;;H; 

P 
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H, mh~rever it occurs, denoting ti positive constant, not of COWHO the 
~tne at different occurrences. Thus l3olw’~ conclit;iou icJ mtisfied, tmd 

Lemmu E follows from (6 ,253). 

6.3. 14% cat1 how prove our thewem, We take T = & where 

0 < y < 2. We choose arbitrrtry podtive numbers 8 alxl e, and take 
(J= 2+s. . . 

1% therl tipply Csuchy’s theorem to the integral 

take11 round the rectangle 

(CAT, c+iT, +fC+iT, -K-iT), 

the eides of which, taken in or&r, we denote by (1), (2), (B), and (4). 
U&g Lmlmb U, rv0 obtain 

Now 

(6 .32) 
0) = 

w(f)+0 ($) = W(g)+o@--t6-49 

by Lemma E ; and 

by Lenma s. It remaiue to estimate the cotkibutiow3 of the horizontal 
sides ; and it is clear9 from Lemk d, that the coutribution of either is of . 
the form 

O( Max %* TF(“)-’ +‘) = O(Mnx eq), c 

.I t*+ KM-d q=a+;- 
2+K 

-1;. y+c (-K\<a<S), 

It is clear that q cannot exceed the greator of its values for. r = - Ii 
and c = c, viz, . 

-K+(K-#y+% 2+s-y+e* 

The possible errw-term arising frum the fir& of t.he vltlues may be I 
&sorbed into that already presimt iu (6 I 38). That .‘cwrespndiug to . 
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the second, la8 well 11s that in (6 l 32), may be absorbed in a single term 
o(pt6-Ytc ). We have therefore, on collecting our results, 

We have still y at our disl~osnl. Taking 

I -K+fK++) y = ‘2+6-y,, 

we o bbaiu y.= 
2+s+I!c 

g+K 

(jvhich is, aa we sul)lmwd, positive and less than 2), and 

I a+&y - w &(Q+K)-- 
$+K 

l 

\ 

Tlh irJ etjual to (l+K)/($+K) < 1 when S = 0, a~1 is therefore 1~s . 
than unity if S iu sufIicieot& small. We have therefore 

(6 l 35) W(f) = & + +-- s+ Olka>, 

where rx < 1. In order to obttliu Theorem AS, it is ot$ necesstbry to 
attribute to a the yarticulur value o+wI and to replace f by q, Yince W(f) 
then becon~es N(q). 

Our rrrgumeut rrtrturally yieldti a definite value for a., But it becomes 
clear, when we consider ths particular catie of a qtaadrdtic 0, that the 
valtie w  obtained is, in the light of Theorem AZ, not the best v&e possible+ 
1!k1 ale &he&ore content to show tllrtt u is in any cue less thtbn unity. 

Additioml Note (March 13th, 1921). 

We have developd the transcendental method of 5 6 considerably 
since this ~~tryer was first communicated to the Society. 

SuylJosr: thut h > 0 and 

- wk<$> = 2 @-&jkb 

w 

Then W&=)= & r+i’ [&) ;;$~f;) fB+kds 
T’ c-b 

if c > 2. We trantiforn~ thie equation by (1) moving brrck the path of 
integration to tlw line d = -q < 0, with the a’ppropriste corr&ions for the 
residues, (2) substituting for c&s) from (6.221); and (3) integrntiug term 
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by term. !l!his process caz1 be justified if 0 = W/W’ is algebraic and k and 
q ;u*e &oven appropriately, and we obtain an expression for lV&) in the 
forti of an absolutely convergeat series. 

We then make *use of a lemma which is of some interest in itself, 
viz. : if there are constads h > I ard H’> 0 such that 

N(d = & - &- - &, +O(qa+‘), 

(5) N(v) = ‘&, - 2 - &, + o”+llP+ Qwm’ 
12wo’ 

156 



* fib &l&U!! 1WBiiMS Oh' bIOYHINTlNK Ai'PHO~tItiATfok 

Here t-k ‘* qh’ IS irrational and algebraio, and the ssriea i8 to be inter- 
preted as meaning l 

hm -c 

We mtly take this opportunity of correcting th misutatem& in our . 
commuuicution to the Ctimbricige Cougregv referred to on I). 15. It was 



CORRECTIONS 

p. 32, Line above (6.264). Read: 1, = dp. 

p. 34, last line before Additional Note. Read: Theorem A3. 

COMMENTS 

This paper was communicated to the Society at its meeting on 22 April, 1920 (see 
Proc. 19, xxiii-xxiv), 

0 1.2. The reference, in the sentence following (1.21 I), t&he triangle with vertex 
at (1,l) does not seem to be appropriate. In comparing the number of integer points 
in a region with the area, the simplest procedure is to put a square of side 1 with its 
centre at each integer point in the region. As an approximation to the number of 
points, we then get the area of the triangle 

This agrees with the main term in (1.21) except for an additive constant. 

8 3. For the proofs of the 0 results (Theorems Al, B 1, A3, B3) one could use in place 
of the transformation formula (3.24) the simpler formula obtained by counting the 
integer points horizontally instead of vertically. In the notation of the paper, this is 

s+~f+~ef(l-f) = S*+*f’+#yf’(l-f’), (1) 

where 8” = 2 (d-1-f }* 
6 g/w’ 

Thus S* takes the place of S’, defined in (3.122). But for the a results (Theorems 
A2, B2, A4, B4) it seems that this formula is not adequate. 

The preceding remark is relevant, to the tetrahedron problem, mentioned in the 
introduction. There are still two formulae similar to (1) above, but there is no 
obvious analogue of (3.24), since it is not possible to put two tetrahedra together 
to make a rectangular box, in the manner of the figure on p* 19. 

$8 5.2, 5.3. The numbers qO, ql, qz ,... are the Fibonacci numbers. The representation 
of n in the form stated after (5.34) is obtained by taking qs fo be the largest, Fibonacci 
number not exceeding n, then qsl to be the largest not exceeding P+- %, and so on. 

8 6.6. The behaviour of z {@} f  or rational 8 depends on the convention adopted for 
the vaIue of {t} when t is an integer. In the present paper the value - & is used, in 
accordance with ( 1.12). But in general a more appropriate value is 0, so that {t} 
is an odd function oft, With this convention, 2 {PO} oscillates finitely for rational 8. 

5 6. Although the analytical method of 0 6, which was developed further in 1922, 9, 
is a remarkable triumph of technique, it was not necessary for the proofs of 
Theorems A5 and B5. More precise results than these were proved elementarily in 
the second half of 1922, 9, and had in the meantime been found by Ostrowski, using 
a different elementary method, 

As regards algebraic values of 8, see the comments on 1922, 5. The effect of Roth’s 
theorem is that one can take QI arbitrarily small jn the results of Theorems A5 and BE. 
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Some problems of Diophantine approximation: 

The lattice-points of a right-angled triangle 

(Second memoir) 

By G. H. HARDY in Oxford and J. E. LITTLEWOOD in Cambridge 

1. ,lntroduction, ’ . 1 

1.1 l This memoir’ is a sequel to one published recently in the Pro- 
ceedings of the London Mathematical Society’). It contains the proofs of 
a number of theorems enunciated in an appendix to our former memoir, 
together with a considerable amount of additional matter. 

The prdblems which we consider have occupied us at intervals 
since 1912, when w’e referred to them briefly in a communication to the 
Cambridge Congre&), and indicated certain questions which we were 
then una.ble to answer. In the meantime they haire attracted the attention . 
of Herr HECKE~). and Herr OSTROWSKI~), who’ have dealt with them in 
two very beautiful memoirs published recently in this journal, and to 
whom we are indebted for this opportunity of publishing our own, 

The very remarkable analysis of’ HECKE is Mainly transcendental, 
while OSTBOWSXI’s is entirely elementary, and we use both elementary 
and transcendental methods. <Our tra.nscehdental method is entirely unlike 
HECKE’S, and little need be’said. as. regards the relations between his u 
results and ours. The relation6 of ok elementary’work to OSTROWSKI’S 

are a good deal closer. Our method, depending as it does on formulae 
like those of SYLVESTER and LERCE~), is fundamentally different, but 

. the ‘r&ults are to a considerablb extent the same. A detailed analysis 

I),& II. E.~DP and J. E. LITTLEWOOD, “Some problems of Diophantine ap- 
proximation: The lattice-points of a right-angled triangle”, Pyoc. Londolrz &zth. Hoc. (21, 

20 (1921), 15136. We refer to this memoir as I. 
3 6 H, HARDY and J. E. LITTLEWOOD, “Some problems of Diophatitine ap- 

proximation”, Proceedings of the Jifth intematiortal congrem of mathematicians, 19.12, 1, 
223-229. 

3, E. HECRE, “Ober analytische Funktionen und die Verteilung van Zahlen mod. 
Eins”, Hamburg. Math. Abh. I (X921), 54-76. We refer to this as IX 

3 A. OSTROWSKI, “Bemerkungen &rTheorie der Diophantischen Approximationen”, 
ibid., 77-98. We refer to this a3 0. 

“) see -3.1. 

1922, 9 (with J. E. Littlewood) AbhmdZunge~ a~ dem 
mhen SemiMr t&w Hamburg&when Univeraitit, 1 , 212-49. 

Mathed- 
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The lattice-points of at’ right-angled triabgte. f-f. L 213 

of the points of resemblance and difference would occupy a good deal 
of space and seems to us unnecessary, though we indicate the theorems 
which have been proved by OSTROWSHI as they occur. We should add 
one word, however, as to the relative advantages of OSTRUWSKI’S method 
and our own. In some parts of the theory the advantage ~~.OSTR~WS~‘S 
method Seems to us incontestable; in others there is little between them; 
,and in others the advantage seems to lie with ours. It seems to us 
desirable to develop the whole theory systematically from our own point 
of view; but Where OSTROWSKI’S method is clearly simpler, we content 
ourselves with an outline of our demonstrations, suppressing the algebraical 
.details of our work and condensing our argument to the limit of intelligi- 
bility. In particular we have followed this course in 3.4. 

12. All our theorems involve 4 an irrational number 8, which we 
generally suppose positive, less than 1, a.nd expressid as a simple con- 
tinued fraction 

(1.21) 

We write 

1 1 1 @=--- 
al+ae+wt-~-*~ 

(1.22) 

and denote the convergents to (1.2fj by 

Pl 1 Ps as - - - - 
Qi R’ qs -.- alh+l,’ “” 

We shall make continual use of the two lemmas which follow, 
which are trivial, but very useful, and which seem to ha& escaped 
attention. 

(1.231) 
1 

eyer+1. l l .  ep+a-l< us) 

where ths is the s-th ikp~ 0’f FIBONACC_T’S serie3 1, %, 3, 5, 8, 13, . . . . 
We deduce this from 
Lemma 2. We have 

(1.24.) 

For 

1 1 

28el.. . er-l 4 qrL Oer 2. or+ ’ 
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and so 

w-t-'Brqr-I = 0g L e , 
1 l ,  l I  

r-l 

which \proves the lemma. ( 
TO deduce Lemma I we observe that (1.24) gives 

and that, for given s, q3 is a minimum when al = Q = . l . = as = I, in 
which case gs = zcs. Taking now or for 8 we obtain the desired result. 

13 l .  We write, as usual, [x] for the integral part of X, and 

(1.31) ( > X =x - [xl, {x} = x - [x] ,- $ I 

Thus (x} is the arithmetical function denoted, by HECKE and C)STR@WSRT, 

by R(z) -+. Further we write 

(1.32) x E x-x 

1 
where X is the integer nearest to x, If x is of the form n+ 2, we take 

1 xc-. 
2 

Throughout our argument the letter A (or occasionally B, C, . I .) 
denotes a positive constantI. This constant may be absolute, or may depend 

’ upon the. parameters involved in the theorem in question; it will not 
generally be the sanze constant in successive inequalities. The O’s and o’s 
which occur involve constants implicitly. It will generally be obvious on 
what, if any, parameters these constants depend. 

We ‘shall frequentSly be concerned with conditions of the type 

(1.331) nh 1 sinn,W j > A In 2 11, 
Or 

(1.332) nhisinnWI <A (n = nj>, 

where h > 1, and the notation implies that the second inequality is satis- 
fied for an infinite sequence nl, n2, l . ., 92j of values of n. These con- 
ditions are obviously equivalent to the corresponding conditions in which 
sin n 8 n is replaced by n. Further, (1.331) and (1.332) are equivalent to 

(1.341) 
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and these again, by Lemma 2, to 

(1.351) 1 
r= 

$ 

(8 '1 8 8 r-ll)h-1 
(r 2 11, 

r l 1 l l 

(1.352) 
1 A 

7’ P(88I. l .  0 t?r-l)h-l 

CT 
= Yj). 

*  

r  

It is well-known that a# condition of the type (1.331) is satisfied by every 
algebraical 8. 

The A’s of these inequalities may be absolute or may depend on 8 
and h. If absolute in (1.331) a’nd (1.332), they are absolute in the other 
inequalities. 

2. The analytic treatment of the triangle problem. 
2.1 l In this section we continue the study of the %iangle” problem 

(Problem A of 1) by analytic methods. We denote by N(Q) the number 
of lattice-points inside the triangle whose sides are 

X =o, $4 = 0, wx+w’~ =+70, 

where w  and zu’ ase two positive numbers whose ratio 8 =$ is irrationd. 

We proved in 1 that 
1 

(2.112) 7 ’ 7 -= 7 I -- - 
- w 

I 7- 1 
20 

+j 
? 

WI [ 1 wr 
+f 1 

(2,113) (D(q) = 

(2.114) Nq) ===cIE” 8 7-f r lm 
Y lLp<-- 

- =tv 

Our problem is the study of U(q), or, since a(q) = O(l), of S(T). 
We proved in 1, (ce) that 
(2.1-2) U(9) = o(q) 

for every irrational 8, (b) that this result is the most that is universally 
true, (c) that 
(2.13) U(q) = 0 (log q) 
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when 8 has bounded quotients, (d) that there ’ are B’S, with bounde’d 

quotients, for which each of the inequalities 

I (2.14) U(q) 7 A logq, U(q) 4 - A log7 I 

is satisfied for arbitrarily large values of 8, and (e) that 

(2.15) ~ U(q) = O(q9, 

where a = a (0) < 1, whenever 8 s&i&es an inequality of the type (1.33i), 
and in particular whenever 8 is algebraic. Of these results (a)_(d) were 
proved by elementary reasoning. and @) analytically. Our immediate 
object is to prov(e more precise’ results in place of (e). 

We denote by CS (s) = Se (8, u, w, w’) the analytic function defined, 
when the ‘real part -6 of s = d + it is greater than 2,. by the series 

where a is positive and ,?gs has its principa.1 value. This function is 
a degenerate case of the “double Zeta-function” of BARNES~). Its 
principal properties, so far as they are relevant to our investigations, 
are summarised in 1, 

In this section the R’s, B’s, l . . . are in gelieral not absolute but 
functions of the parameters 8, 72, . . . . . 

2.2. Lemma 3. If h > k 2 I U& 

(2.21) G]sinn8+7A 
- t7m 

mz 
(2.22) s c 

I 
m= 1 721hi sinnB+ 

= 0 (log nz)“. 

It is plain that neither hypothesis nor conclusion is affected if 
we replace sin% 8 7t by a. We have therefore 

(2;231) nhI.lk>B9), _ T 
and, if we define h, by 
(2.232) - nhn 1 n t?I k = B, 

’ we have & < h. Consider now the sum 
2m. 

(2.224) Tm=c !- =jf u.. 
m nhlnel” ?Ja 

I) E. W. &iNES, “A memoir on the double Gamma-function”, Phil. Truws. Ray. 
Sue. (A), 196 (1901), 265-387. 

2) B is the same constant throughout this sub-section, 
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The &ms of Tm for which h, ( 12 - 1 contribute 

02 
. 
1 

i -1 mn 
= 0 (1). 

We classify the remaining t,erms as follows. We. choose a positive 
integer 7, write 

b r =h--l$-r (r=0,1,2,...,q-1) 
71 

and call a typical term lb of Tm a term of class r if fan 1. h, -L Qr +I+ If 
zc, is of class r, 

/nej”s Bi+. 
But 

[zik > Bs-~ > 2kBn-‘r 
if 

br 
(2.25) oe4G 

and then 

‘for all values of s which satisfy (2.25). Hence nb term 2cn +a corresponding 
to such a, ‘value of s is a term of class as high as r, 

The number of terms of &lass r is therefore 0 m h’ , and their . 
( 1-L) 

contribution to Tm is 

1 b ‘7- r-h+&+l= 
h 

It follows t.hat 

(2.26) T 7n = O(qmt) = O(logm), 

since we may take 7 =* [logm]. 

If now we define Y by D 5: 5 2 D, we have 

In 

u c 

1 
7n = 

1 nhlnOik 
= wu+ o(&&) 

= o(l)+0 &log$ = 
( 1 p=1 

0 (log mY, 

which is equivalent to (2.22). L 
As a corollary we have ’ 
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Lemma 4. If (2.21) is satisjed, the series 

c 
I 

&+EjsinM@ 

is cmvergent for every po,sitive E. 

The case of most importance is that in which k = 1, when (2.21) 
redubes to (1.33.1). 

2.31. We proceed to establish an analytical formula for the sqm 

The k here has no connection with that of 2.2. 
In order #to abbreviate our formlllae we adopt the following 

convention. We are often concerned with associated pairs of series, 
of the forms 2 0 (m, w, w’) and 2 @( q WI, 20); a’nd we write generally 

(2.312) X(w, w’)C @(m, w, w’) +X(w’, w)C @cm, w’, to) = 

(X(w, td)C qm, w, d))*. 

Such associated pairs of Geries have been considered by various writers, 
and in particular by LERCIEI~). We shall als’o sometimes use a similar 

notation when there is no summation. 
We recall the formulae) 

L cs, a, w, w’) 
o. sin 2mK ’ 

( ! 
I - s) n 1 

(2b313) (2 7+9-V(l- 8) = 

( 

1 
c 

- -Ygw w - aj+ +(I 

?&&=l mw’7r 
r)21ws sin7 i 

;fc 

. 

This formula is valid %&never 0 -C a ( 1~) + w’ and the two series on 
the, right are absolutely convergent. - 

2.32. Theorem 1. i!hpp~se that (1.331) is satisfied and that k > ?i - I. 

Then ’ 
(2.321) Wk (8 * V&)- 

1 
00 cos 

(2n)-k--lr(k+ I) wk 2 
i 

( 1 
2 $,I+Eea -F n 

” 
I k 1 

* 

?MW’7 

i 
+ O(Ekfl--q) b ? 

n&=1 mk%intU 

tohere 

(2,321l) V&) = &Lgk+2--P, 
p=o 

I) See, for example, M. LERCH, “Sur une s&ie analogue aux fonctions modulaires”, 
Comptes Ben&q 18 April 1904; G, H. HARDY, “On certain series of discontinuous functions 
connected with the modular functions”, Quarterly Journd (1904), 93-123; and writings 
of RIEMANN and EL J, S. SMITH there referred to. 

2) (6.221) of I. 
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w+w’-22 
2(k+l)ww’ ’ 

and q is tlze integer such that k + I c Q (: k + 2. 
I 

We suppose for the present that k>h- 2. Since k 7 0, we havel) 

(2.322) 

C-ii 

if c 7 2. We choose 6 so that 
1 

2 < I$kl, 2 kHi---$+6, and 

1 
Y-- 2-k + 6 is not. an integer. We have then 

(2.323) 
I -.-k-qul-h 
2 

- and 

(2.324) I 52(s) = 0 (I t12 
2-7 

) = ml@) 

uniformly for d > 7 2). 
We may therefore apply CAUCHY’S Theorem to the strip y ( ti ( C, 

and we obtain 

where 

p being the largest ihteger such that --JI >r. We may write 

(2.327) - u&) =2cp Ek+-, 
P =O 

where r = 
1 3 

pi-2 is the integer such that k-/-T--dLr<k+2-da 

The index of the last power in &(E) lies between 2 : ’ L-/-d ;and $Sd, 

whereas that in V&) lies between 0 (inclusive) and 1; the form of the 
two sums is otherwise the same, 

I) G. EL XARDY and M, RIESZ, “The general theory of Dirichlet’s series”, Cumb. 
ACut&. Tracts, 18 (19$5), ‘51 (Theorem 40). , & 

‘) See I, Lemmas & 8. The series which occur in (2.313) (or (6.221) of I) are 
absolutely convergent for d = 7, in virtue of (2.323) and Lemma 4; and the conclusion 
then follows from Lemma a. 
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2.33. II-I (2.325) we subditute for & (s) from the formula (2.313), valid 
since l- r >h, ;I,nd integrate t&m-by-term. This t&m-by-term integration 

, is legitimate because 

*’ 
(i 7q-l q1- 8) 

1 
- 
2q 

are convergent. We thus obtain 

(2.331) 
where 

(2.3311) JI = -? 

JP is conjugate to ,J,, J: a,md J: are obtained from J, and Ja by exchanging 

and (--uy has its principal value, real when 2c is negative. 
The function 0(u) is one of a type whose asymptotic expansions 

have been considered by various writers. We h%ve 

(2.332) 0(u) = 

say, wit’h similar formulae for the derivatives of ID@), which- may be 
written down by formal differentia,tion’). ’ 

‘) The function may be expressed in the form 
u3 fl8- 

-2 

P 

X6=0 r(k+Y+m-p) ; 

herep is the integer such that --p - I < r( --p, As regards the asymptotic expansions 
of such functions, see, for example, E. W.BBRNES, “On function,5 defined by simple 
types of. hypergeometric series”, Tram. Cmnb. Phil. SW, 20 (1906), 253-279, The 
actual result required here is easily proved in a variety of ways. 
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We denote by J1,1, . . , I the results of replacing a, in J1, . . . . by 

@I+%; by A,%. 4.. the results of replacing rl, by m3-/- @,: so that we 
have four eQuat#ions of the type , 

(2.333) ,J 1 = Jl,~+Ji,s+ 

Consider first the sums J~,I, . . . . wit.h I as second suffix. If we 
substitul-e CD, for @ in & l . , . and combine the results, we obtain, after 
a straightforward calculation, 

which is equal, by (2.313), to 

I-1) p+1 F2 c--u- 1) 
(p + I)! 

w+ I) ~]c-p-l 
r(k-p) - ’ - 

This is of the same form as the general term in (2.326), and the con- 
tribution of @I may be accounted for by replacing p, in (2.326), by ~7 j- 1. 

If we do t.his, the last index in U&) will lie between -%-t-a and 

I 
2 

and [Jk (E) may become identical with 01’ may Contain 

extra term; it is in any case of the form V&)-j- O(5k+1-q). 
There is also CB, to be considered, but a2 is of lower order than 

rPl to the extent of a fa,ctor 
1 

-, and its contribut4ion is accordingly trivial. 
mE 

We therefore obtain 

(2.334) U&)+&,I+&,I+ J:,I+&,I = Vk(E)+fW+l--q)~ 

Next we ‘consider the sums J1,a, . . . l l Substituting first @ for CD, 
we obtain, after reduction, 

I * -- 

-((2rr)-k-lr(k+1) wlc~ 

t 

cos 2wm I 
( i 

w 
pu’$ &--a -2 i kn) 

~~k+.lsin2!!!!~2 
i 

I 

1 And as m4 is of lower order than CD,, by a factor -z, its con- 

= 0 @+l--q), Thus 

168 



222 G. II. Hardy and J* E, Littlewood. . 

(2.335) Ji,z+ Jz,z+ Ji,,+ J: 2 = fl+ 0 (gk+l--), 

where 8 is the se&d, term on the ‘right of (2:321). 
Collecting’ our results from (2.331), (2.333), (2.334), and (2.335), 

we obtain the result of Theorem 1. At present, however, the theorem 
1 

is proved only when k > 12 --%, and it is necessary to extend this 

range to Ioh-1. 

2.34. Suppose then that k = h + q > h > h- -$, so that (2.321) is 

proved; and let us differentiate formally with respect to 5, and divide 
by 1~ We ha.ve’ 

1 dwk 

and 
k T  = wk-1, 

1 av, --= 
k dt 

v&-l+ o(Ek+--) = -&-i+ o(~k-4’), 

where q1 = 4 - 1 is the integer such that k L 4’5 k t I. Finally the 
same process, applied to the infinite series, yields the corresponding 
series for k- 1, a series which is, by Lemma 4, absolutely and uniformly 
convergent. It appears then that we are led back to our original 
formula, with k- 1 in place of k, and this is just what we require. 
The proof is however insufficient, since we are not entitled to differentmte 
the error term d(Ek+l--). 

There is no difficulty of principle in completing the proof, but it 
is necessary to go back to (2.331). ’ We differentiate this equation, and 
substitute for a(u) and its derivative @‘(u’> the approximations given 
by (2.332) a.nd the corresponding derived equation. The result is 
an absolutely and uniformly convergent series, and the term-by-term 
differentiation is thereby justified. JVe have then only to repeat our 
previous calculat,ions, in a slightly more complicated form, t*he formulae 
which we use being in substance the formal derivatives of those which 
we have used already. The final result is the same as before, except 
that k is replaced by k - 1, and that the result holds whenever 
k-4 =.h-l+q>h- 1. When we restore k in the place of k - 1, 
the proof of Theorem 1 is completed. 

2.4. From Theorem I we can deduce a pfoof of the equation 
numbered (2) in the appendix to our memoir 1. This equation.is not quite 
so precise as one which we shall obtain later in an elementary manner, 
but it is of some interest to show how it follows from the analytic theory. . 

Theorem 2. If (~331) is satisfied the? 

(2.41) 
for every jgositive &. 
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Suppose, in (2.321), that k is the integer such &at -k 5 h 4 FE $: 1, 
The p of Theorem 1 is now k+ 2, and 

(2.42). 
wk($) = 

- = vk(Q+m+ 0 (+) 

sa.y. If. now we suppose 0 K 8 < 1, and write generally, 

we have 

(2.43) nw#l#l= 

We consider first AS. Since 

we have 

= 0 ( 8($)“-1+‘) + O( (+rk-l+-) = 0 (8k+M--~)~ 

(2.442) _ 
Finally \ 
(2.443) ” om = pel%)+ oca”+v) = k! p(g)+ o(p+q), 

From (2.43), (2.441), (2.442), (2.443); and (2.4431) we deduce, in 
the first place, 

(2.45) 
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1 I- 
III (2.45) we take 3 = 5 h, and we obtain ’ 

(2.46) 
( ‘-+), 

W(E)< V(F) t 0 E 
Similarly we have 

(2.47) 
( I:$,.), 

w(!:+k@T(~~+O E 

I or, on replacing T+ k3 by E 
I 

(2.48) W(T) > V(r) + 0 
( l-+,,i. 
E 

Finally, from (2.46) and (2.48) we deduce 

(2.49). W@) 
IfB 

= v(g)+0 El-‘;; ! 1 . 

Attributing to a the specia.1 value w+ w’ and replacing 5 by 7, we 
obtain (2.4l)l). 

1 
2.51. We next prove a theorem which shows that the index 1 - h 

of Theorem 2 is the %orrect” one. 
Theorem 3. If h 71 and (1.332) is satisfied for U’YL infinity of values 

of n, then each of the ihequalities _ 

I- 
(2.511) u(q) >&I :, U(q)< 34q+ 

is sattifiea f0r &-bit~ily la9-ge’ valzles 0f i. 
Let f(z) be the function defined, when B(z) 7 0, by the equations 1 

e- 2 (W + #‘) 
(2.512) f(x) =~e-x~mw+~wD)=~~-xb = (l-e-““j(l 

m,n==l p--l 4 
We have 

(2.513) f(x) =1- 
w-j-w’ . 

wwv 2ww’x + 
ws+ ;;;;=f wfB + o(x), 

when x is small. 
Suppose next that 

(2.514) 
2NZi 

X E- 
d +a 1 

where $ is small ‘and positive; and vz has one of the values for which 
(1.332) is true. Then 

I I e-(w+w’)x17A, f1-egw’x1<A8, . 

. ‘) The proof of the theorem is modelled on the argument used by LANDAU, ,,Ober 
Diricblets Teiler-Problem”, Mtinchener SiWng&ticMe, 1915, 317~328.. 
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and 

I1 -49 -1/(1-e. -wx - 
I -+6)“+4e --W@Pn~ 4 AI/P+ nwzh, 

so that 

(2.515) lfWl7 A aVa2+n-2h' 

On the other hand, we have 

1 

(2,516) f(x) = zCx’p =~pj;e-xudu = xfN(u)e-“?d u, 
1 1 2 

P 0 

since N(U) is the number of Z’s which do not exceed et; or 

(2.517) 

where 

. (2.5171) 

f( ) 
1 ‘x E- 

1U W’X” 
- p& + Qw, 1 

90 
a(x) = x s lJ(t() e- x” du, 

0 

Comparing with ‘(2.513), we see that 

(2:518) @(x)+M = we+3wwy- 2iP 
12ww’ 

when ?-+O, and in particular if x = 6 and $--+ 0. 
2.52. Now suppose that GI > 0 and 

(2521) 3c (2fJ = U(u) + Bu" > 0 I) 

for all sufficiently large values of u, say for 24 2 uo. It follows from 
(2.521)? (2.5171), and (2.518) that 

say, when a-+0. On the other ha.nd, if x is given by (2.514), we have, . 
by (2.5171) and (2.521), 

00 
s -““&4lxflPe-du 

: 
(P(x) = x me = &(u)e-““du + O(l), 0 0 0 

*) B and C (unlike A) r&in the same values throughout the argument which 
foH0 WS. 
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(2.523) 

<2 2nn .--. 
WI 

C&-l-a<ACn$-l--u 

by (2.522). Comparing (2.515), (2.517) and (2.523), we see that 

A 
ACWF-~-~~ C%“(P’+ n-2h) 7 Adza. dJ/6”+%-2h f + 

Taking in pkticulaSr 6 = n--$ we ha,ve 

(2.524) C7AnU--a) h-1 0 

1 1 
Prom (2.524) it follows that a > 1 -h; and if we ta,ke ti = 1 -7 then 

C?A or B .>A. Unless these conditions are satisfied, (2.521) cannot be . 
true for all sufficiently la.rge values of 14; and therefore the second of 
the inequalities (2,511) must be true for arbitrarily large values of 7 
and some value of B. The first inequality cali naturally be proved in 

.’ ‘a similar manner. 
We have supposed he> 1,. so that the critical vake of a is positive. 

In this case a less precise form of (2.X8), . vG, m(z) = 0 (z-a), would 
have been sufficient .for our aqpment. When h = 1, the critical value 
of a is ‘zero. In this case the value of N becomes relevant to the 
argument. We must take x(u) = U(u) +- M+ B,, and the final conclusion _ 
is that B >A, i. e, that each of 

U(q) =-M+A, u(q)< M-A 

is true for nrtitmrily lcwge valuesmmof q. The conclusion is not entirely 
trivial, but it is certainly much less interesting, and is nd longer in any 
sense a best possible result; 

2.61. We proceed next to the proof of the exact formula for X(q) 
enunciated at the end of. our former memoi?). ‘. This As, the analogue of 
VORONOY’s formula for the number of lattice-points _ in the aTea x >O, 
p-0, qls q* -. 

It is now necessary to consider the exact definition of N(q) when 7 
is of the form p 21; -f-’ qtu’ and there is a lattice-point on the boundary 
of the triangle, We agree that such a pdint is to be counted as one-half. 

I) I, p, 35, formula (5), 
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Lemma 5. If ;1 is positive and Y real, then the integral 

(2.611) 
1 

sinvx dX 

(cash INA - cus wx) (cash w’;c L cos w’x) x 
0 l 

is convergent; and it may be warhated by expanding the subj’ect of integration . . . 
as a double power-series in emwA and e-“-5 and integrating’ terv-by-term. 

The formal result of this process is 

(2.612) 4 
00 

CK) 

sinh WA sinh- w’;t p,q,pEp e c 
--Rpw+q?u’l 

J 

’ sinvx cospwx cosqw’x 
x 

dX t 
0 

1 
where Ed -= - (p = 0), &p = 

2 
1 (lp 70). There is at most one term fur 

which ~&pw-cpw’= -0. This term, if it exists, we remove from the 
double series and consider independently, and we denote the modified series 

’ by21 Since term-by-term integration is certainly permissible over any 
finite range (0, X), it is sufficient fro show that 

00 

(2.6.13) c 
I 
wqe 

--1(pw+qw’~ 
s 
X .-. , 

is convergent and. tends to zero when X -+ 00; and this will be so if 

(2.614) 2 
F 

d= 
;-Rtpw+qw’) 

&P % e I ’ singz 
- ax < ,&, 5. 

-- 
X 

where 
(2.615) e = Y-cpw&qwI, . 

is less than E for every positive E and sticiently large values of x, 
We write 

(2.616) ,’ 

say, tih&e H*70. Since : 

we have. ‘. _ 
. I 1 G 

. . , 

(2.617) 
A Od 014 - 
H c 

A '1 
---RPw+qw < - < -& e 

P&=-o H l 2 

if H. is sufficientb large. It is the&fore sufficient for our purpose to 
prove that &en H is jixed we can so choose & that 
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(2,618) AC 
F 1 
e -~@~~+qw’) < -& 

2 

the summation &ending ow those values of p and q fey which 

(2.619) 

2.62. We divide the terms in question into four blocks corresponding 
to the four chdices of sign, and esta.blish a corresponding conclusion 

1 1 
for each of them, with 8 E in place of 2~. If the signs attached to p 

and Q are the same, there is nothing to prove; for, as Y is not of the 
form pw+pw’ or -pw-qw’, there is no term which satisfies (2.619) 
when X is sufficiently la,rge. It is therefore sufficient to cbnsider‘ the 
case in which, for example, e = Y -pw + qw’. But the inequalities 

n ‘r 
H H 

--<V-pw+pw’~x, 
X 

where H is tied, are only possible when p 7 F, Q 7 F, where g+ 00 
when %+ 00, and the number of values of q, corresponding to a given p, 
is 1 at most. Hence the. sum extended over such values of p and p 
dues not exceed 

c e-AP 4 A@-“$ 
P-5 

which tends to zero when X+ 06; This establishes our conclusion and 
completes the proof of the lemma. 

2.63. Lemma 6i If 3, is positive and [ real, then the integds 
I 

(2.631) 
,CiX 

1 

dX 

1 1 
sinyzqxsinsw’x x .’ 

in which the ‘puth of integration is a tine parallel to _ the real axis, are 
cokxrgent; usd tlkr v&&s may be 4&2.&&d by expanding the cosecants. 
in &Mr~ of CwA and esw’$ and integrating term by term. 5 

The series ‘Lo be used are different in the two integrals; for I L 

1 , 
-’ 1 -- ioe ?C 

* p++ ( ) wdx 
=- 2i&P++),yie-(P++A . 

sib-;;- w  x 0 

or 
1 OD 

22 
-**++ wix 

(  > 

l 

= 

9 

sin 1 

2 
147x Oe 0 

, . . 
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according as x = E Jr ik or x = 5 - ik Apart from this, the argument 
is the same for the two integrals, and it will be sufficient to consider 
the second. 

Consider first the analogous integral in whichI is replaced by 
X 

1 1 --- 
x+ir 

The method of evaluation contempl&ted is certainly 

lzgititiate for tlzis integr& since . - 
cm 

is convergeit. 
1 1 : 

We may therefore replace, - by r+z and then I x 

Next I 
eCi E sin I 

= 4e 
CI CL 

zw(5+in)sin 2 -1,1(5+iq 
3 

,a x 

sin 
1 1 
zwzsin+x 2.r(coshwA-coswQ(coshw’rZ-cosw%)’ 

Working out the imaginary part of the numerator, we find that it is 

a sum of constant multiples of. terms of the type sin 

Thus Lemma 6 is reduced to Lemma 5. 
2.64. We- define a sequence (Bj) as a sequence of values Rj of A! which 

tends to infinity. and all of whose members differ, by more t.han A, from 
2m76 

any of the numbers ---, 
2n7c 

----Cm, n = 0, 1, 2, I 4 .), 
\ WI 

Theorem 4. If y>w + wc <so that N(q) PO), then 

The sign of sumtiation is to be inttipreted us fullows: we form the sum 
WR 

of all those terms of the two msociated ,swies for which m< -- 
w’R 

n < - , 27G ’ 2rr 

(2.642) J(Rj) = 93 
I 

( f 

Cia:- e 1 
27G I I 

siny wx sin -gw!s 

1 

= ‘U 

cix 

2rr3 e -1 dX 1 sin 2 wx sin 1 W’x x ’ 2 1: ,A 
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the contour of integration being the rectangle (-ii, Rj-ii, BJ+ i R, in), 
where A7 0, except that the origin is excluded by a small semi-circle 
of radius e, described about it as centre. We make ,j -+ 00, e -+ 0. 

The integrals along the imaginary axis vanish identically. The 
integral along the side parallel to the imaginary axis tends to zero, That 
along the semi-circle tends to the limit 

E 2 

The integrals along the sides parallel to the real axis also tend to limits, 
by Lctnma 6. It follows that the sum of the real part,s of the residues 
of the Integrand, at poles within the contour, tends to a limit 8; and 
we have 

(2,643) 

say, 
.We evalua.te CT, by integra,tion term-by-term, which is shown to be 

legitimate by Lemma 6; and we obtain 

(2.644) 

where 

00 
J 1 Z c A4 41 

21,4=-1 

--iR+w 

(2.6441) ‘(p- 1) e- (JZ-+u+zo’))iz dx 
X 

and $2 = p w  + QZU’. We may add to j$, 4 the corresponding integral 
along the line (0, -in), since this vanishes identically, and we may then 
deform the path of integration into the real axis. This gives 

00 
2 

h,4= -y sin (q -G)X+sin 

0 

which is zero if JJ 7 7 and - 2. if 2 4 + Thus we obtain’ from (2.644) 

(2.645) J 1=- 221 = -2 N(q). 
h 

This equation still holds when Q is of the form 23 w  -/- qzu’, if we adopt 
the convention’ stated in 2.61. 

Similarly we obtain a series for Jg, in which the typical term 
involves the integral 
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sin(g + S2-w-&)x-sin 0 I 

0 

Thus 

(2.646) J e= 7 0 

as is evident a priori, since the value of the integral is independent of 
;1 and tends to 0 when 1 4 .=. 

From (2.643), (2.645), and (2.646) we deduce 

A straightforward calculation shows that 

(2,648) S= 
1 

4 
- * 
n 

COS2mx pu’q-+wq 1 
mUllIt 

msin- 
W 

(-1)” * 

1 WtW’R l 

msiny 

ButI) 

Thus we obtain the result of the tdeorem. 

3. The sum s(n, 0). . - , 
3.1. In’ this section we use elementary methods. We are conkerned 

primarily with what, in our former membir, we called Problem B, that 
of the order of magnitude of the sum 

(3.11) s(n, 0) =ccm 01, 
m =l 

though sometimes we return to Problem A. I 
Lemma 7. If 0 is positive and i~dhai, x 2 0, y 2 0 x, and 

f (0) = g(0) = 0, then 

I) This is easily proved directly by contour integration. See the second memoir 
quoted in 2.31. 
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The sum with respect to m is 

%h) C (g(m)-gh-W--f([yl> 2 (g(m)-gtm-1)) n--O m@=n rm &=ryL m>x 

=nf&@, (9 ([+I) -g ([+I)) --f&d) (g ([qq-,([,I)) 

and the fmt term here is 

which gives ‘the result. 
In (3.12) take f(u) = g&J E u, and write 

I (3.13) a, = %a@) = {?M), .A= Me) = a?& (+) = (-q, 

(3.14) p = [x], Y = [y] 7 [ex], 6 = e,-,= @[XI--[0x]. 
We obtain 

(3.15) ’ $ m+$[;] = P, 

or, on ,exp&sing [m O] and $ in terms of a, and ,&, and redutiing, [ I 

(3,16) .’ . &+& & yp. 
1 1 

. Lemma 8. If n, n,, n: are positive or zero integers such that 

(3.17) * 

. . 

928 =n,+a*=n;+e, OOWl, -l<e<O, 
thm * 

j3.18) . s(n,e)+s(*l, &)= $-+;-, 

(3;19) 
e (1 -4 

s(n,e)+s(n;,$J= + 2e - y . .’ [ 1 
The first of these formulae is the special form of (3.16) obtained 

by supposing that x is an integer ~2. The second is a simple variant. 
Since. $ = .ti& 1, the left hand sides of (3.18) a,nd (3.19) differ only by 
{n: o,}, a.nd (3.19) follows’ from (3.18) by simple algebra. 

The formula (3.18) is that which, in our former memoir, we attributed’ 
-to LERCH’). Herr Os~~oywu has pointed out td us that it had (in substance 

l) See; I, -p.-20. 
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at any rate) hen found before by SYLVESTER~). SYLVESTER’S formula 
is indeed ’ equivalent to the more general formulae (3:15) and (3.16). 
General formulae of the type (3.12) appear to 0riginat.e with DIRICHLET, 
and the actual formula (3.12) was given, in the spe$al case in which x 
is an +integ.er, by HACK@. 

With these formulae should be associated the formula (3.24) of our 
memoir I. 

3.2. Theorem 5. IJ” 8 satisfzes (1.331), and h 7 1, thm 

(3.21) 
1 -- 

s(n, 0) = 

d 
2 h l 

1 

This theorem is due to OSTROWSKP). In the less precise form in 

which l- 
1 

x is replaced by 1- h I, ‘t’ E, 1 1s included in Theorem2, which 

was enunciated without proof in our memoir 1 4).- The reading of 
OSTROWSKI’S memoir suggested, to us the following theorem, in which 
Theorem 5 is included5). 

Theorem 6. If -8 satkfies (1.331), und h7 I, then 

(3.22) = 0 I 3l- 
1 
x 1 . 

This theorem includes both Theorem 5 and Theorem 2. It is 
easily proved by a combination of Lemma 2 with formulae taken from 1. 

If (1.331) is true, (1.341) is also true. As in 1, we choose G+- 
so that 

(3.23) b $801 l l .  l tip- l@=l~E8&.*.*@r-1, 

where 5 = 4 
WI’ 

We have then6) 

(3.24) U(q) = 0 

I) 3. J. SYLVESTER, "Sur la fonction E(X)", Comptes Rendus, 50 (1860), 732~734 
(CoEZected math. papers, 2, 179480). See also pp. 176, 177, 179 of the same volume of 
the collected papers. 

“) ,,Uber Summen von grb8ten Ganzen”, Acta Mathemntiw, IO (1887), I-52. See 
also J. W. L. GLAISHER, “On certain transformations of Lejeune-Dirichlet’s in the theory 
of numbers, and similar theorems”, Quarterly Journal, 43 (1912), 123-142. 

3, 2. ca p. 82. 
4, 2, c. p. 35, equation (2). 
s ) Generally, an “0” theorem relating to Problem B is included in the corresponding 

theorem relating to Problem A, as is explained in 1, An W” theorem, that is to say, 
a theorem which, like Theorem 3, tends in the opposite direction, is on the other hand 
more difficult than the corresponding theorem concerning Problem A. 

“) p. 22, equation (4.151). 
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‘Write now 
(3.25) 08 1 1 I I &--I = E-j, 

where 0 dj 5 1. Then, by (1.351), E-(h-l)j < A&, and so 

It follows that j’ Q-, and 

(3.26) s’oe 1 l l ‘I @r - - r  

Again, _ if 1 ( s.( T, we have 

by (3.23). Using (1.351), we obtain 

From (3.27) it follows that 

(3.28) 
1 1 I- -- 

&-1 
+ 

or-2 
+ 

+ ” 
++<A$ i l+s:_i ( +(HY-Z&-If 

<-A$ - -  “22 100 

k=O 

by Lemma 1. Finally, from (3.24), (3.26), and (3.28) the theorem follows. 
The constants of the argument are not absolute: the theorem is 

not true uniformly in h. 

3.31. Theorem 7. If h7 1 a& (1.332) is tme,, thm 

(3.311) ls(m,e>l 3-A 
1 

h 

for an inJ%aity uf values of n. ’ 
It should be observed that this theorem ha.s different interpretations, 

according as the A’s of (1.332) and (3.311) depend upon 8 and h or are 
absolute constants. It is true on either interpretation, but: is a little 
harder to prove on the second. 

Taking the second interpretation, we may restate what we have 
to prove as fdllows:-If h> 1 and 

(3,3121) limd+inn876/ SB . 
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then 

(3.3122) ~s(n,e)~ r.Cnl?, _ * 

where- C dqpncls only on B. In what follows R’s denote absolute 
constants; ‘C’s constants dependiw only on B; the O’s are absolute. 

Let E be the upper bound of the numbers z for which 

(3.313) +imnzIsinn07rI (B, 

Clearly we have Hz h. We proceed to show that there exists 
an. h 2 h such that 
(3.3141) lim nhi 1 sin 92 8 7z I( B 
and 

(3.3142) lim(8 @I . . a0 Bn- #++&+ .  l l ++*=o 

n-1 

whep n + =. We must distinguish two cases. 
Case (iJ: H > 2. In this case we have only to take . + 

h i= Max (h, 2). 

For, since (3.313) holds both when x = h and when x.= 2 < H,i (3.3141) 
is satisfied. Also 

qee,....e,-1) ( 1 1 1 
C -r+-+ L... +- 

0 01 * b-1 1 
4Ane-An = o(1). 

Case (ii): H ( 2. We begin the discussion of this case by showing 
that numbers hl and HI exist for which 

(3.316) K I = (hl-7l)(~~-l)-(H~~~)>o, 

(3.317) .l~md+in128nI SB, 

(3.318) lim#+inn@rI = &, 

The last of these is an immediate consequence-of H< HI, and we need 
only consider the first three, If h = IT we choose Ii, = Jz, and & 
greater than H by so little th&t (3.316) is satisfied. If h < ;K we - 
choose hl and I& on either side of H, and differing from it by SO little 
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&at h(h, and (3.316) is satisfied. It is clear that (3&31?), or (3*3141), 
is satided in &her case. 

3,32, We denote by K’s positive constants depending only on B, h, 
and Hr. It follows ‘from (1.352) and (3,317) that 

(3.321) 

I 
for an infinity of values of Y; and from (1.(351) and‘(3.318) that 

(3.322) . 
1 K 

-< I 
e n (0 0 1 L l 0 On-1 

)H,Ili ' 

for all values of n. Hence, observing that h1 ( 2, and using Lemma 1, 
we have 
(3.323) 

(0 0 la l .  0 n-l)fbi- l 

or 

-<~e-“w-r) fee1 ’ ‘e’ erP-f (0 p(n-ml), 

r  

(3.324) 
(0 8 1. l .  

&pi-i (00 1 . . . 0 rgl-l 2-h 
-z 

) (00 _ l..J%-lF 
-I-(I&-I)(%-hd 

& or 

From (3.323) and (3.324) it follows that 

which is (3.3142). This completes the discussion of case (ii). 
3.33. It is now not difficult to prove Theorem 7. We suppose v 

selected so that (3.321) is true, and we write 

(3.332) n < 88 
1 

” 8 
.  .  l Y- 1 

by (3.321), or 

(3.333) 

On the other hand we have, by (3.19)l), 

l) We have nr+ 1 = n&+-g, where O<,q< 1. It is therefore the second of the 
transformation formulae (3.18) and (3.19) to which we appeal. 
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for 05~4~; and so 

s(n,8) = (-1)ys(12y,~y>+o 
i 
++++...++), 

1 Y- 1 

Is(n,e)l7~ls(ll,,H,)l--8(~+~+ *+q. I Y- 1 

But 

and so 

(3.334) .I,(~,s)l,~-A(~+~+...+~)* 
Y 1 Y- 1 

,The ratio of the second term on the right to the first is less than 

K (WI . . . O,-,)hl-L 

by (3.32!), and, this tends to zero as Y -+ 00, by (3.3142). Hence 

-- 
ls(0,m)I >+al-$,clll k, 

Y 

3.34. It will be useful to observe that the ~2 of our argument satisfies 
inequalities 
(3.341) Acl,+l< Pi4 < 4,+lL Qlv-+-I 

when v is large. The second and third.of these are immediate consequences 
of (3.331), (3.332), and Lemma 2. To prove the first we observe that 

A K 1 (h-11)v 
n,>n,>--7 

0, 
I O @  1 l l .  e,-Jh’-l 

>KZ2 7Y (Op<Y) 

for all sufficiently la.rge values of Y. Hence 

%$I I7 %q-1 
T&7----- 

& 
--(l-&)>~(l-~)~ 

0r 
and so 
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3.41 I The proofs of our next two theorems are the most difficult in 
the memoir. The results were enunciated without proof in our former 
memo?), and discovered and proved independently by OSTROWSKI~), I 

We give a proof here based on the formulae (3.18) and (3.19), 
We have abbreviated this proof in every possible w8y, and present it- 
almost in the form of a sketch; for we recognise hhat the quite different 
proof of OSTR~WSKI is simpler. It is indeed here that OSTROWSKI~ method . 
shows to the great&t relative advantage. At the same time our proof 
seems to us interesting in itself, and it is essential, if we are to develop 
the theory systematically from our own point of view, that this crucial 
theorem should appear in its proper place. 

Theorem 8. There is a positive A such that 

(3.411) ’ (s(n, e)l > Alogn 

fuY every irrational 0 and an infinity of values of n. 
Theorem 9. There is a B = B(K) such that each of the inequalities 

(3.412) s(n,@>Blogn, s(n,8)<--Blogn 

is true for every 0 for which an =L K and for an in$mity of values of n. 
In proving Theorem 8, we may suppose tha.t 8 satisfies (1.331) 

for some h: we may take, for example h = 2, in which case 

(3.413) 

For, if the condition is not satisfied for h = 2, we have, by Theorem 7, 

IS@, $)I 7,4 I/n> Alogn 

for an infinity of values n”). 
3.42. Let 

(3.421) a, = 1 (c&-=3), a, = z 

(3.423) y1 = - d, = $, 
6 

j/B = cf, = - $t 
6 

1 
y3 = - a, = -2, 

‘) p* 36. We raised the question which they answer in our note of 1912. 
2, O., pp. 85-92. 
3, One of the inherent advantages of OSTROWSKI’S method is that it enables him 

to avoid making this distinction. 
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with corresponding equations in which every stix is increased by 
4, 8, 12, . I . . 

Further, let m be a large positive integer, and 

(3.425) c4m+2 = &m+2(1 -y4m+d, ik--I =’ ---%-&O<‘rcr4m + 8, I x. = 

(3.426) N,8, = x++4+5, (09~4m+2), *I 

(3.427) ,N47n+3 = 0, 

it being understood that’ a zero suffix may always be omitted, so that, 

em g*, Yo = y. The C’s .are defined by (3.425), and the equations (3.426) 
and (3.42-7) then define Ji:,+z, A?d,+l, .  l .  N 0 = N in turn. It is 
,not bbvious from the definitions that the N’s ire integers, but it follows . 

immediately from them that lV&+2 = 1. If now Nr is an integer, and 
we consider congruences to modulus 1, we have 

&&--- d 
)I 

r-ST 
N T 

-- r- 
0 

d 
r-l 

5 r 

- Nr-A--l-4-r-L-l d ’ 

8 1 
- r- r = 5 N r-19 

r- 

by (3.427) and (3.426). It follows by induction that eveky NV is integral, 
We write 

(3.428) * sr = s(N,, 6,). 

3.43. We use the following properties of the numbers y, 6, c, AR- 

(3.431) O<Y~Yl(Y6Y8<1, 

(3.432) Y8 74 

(3.433) l-yi>Aa4--al (OG<3), 
014 

E = , 4 

(3.434) 

(with similar results in which every suffix is in&eked by 4, 8, 12, . . .), 

(3.435) . + lcrl <l-yy, (o(:r(4m+2), 
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(3.437) NV21 (0954m+2), 

(3.438) N,+= (m-+ 4, 

(3.439) 
N-L 08 

24mS2 

1 l .  .  04mt1' 

Of these results, (3.431), (3.432), (3.433) and (3.434) follow from Lemma 1 
a,nd the definitions of the y’s; (3,435) is obvious from the definitions 
when r = 4 m + 2, and is easily proved generally by induction; and 
(3.436) .is an immediate consequence of (3,435). 

The results (3.437) and (3.438) follow at once from (3,426) and 
(3.436):-we find in fact that Nr-l = > NY, and that the sign if equality 
iS impossible if r is even, Finally, (3.426) now gives N,<*2N,+l, which 
Groves (3.439). 

3.44. Lemma 9. If 

(3.442) ut = U4t -U4t-t l+u4t+2 -u4t+s -I- 2a4t+4, 

then 
m-1 

(3.443) .2sb, 81 = 2 ut+ ZCqw-U4m+l-+ O(l). ’ 
t-0 

Here, and in the arguments which follow, the O’s and R’s are absolute. 
Let yr = (Nr8,) = (NT+1 + a,$- &). Then, by (3.426) and (3.436), 

we .have 
!m = a,*+ c2r, y2r+-I = 1+ 82+x+ Lr+1* 

l3y (3.18) 

(3.4441) 
I <(a + 5)(1---a--5) 

-2(s+s,) ==a+L-- e 

d’ d(i-a). S- 5 = u+o(g) 
0 ‘8 +O( 1 

1 t 

. and by (3.19) m 
(3.4442) 
a(s,+Sg)=~*+951~ @~+~~~y~--~J if, + 51 _+T = u1+ OGd, 

since 

[ -q+] =I,%, +o($ = O(CB)* 

1 

Similarly we find 
(3.4443) _ 2 (%I +‘sQ) = u%+o(b), ’ 

(3.4444 2h+d = us-2”a-t O(L). . 
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From (3.4441)-(3.4444) it follows that 

(3.445) 2(s 0 - d = uo + OK*)* 

We have similar equations in which every sugx is increased by 4, 8, . , , . 
Adding them, and using (3.425) and Lemma 1, we obtain 

(3.446) 

We have also 

2( c co -s47d =3iJi + O(l). 
0 

(3.447) w34 m -s4mf2) = Uglln--U4pn+r+O(549n+2), 

and (3.443) follows from (3.446) and (3.447), since ~4 nt+2 = 0( 1) and 
54m+2 = O(1). 

3.45. Lemma 10. ‘We have 

m-1 

(3.451) s(N,@7- A + Jyh4t+4 -~4t+d + &94t+2. 
t-o t=0 

An elementary reduction shows that 

(3,452) Ut = 2(y4t-y4t+4) + ~(1-~4tHat+l)o-Yati-1) 

1 
t- y@4t+2Y4t+a(l 

1 
--4t+1@4t+2Y4t+9) + 2 ~4t+4U-Y4t+d 

7 w4t- y4t+4)+A~4t+2-t.-A(a4tf41 a4t+4), 

by Lemma 1, (3,423), (3.432), and (3.433). Also 

(3.453) Upm-Uqtrp-I= 00+0(~)+0($=)=0(1). 

The result follows from (3.452) and (3.453). 
3.46. Theorems 8 and 9 _ follow easily from Lemma 10. 
The number N is a function iV(m, 0) df m and 8 alone. We write 

(3.461) 
By Lemma 10, 

N - = j&t+) z (i = 0, 1, 2, 3). 

(3.462) 
f=O r-l 

If a,> 4, ar--aa,rAu.,r 
A A 

= -; and if arc 3, 8,-l 78m Hence 8 E 
r--l r-1 
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(3.462) involves 

(3.463) 
i=o 

where 

(3.4631) %! 
24’??2$2 

= 001. l .  04m+1 ’ 

If now Nis the greataest of N, N1, NS, A$, we have, by (3.439) and (3.413), 

Hence, if s (K, s> is tha 
greatest, we have 

one of the sums s(A& &) whose modulus is 

- 
>Alog%>~4logN>Abgn; 

and G -+ 00. Theorem 8 is therefore true for one of the three nugbers 
8,8,, &, OS and therefore, by the fundament.al formula (3.18), it is true for 8. 

The deduction of Theorem 9 is more immediate. In this case 8,7 B I), 

and so 
m-l 

s(N,0)7- . A+ ACht+2 7 Bm, 
0 

while, by (3.439), N< B4m+2. It follows that 

s(N,@)7BlogN, 

which is one of the desired inequalities. The formula (3.18) then shows 
at once that 

s (N’? 0):~ -B 1ogN’ 

for arbitrarily -large v&es of 2~“. 
It is not possible, in the general case, to prove two-sided inequalities 

of’ the type-s 7 A logn? 4~ -A logn. Herr OSTROWSKI has gone furthel 
in this direction; he has shown that s may in fact be bounded on one 
side, and has, investigated- the conditions under which this is possible”). 
We have xot attempted to apply our own method to this problem, as 
we had not considered it before the publication of O~TR~WXKI’S memoir, 
and it is dear that a proof on these lines could not be SO simple as his. 

I) B denotes throughout a positive number depending only on K. 
2, The question ia ieft open in 0. (S. 92’. 
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3.51. We return for a moment to the t#riangle problem. In this problem 
. the analogue of Theorem 9 holds without restriction on 8. To prove 

this we require the lemma which follows, which is of course included 
in OSTROWSKI% work, where it occupies a ‘more central position. .* 

.hLemma 11. We ?~UW 

(3.511) s (q,, 0) = O(l)* 

Pu P,,l P,,, 
It is evident that, if-, -, -, l l l are typical convergents to 

Qu Ql h Q 2 y, 
8, &, OS, . . ., we have ’ 

. 
/ 

Pu = Qu-l,l? P,-1,x = Qv-2,2t ’ l ’ l 

If .now we take n = qv in (3.18) or (3.19), we have sl = p, or rzi = pv, 

while d or e, whichever is relevant, is’ 0 

- 
s(Qy, ++zv-l,l, 0) 01) = 0 ( 1 1 f Qv+lB 

&-l,l, 81)+qP,-2,2J 09) = 3) 0 1 9 Q 

Y, 

and so on, Consequently 

1 
( ’ 

1 
&u) = 0 y----$+- 

Q r ,  181 

+ 
1 

.  I  l l + 

= o(el;b I b, 

q1,v 0, 1 * 

~,+e,....e,+....+e,+l~=.o(l), 

by Lemma 1. 
3.52. Theorem 10. There -is us A such that each of the imqualities 

is sati+$ed for eve&y 8 and ahitrarily, large values of Q. 
It is sufficient’) to prove that ’ 

for arbitrarily large values of 7, together with nn analogous inequality 
involving - A1o.g ,q. By a change in 7, ef ,magnitude .O (1), we ’ can 
make f’ anything we please between 0 and 16): It is therefore enough . 

‘) I, p. 18. 
2) I, p. 17. ” . 
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to etitablish . the existence of a g k g(n) such that 0 (g < 1 and ’ 

(3.523) &(n) =2{p e-g} rAlog72 
1 

for arbitrarily large values of n, with a corresponding-result for -Alog%. ’ 
I We suppose’ first that (1.331) is s&is&d for some particulak h, 

say h= 2. Then . 
(3.524) logqY+ls Alog.p,. 

There are, by Theorem 8, large. values of n for which .c& of the 
inequalities 

N ’ a 

C{p e} > Alogn, C(r 0) 4 -AJogIn 
1 1 

is true, say the first. . Then (3.523) is true, with g = 0, for such vglues 
of n. Let N be one of these values, as determined in 3.42, -and let 

(3.525) 

then, by Lemma 11, 

(3.526) 

%+I %+I N 
{pe} =z--Cc-AlogN, 

1 1 

Qv+l -N 

?{~~+(N8)‘3+AlogN. 

If now p is the least positive integer for which 

04j =pe-(bTe)41 
and 
(3.527) n = qv+1--w-P, - 

A 
then p < 8- and ’ _ 

(3.528) &e-g} q:e.+(Ne)j+ 0(+4logN, 

if N is large enot&h. But 

r by (3.525) and (3.624), and SO * 

‘2{$-g} < -Albgn 
1 

for an itinity of values of ’ 92. 
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3.53. This proves the theorem when (1.331) is sat&fied for 12 = 2. 

When it is not satisfied, much more is true ;. for then (1.332) is satisfied 
for I2 = 2, and in this case, by Theorem 3, we have 

(3.531) N(q) 7 A-VT, N(T) < -A-G, 

each for arbitrarily large values of 7. 
The proof of Theorem 3, given in 2.5, was trans 

is worth while to observe that it may ‘also be proved 
like that of 3.5% We have only to suppose that N 
so that (say] 

N a 1 

cendent al; and it 
by an argument 

is the n of 3.3 

,L - - 

&e)r AN k 

Arguing’ ‘just as in (3.52), and making use of (3.341), we establish the 
existence of an infinity of values of YZ for ‘which 

n I -c 

z{po-g} -L --Ail h, 
1 

and the theorem then follows in the same way. 

The Cesikro l’Bl8WIS of -the S8ri8S&e). 

3,61. A good deal of additional light is thrown on the behaviour 
of s(n, 0) by the study of the corresponding CesBiro mean 

(3.611.) “(X, e) = - 2(x-m){m 0). 
1 
x m--l 

The study of c(x, 6) leads us naturally to consider also the sum 

(3.612) c t(x,e)=~ ({w+&). 
m=l 

Lemma 12. We hiw, in the nut&n of 3J, 

(3.613) 

where 

(3.614) 

If in (3.12) we take f(u) = us, g(u) = u, express the summa& 
in terms of am and b,, and reduce, we obtain 
(3.615) 
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where P is a polynomial whose coefAcients are absolute cons&s. If on 
the other hand we take f(?l) = U, g(.zt) = u”, we obtain a similar formula 

1 
in which x, y; 8, e; anz, & are interchanged. When we multiply this 

by 8, and subtract from (3.615), the terms in & am and zn& disappear; 
and when finally we substitute for& +z& from (3.16), we obtain 
the result of the lemma. 

\ 

3.62. We say that 8 belongs to class r(H) 3f 

(3,621) 

The convergence of the series is equivalent to that of the series 

c w-1 
4,”  

l 

Theorem 11. If 8 is of class r(H) theiz 

(3.622) t (x, 0) = CqH). 
Write - 

(3.623) xl = OX, x2 = o~x~,, , , , ah---& = a,,, 

By (3.613), we have 

Write zl, O1 for x, 8, and multiply by 8; 3, Oti for x, 8 and multiply by 8 &; 
and so on until the second sum disappea.rs. Adding the resulting equations, 
and using (3,621), we obtain the result’). 

3.63. Lemma 13. If e b&ngs to CEW r(H), thm 

(3,631) 

where 

(3.632) 

We have, from (3,611) and (3.615), 

2 y (@ @, 0) + a (y, 6,) = 4 +cz,-n(~~~+e~~)-~(~~--~). 
1 1 

The last term is 0 (H), by Theorem 11, We write p e+ O(1) for y, sub- 
stitute for Ca,+z& f - rom (3.16), and divide by 2~; and a simple 
calculation gives the result. 

3.64; We say that 8 belongs to class C(K) if an< K, where K >2. 
In this case all of 8, &, &,- . . . belong to a class r(H) for which H-C AK. 

I) This is fhe revised form of the theorem st&ed incorrectly on p. 229 of our 
Cambridge. commnication, and noted a8 incorrect on p. 36 of 1. 
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Lemma 14. If 8 is of clnss C(K), and Y = Y (x) is de&ted by 

(3,641) 
then 

(3.642.) e, 0) =‘j$-l) c (0,) + 0 (K”). 
r=O 

We have, by repeated use of Lemma 13, , 
r) 

v-l 
(3.643) 8(X, e) = (-vd% 6,) +C(--l)‘cw r=O 

+0 
H I - - 

( ( x 0 
+ &+*..f ()* l - 

1 ~-8,-, 1) 
1 1 -- +O( ( .x e2 

+ &+...+88 

1 

I . . .  

&p-’ l 

Y-2 v-1 0 
1 

But, since a,< K, we have 7 = 0 (K), and the second line of (3.6’43) is 
r 

0 K 
80p l .  8 , - ,x  

(l+8,~1+o,~,o,~, = 0 (K”), 

line of (3.643) is 0 (A?). by (3.641) and Lemma 1. Similarly the third 
Finally 

a,, 0,) = w,> = 0 
X,+2 

8 * 
v v+1 

whence the result. 

.) = O(P), 

3.65. Theorem 12. There are 8’s of class C(KJ for which 

(3.651) 
and ot?aers for which 
(3.652) 

4x, 0) = O(l), 

a(x, 0) - Llogx, 

AK AK 
where L>-- or L<---. 

1ogK 1ogK 
(i) If 

1 I (j------L--- 
1+ 1+... 

then or = 8 for every r, and (3.651) follows directly from (3,642). 
(ii) If k = [K] 2 2 and 

that so 

1 1 1 1 
(g=---- 

k+ I+ k+ l+...’ 

e+ 1 1 -- 
8 

$I---- 
4 

= k-1, 
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t&n it follows from (3.642) that 

(3.653) a@, 0) = (k-l)&] + O(K') - $(k-1)~ 

Also 1 [ 1 2 
logx =&I& + O(logK),=~Iog ;zr;r+I 

r-o 8, 
+ mgm 

=([+] ,l)log-++o(l,K&g R+f+-;-k* 

Thus we obtain (3.652) with 

L 
k-4 AK E- 

log$ (k + 2 + I/M) 
’ 1ogK’ 

If we exchange 8 and &, we obtain an example in which L has the 
opposite sign. 

4. Conclusion, 
4.1. The proof of Lemma 13 indicates clearly that, if we were to 

attempt the construction of a COW&& theory-of the series&? it would be 

necessary to construct at the same time a theory of the series2 (a:- &)* 

A little further investigation-shows that. we must also consider the series 
.l A. b 12 %( \ 4 a&- ad, *,a I 1 the nth term of the pth series being subst a.ntially 

1 
the PthB&noullian function of a,+ 2’ . Tkere are many cur’ious theorems 

connected with -these series: we content ourselves with mentioning one. 
Theorem 11. If d belongs to a class r(H) (and in pnrticeclar if 

a, is hnded) thm the s&Hi (a:-&) is summable (C, I), or by any 

1 
Ces$ro mean of positive order, to sum -12’ 

4.2. ‘We conclude by a brief reference to a Herent matter. It is 
of considerable interest to determine the largest half-planes in which the 
functions . 

.- 

(4.21) I -- 

h (4 =2$, fi Cd Gzai n,la , f&)= &z4a;;an,,.. 

are regular. HECKE has shown that, when 8 is a quadratic irrational, 
fl ts) is merombrphic all ever the plane, and has at most a doubly infinite 
system of simple poles, at the points 

-2k & 2my7Gi (k, na += 0, 1, 2, . . J 

where y is a constant depending on 8, 
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Our more elementary methods are applicable to problems of this 
kind also. Let 2 be defined as the le8st number for which 

for every positive E, so that (1,331) is satisfied with h = 1 +A --/-E but 
not with h = l-j-1----~. Then we can prove that 

(a) fp(s) is ~q92.A~ for 

(W d= bP is CG barrier of singularities for fp (s), except possibly 
wAen n = 0, so tf2at 

(c) fp (s) is &the; regular for tr > 1 7 p, or hm a barrier of 
singdarities Zo the right of 0 = 1 -p, and in partimlar 

(d) fi (s) is eithw regular for 6 7 0 or lzas a barri’w to the right I 
of d=O; 

(e) the series for, fP(s) is sutimable by Cesdro’s means for CT 7 tip 
and in particular 

(f) tJze series Ca, PP is commgmt, when A+ > 0, throughout the 
region of existence of the function fi (8). 

The propositions (a) and (e) have been proved independently, and in 
a different manner, by Herr BEBNKE~). 

The case in which R = 0 is exceptional a.nd more difficult. It would 
seem that G = q= 1 -p is still a barrier in all cases except that of 
u quadratic 8, but this we have not been able to establish rigorously. 

In this last case, finally, our met#hod reveals the existence of 
HECK& poles, though it does not render a complete account of them 
so readily as that of HECRE himself. This is only natural, as HECKE% 

method is so much more special and so much deeper than ours. 
In view of the length of the memoir, we confine ourselves here 

to the statement of these results, reserving a fuller discussion for 
publication elsewhere. 

I) II BEHNKE, Ober die Verteilung vbn Irrationalit~ten mod. I. (Diese Abhand- 
. lungen, I3d. I, vorliegendes Heft,) 

COMMENTS 

The paper falls into two separate halves, one (§ 2) analytical in its approach and 
the other (§ 3) elementary. Both sections are continuations and developments of 
corresponding work in 1922, 6. 

For references to other related work, see Koksma, pp. 103-6. 
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Some problems of Diophantine approximation: I 
The analytic character of the sum of a DirichlOt’s 

se&s considered by Hacke. 
By G, R, HARDY in Oxford and J. E. LITTLl?,WOOD .in Cambridge. 

1. It has been shown by HECKJP) that the function J(S) = J(s, 0), 
defined when c 7 1”) by the series 

- 0 11 . J(s, 0) = &g2-s, 

where (1.11) 
I 

an = dc,fe) =n$-[n+--3 . 

and 8 is a real quadratic ‘irrational, is a meromorphic fuqction whose 
only singularities are‘ simple poles. we establishes, by means of the 
t#heory of the new “Zeta functions” which he has introduced into 
*analysis, a formula for J(S) which effects its co&inuatlpn. all over the 
plane and exhibits explicitly the- nature of every singularity. 
: ‘. In this note we show how it is possible to attain the same end 

by an entirely different method. The-formula at which we ultimately 
arrive differs fundamentally from HECKE’S in structure, and its relations 
to his-are of considerable formal interest. It is remarkable, moreover, 
that we are able to establish our formula, for the half-plane Q 7 2, by 
elementary methods “); a transcendental a.rgument is required only to , 
prove that it converges all over the plane. 

,Our method may’ be applied to any quadratic 8; but -we wish to 
exhibit its principle without unnecessary formal complications, and we 
therefore limit ourselves to a particular case, as did HECKE in the 
memoir to which we h&e referred. We suppose that 

(12) 1 

where a is an i 

1 1 1 / 
8=--- 

a+ a+ a+ .I...* = 1/ 
1+ 

as a --- 4 2 7 

nteger. 

‘) E. HECm, Uber analytische Funktionen und die VerfeiIung van Zahlen 
mod. eias, Hamburg. Math. Abh,, I, (1921), 54-76. 

3) That is to say, without employing the ideas of the 
I 

of analytic functioqs. 

1923, 3 (with J. E. Littlewood) Abkadmgen, mm dem 

schen Seminur der Hamburgiscken Ulziversitit, 3, 57-68. 
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58 Q. II. Hardy and J. E. Littlewood. 

2.. If x 2 0, y = 8x, and f(0) = g (0) = 0, we have 

CSC([m 4) km - g(m 
77&2X 

- 1)) +R9([;]) vi4 -ff(n - 11) 
= , 

(2 1) l 

= fbl)Y ([xl) 4> * 

In (2.1) we write 

f(u) = 1 - f3-y 9(4 = 1 - e-el, where E is real and 

(2 2) l z -1 = c-05, 

c being positive. Making x tend .to infinity, qe obtain 

= a,&) = m 19~ - [n O,] - f = ; - [;] --$, 

and we obtain from (2.3), afkr some simple reductions 

(? 6) I F (cj 8, E) = 

I  $-f El 
I 

sh,F 
2 

4, This is Lemma 7 of our m.emoir in ~1, I of this journal (212-249). 

a “) It is only a$ a later stage that; we: irntroduc’e the hypothesis (LB). c 
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The analytic ehamctor of the sum of a Dirichlet’s mice. 59 

using (2.6) repeatedly, we find 

the sequences (cp) ami (Fp) being defined by 

1 
so that & lies between 2 cl and cl. It’ follows sitiarly that EP lies 

1 
between.Z +I and ~~-1. Hence EP + a, and the series in (2.7) converges 

when continued to infinity, Also F(++l, &+I, &+I) = O(e -cp+d+p+* 
) 

tetids to zero when JI’-+ cro, Thus 

(2 8) I I;‘(c, 0,9 = 1 1 O” 
ph--fZ( 

2 v=u - 1Y 

3. Subtracting 

F(c, 8, 0; f l e-c - e-c 
lc e-a 
1 

2shp 

from both sides of (2.8), dividing by 5, and making 5 -+ 0,“) we obtain 

(3 1) l a ( c ,  e) = 
2 %ne --= w 6% 0) + x(c,  e) ,  

1 

3 There is IIQ difficulty in jWifying this process, 
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60 Cl. ET. Hardy and J. E. Littlewood. 

where (3.21) 
OcC 

w  (c, e) = -- 
1 - e c 

(1 -e-c)” -2 1-e-c ’ 

(3.22) x(c, 6) = Z(-1y 
Y=l 0 

fy-+~+ 
-e v)(L---e > 

and the Q’S are the values of the Z’s when To = 0. We write 

(3 3) . e = c&, and & is then defined by 

(3 4) . 

Since 
1 

801 l ’ ’ l 0y-2 

= qc-1+ 0Y-1 qv-2, 

where - IJy is the yfh convergent to 6,‘) the syond equation (3.4) is 
Qsp 

I% -qF-1 = tLl(QY--2--JBY--I); 

1 and be = B - & = al = ql. Hence 

(3 5) I b Y = qv-1. 

4. We multiply (3.1) by 6 ’ ’ (supposing in the first instance that 

G is sufScientlJ7 large) and integrate from c = 0 to c = 00 l We find 

(4 1-l l J(s, 0) =Z$ = e5(s--l)-+~(s)+x(s, e), 
1 

where (4.2) 

5, By Lemmtt 2 of our memoir aheady referred to, 
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The analytic character of the sum of a Dirichlet’s series. 61 

00 

and (4.3) x,(s, e) = & 
J 

3 
p-‘ly+l 

0 (1 -‘lY -e > 0 - p+l > 
ta-1 ac 

06 I 
- 

c 
1 

h, k=l r(s) s 
e- ml,_,-i -kq,l c 871 

c dc 
0 

w 

2 

1 

=h.Ic=1(hqv-1+kqi)' 
= 52 (s, qv-I+ qv, qt’--I? qv > ’ 

cz (s, ct, W, w’) being the double Zeta-function of BARNES*). The integral ’ 

is convergent if ti P 2 t so that our formal process Is valid. Thus we find 

This expression of J(s, 6) as a series of double Zeta-functions is valid 
for all 8, It is now that we proceed to specialise. 

5. Let us suppose in particular that 

(5.1) B = 

so that y> 0 

1 1 1 a2 a -- 
-ui a+ a+**-- -V1+ -- -r 4-2-e t 

and t& = 8 for every Y. An elementary calculation 

shows that (5.2) Q,,-~ = 
ev + (- ,>I’-1 e-v 

8 + e-‘-T ’ 

(5 3) . 

8> See p. 216 of our krmer memoir. 

201 



62 G. k Hardy and J, E. Littlewood. 

where (5.31) P = II+k& Q = h-kc? 

It follows that 

and so (5.4) J(s, ej = e5(e--1) - j- t (4 + Q (8, e) t 

where (5.5) JJ(s, 19) 
~=l h,k E-U 

The .quadruple series is absolutely convergent if G 7 2 l We have 
then in fact 

a+ 1) 

IPTQ-+cA(h+k)-*-‘, ]&I~-d(#-k)z, 

where the A’s are constants: and the series may be compared with 

We may therefore rearrange the series as we please. Effecting t-he 
. summation with respect to Y, we obtain 

These equations are valid for a7 2, It will be obsemed that, 
up ta this point, our argument is entirely “elementary”, 
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The analytic character of the sum of a Dirichlet’s seriw. 63 

6. We shall sow ‘show that the equation (5.6) gives the analytical 
continuation of 2(s, o), and so of J(s, @), all over the plane. We begin 
by proving the following lemma. 

Lemma. The functzh &(s, O) is regulur all ove7* the plane, mqt 
possibly fh simple poles at the points 

(6 1) * s e 
-z+1,4+2, l L..! 0,1,2. 

If D is any bounded domain in the plane of s, from which these points 
are excluded, then 

(6 2) 0 I zzb, 8) I -= e”l, 

where E is my yusitivs number, fur all value uf s in Dj and at1 suf- 
jlc&tly large values of 1. 

We may obviously suppose that ~s3 at all points of D. We have 

(6 3) . 
I 

z= &E 2&, 0j fcpq = ws+lz @ *‘- kw) - 
I (h w  + kwF)3+E ’ 

if (6.31) w  =e, wI=l, d7=, 2. 

we write 

(6 4) . z __ es”’ (8 - 2) (s - 1) l m m l (8 + 2 - 1) 
(8 - 4) (S i- 5) l .  ,  l (s -  l- 5j 2u-9z? 

where 8 7 0; and we prove 

(i) that 2 is regular in a strip 

(6 5) . -AA,-{ < a< 3; G E 

(ii) that lZl-+O when /tI+m, for every fixed value of 2, uniformly 
throughout the strip ; 

(iii) that (6.6) py<A, (d-3); 

(iv) that 

(6 7) l /z/<&@ (d= -AA,l) 

for all sufficie@ly large values of 2, 
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64 G. II. Hardy and J. E. Littlewood. 

In these propositions the A’s are appropriately chosen constants 
(independent of 6, 8, tid E). 

‘7. To ptove (i) we’ observe that 

(%l) s(6+l)~oo~(S+z-1)20-"-EZ 

=s(s+1)~~*++~-~)~ (hw’-kw)z, 
(hw + kw’j8+ 

=a (hw+kw- = D5, (& w + w’, w, 20’) = D5,(s), 

if 6 > 2, D being a diBerentia.1 operator 

As ia (s) is regular save fey simple poles at s = 1 and s = 2, the same 
is true of DC,(s), ,and so 2 is regular in the strip (6.5). 

The truth of (ii) is almost obvious; for Sz (s), and so Z is of finite 
order in the strip, while -esp tends to zero like C? 

* f 

To prove (iii) we observe that, when d = 3, 

y w(hw’-kw) i 1 -7 
<z 

I 
-d htw+ kw’ (hw + kw’)’ = (h w  + kwTmg) 

O) The ~function, 

w (w’- w x) -- - tql--ex) 
w+wtx - 8+x 

decreases steadily from I to - e2 as 2 increases from 0 to CID. 
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The analytic character of the sum of a Dirichfet’s series. 

It reknains to prove (iv). It is plain that, if we write 

65 

then (7.4) 1 7 fs) 1 < p--dP 21;1< &-JP, 

when (3 = - A, I and 2 is suffxiently large. 
Again, the number of terms in B is I + 1, and the numerical value 

of a coefficient & is less than Ai. Hence, if 

we have (7.6) 121 < (I + 1) A; eAcdl’--‘= 51~ -c eA+@& 

if 1 is sufficiently large. 
In order to obtain a,n upper bound for Zy, we use the equation lo) 

The two series involved iri (7.7) are absolutely convergent, when 
8 il; quadratic, for o* < 0. We have to examine the effect on the series 
of the operator l)r. Expanding the num,erators in (7.7), we obtain four 
series? two of the type 

(7.8) (27+-l T(l -s) sin+(1 -s) X&P-~ cot??+, 
lC 

and twd of a simpler type (without the cotangent). It will be clear 
from our analysis that it is sufficient to consider the series (7.8). 

‘9 See p, 218 of our former memoir for this formu18, and for an explanation of, 
the notation. 
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66 G, H. Hardy and J. E, Littlewood. 

The external factor is indbpendent of w  and PU’, and it is easily 
verified that, when s = - A1 I + i 5, 

(7 9) l 

8.t Again, it is easily verified that 

1 sin ‘l - 8) 3 (1 - 8) 7r 
d 

1 4 (A, z”+ Pyv) 

where the number of terms is less than A;, the coefficients Cj are all 
less than ZAi*t, aj and bj are numericaUy less than AI1 2, cjz 0, and 

. 4 ’ 1 -- 1. The effect of the operator Dr on the function (‘7.8) is 
thzefore to produce a series which possesses a msjoratit of the form 

But 
rnw'n A cosec --7 > 2; 

m 

and the. series. ifi (8.2) is I therefore convekgeht, and less than Aid7 if 
d = - A1 I and 2 is sufficiently l<Te. It follows that 

if E is sufficiently large. 
Taking the maximum of. the right hand side of (8.4) for variation 

of t, we find 

Al 
AJs+te= -+, 

Ii) We have in fact 
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The malytie character of the sum of a Dtichlat’s series. 

SQ that 

if +t is sufficiently large. This is (iv) of 5 6. 
From (i), (ii), (iii) and (iv) of 5 6 it fdh$‘) that 

for -&l<a<3. If now D is the domain of 56, and -- --- - - 

- ,416 < d < 3 E = 

throughuut B, we have in D 

if 6 is sufficiently small a.nd 2 sufficiently large. This completes &e 
proof of the lemma. 

8; The poifits 0, - 1, - 2, . . . w  were excluded from D in the.lemma, 
as they are possible singularities of some of the functions 22. A bounced 
domain D’ can contain at most a finite number of these points. We 
may suppose it to contain some or a11 of the points 0, i I, l . . *  , - JI, 
but neither of the points 1,2. The function 

is plainly regular in D’, and satisfies an inequality analogous to that 
satisfied by 2~ in D. 

The series (5.6) is uniformly convergent in D’, and gives the 
analytic continuation of JJ(a, e), and so of J(s, @), all over the plaw. 

‘9) I f  f(a) is regular and bounded in the strip Q 2 us & and L (0) is the upper 
-bound of its modulus for 13 = u + it, then log 1; (b> is ‘a, convex function of u, 80 that 

‘.L%e bheorem is a variant of Bdamard’er CL three circle theorem”. See G. Doetsch, 
,,Uber die obere Grenze des absoluten Betrages einer analytischen Funktion auf Gemden”; 
Xzlh. Zeitachrift, 9 (192U), 237-240. 
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68 U* II. Hardy and J, E. Littlewood. 

It follows that the function ,J(s; 0) is meromorphic, that its poles are 
simple, and iha,t they lie at some or all of the points given by 

(9.1) or s= ++EC, 

1% -ii- 

* where 2 = 0, 1,2, . . . . and Y runs through all even or all odd values, 
according as E is odd or even. 

Our analysis may be extended to the case of ,a general quadratic 8, 
but, in view of the existence of HECK&S alternative method, we shall 
not attempt to carry out the details of the work. The poles of J(s, 0) 
lie, in the general case, at some or all of a series of points on the lines 
d = 0,. - 2, - 4, . l . l , at intervals 

27ri 
1 ’ 

logo * 

CUP, w-b . I . . , ++*-I) being the periodic part of the continued fraction 
for 8 l It is easy, when 8 -+ - l/o, to define 0 in terms of the solutions of 
the PELLIAN equation Rg - D.ya = 1 (the unities of the corpus K(1/D)). 

We conclude by one remark as to the relation between our 
formula (5.6) a.nd HECKE’S formulal’). HECKE’S formula involves series 
of the iype 

sin i ,s+,(l--a)+- I 1 ni 1 ( 11 1 

2logq 
7min ,sf,(l-a)y-ni 

2lw 1 
76’ 

It is not necessary to explain the meaning* of all the symbols. The 
essential difference between his formula and ours is this, that his 
collects into one term all poles on a liiie parallel to the real axis, and 
ours all on a line parallel to the imaginary= axis. We have not been 
able to find any simple method of passing from one formula to the other. 

13) XECKE, 1. C. 63. 
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COMMENTS 

There was a previous brief communication to the London Mathematical Society at 

its meeting on 9 February 1922 (see BOG. 21 (1923), xv-xvi). 

The essential difference between the method of this paper and that of Hecke is 
that Hecke’s work is based on the properties of the zeta-functions corresponding to 
his ‘Grijssencharactere’ for a real quadratic field, whereas Hardy and Littlewood use 

the periodicity of the continued fraction for a quadratic irrational. The relationship 
between the two resulting expressions for the series (1. I>, each of which exhibits 
the analytic character of the function, is described at the end of the paper. It seems 
to be still the case that no simple method has been given of passing from one ex- 

pression to the other. 
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XXVII. Some problems of Diophantine approximation : T/M analytic proper&~ 

of certair~ Dirichlet’s series associated with the distribution of numbers to 

By G. WI. HAR.DY, Trinity College, and J. E, LITTI~EWOOD, Trinity College. 

[Received 6 June 1922.1 

l*l, The series in question are 

where s = Q +it, a, = a, (6) = {no) = n@ - [d] - 9, l . . . . . . . ,. . . . . . . . .(l*lll) 

0 is irrational, [x] is the integral part of x, and the summation (as always unless the contrary is 
stated) extends over positive integral values of n. The general formula for the Lth function is 

Ivhere +(x) is defined by 

&2 (4 = Pm(x) + (- l)m-l&, &n+l(x)=P~+l(x), (O<X<1)...(1~~31) 

9(X+r)=+(x) l * . . . * . , , . . . * . . . . . , , . . * * * * * . * . * * * . . .  (V132) 

and the P’s are Bernoulli’s polynomials*. 

The properties of these functions, which are very remarkable, are intimately bound up with 
the pr&lem of the distribution of tlhe numbers n0 to nrlodulus 1-f. 

1% The properties of the function F1 (s) have already been investigated by fXecke$ when 0 
is a quadratic surd. Hecke supposes in particulur that 8 = I/D, where D is free from squared 

factors and congruent to 2 or 3 to modulus 4. He shows that in this case F1 (s) is meromorphic, 

and that its only possible singularities are simple poles at the points 

2mi 
s z-Q+--. , 

log7 
..*.,.**~.,,.......~......*..,,.*.***.. (1.21) 

where g=o,1,2,...;r=...,-1,0,1,2, l . . .  .  .  .  .  .  , , . . .* . . . .* , ,* , , ,*  (1*211) 

and q is a particular unity of the corpus K (I/D). H is method rests upon the theory of the new 

( Zeta-functions ’ which he has recently introduced into analysis, and there can be no doubt that 
it is the best for the particular problem with which he is concerned. 

It is none the less of interest to discuss the function for general values of 8, and by methods 

as elementary as possible. When we do this, we find ourselves compelled to treat F1 (s) as the 

+ We follow the notation of LindGf (Le calcul des re’sidus 
et se8 application4 d la the’orie des fonction8, 32 et seq.). 

The definition of the functions for integral values of x is 

immaterial. 
+ In regard to this problem see the following memoirs: 

G. EL Hardy and J. E. Littlewood, ‘Some problems of 

Diophantine approximation ’ : (1) Proceedings of the Fifth 

Internation&! Congress of Mathematicians, Cambridge, 1912, 
1,223-229 ; (2) ‘The fractional part of &?‘, Acta M&h., 37 
(19141, 155-190; (3) ‘The lattice points of a right-angled 
triangle ‘, Proe, London Math. Sm (2), 20 (192X), 15-36 ; 

(4) ‘The lattice points of a right-angled triangle (second 

memoir) ‘, Hamburg M&h. Ahh., 1 (1922), 212-249. 

H. Weyl, ‘fiber die Gleichverteilung von Zahlen ,mod. 

Eins’; Math. Ann., 77 (1916), 313-352. 

E, Hecke, 6 &r analytische Funktionen und die Ver- 

teilung van Zahlen mod, Eins’, Hamburg Math. Abh., 1 
(1921), 64-76. 

A. Ostrowski ; (1) ‘Bemerkungen zur Theorie der Dio- 
phantischen Approximationen ‘,ibid.,77-98; (2, ‘ Zu meiner 
Note : Bemerkungen u,a.w.‘, ibid., 250-251. 

H. Behnke, ‘aber die Verteilung von Irrafionalititen 
mod. l’, ibid,, 252-267. 

$ I& supra. 
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1923, 4 (with J. E. Littlewood) Traction of the Cambridge 
Philosophical Society, 22, 519-33. 



520 MR HARDY AND MR LITTLEWOOD, 

first of the sequence of functions Fk (8). We also find ourselves led to the following classification 
of irrationals 8. 

We suppose, as we may without 10s~ of generality, that 0 < 0 < 1, and we write 

I l ( 1.22) 

where a,, G, . . . are the partial quotients in the expression of t7 as a simple continued fraction. 
We tsay that 61 is 01 cEass X. if x is the lea& number such that 

(649, I . . e,,,r+ye, + 0 1*11.1...1~.~~~.*1.*~.~....**.***..* (M.3) 

for every positive C, or, what is the same thing, such that 

for every positive e. If  no such number exists, we say that 8 is of infinite class. A quadratic surd ” 
is of class 0, and every algebraic number is of finite class. 

Our principal results may be summarised as follows. In the-first place, Fk (s) is repEar for 

(194) 

in particular, F’(s) is regular for u > h/(1 + x). Thia we prove for k > 1 in 5 2, and for iJc = 1 in 5 3. 
There are alternative proofs of this theorem. When E= 1, it may be derived from Theorem 2 

of our memoir (Q), or from the sharper Theorem 5, due originally to Ostrowski; but the analysis 
of 5 3 is necessary in any case for our further inv,estigations. When k: > I, it has been proved by 
Behnke’, by means of the formulae of linear transformation of the Theta-functions, The proof 
given here is a good dettl simpler. 

I f  X > 0, the result just stated is final; for then G = ok is u m*nguhr th& for the f  tm&h. We 
prove this in 5 3. We have no doubt that the line is still singular when X =O, except whm $ is 
quadratic, so that the case considered by Hecke is completely exceptional; but this we are unable 
to prove. 

In 5 4 we consider the question of the convergence or summability of the series (ill), and 
show that the regions of convergence or summability are always as extensive as is consistent with 
the analytic properties of the functions and the order of magnitude of the coefficients. Some 
fheorems concerning convergence have been found already by Behnket. These are included in 

oum, which assert the most that can be true. 

k 
a>flk=i-- 

1 -I-x’ 

We have1 4 2nt = (x) (- lY+’ 2(2mP Iz co8 2y7rx 
(2 J w 0rn v2* 

(m z 1) # . . . . . . . . . . ..(2*111) 

(- IF+’ 2 (2m + 1v 2 sin 2mx 4m+1(4 = - (2+?&+1 - u’?t&+l 
(m z 0). ,.,.,,, .,(g*lq 

It is therefore sufficient to show that the functions 

gk(8) t= 2 ‘9, hk(8) = r] ‘k(;ne), l . . . ...*. l . . . ...* l . ..*.(2*12) 

where +k(x) = 2 “9 (k > I)§, l .  .  .  . . * . . . . . . . * . * . . .  .( 2921) 

are regular for Q > ~;t. We shall discuss only gk (s), observing that our argument remains valid 

with a formal change throughout of ln0 into - nB. 9 
+ Behnke, LG., 265-266, t Bebnke, Lcm, 266. 2: Lindeliif, LG., 34, Q We write e (x) for e enQ, following Weyl. 
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Suppose first that CT > 1. Then 

, .~*~.*.*..~.*I~**..**.~..** * I. (2*13) 

where x(v) = x (8, e, v) = ? eq ..I..***..**.*.*.**....,*.~~*~, (2931) 
1 

This function is an integral function of 8, and its continuation all over the plane is given *by 

x( > V 
r (1 -23) = ~---_ 

zTi 
(- x)8-1 dx, ..*.*.*** . . . . . . . ,....(2*14) 

where C is a loop enclosing the positive real axis in the clockwise direction, and passing inside 
all the poles 

X xwx = 

of the integrand. We write 
= ZTi(712 -I- Ye) (nt= . . . -1, 0, 1, l m.) 

x (4 = x (s,R 4 =x(s,u r (1 - @ 9 G&)= l*j. . . . . . . . . . . . . . . . . ..(295j 

2.2. There is one and only one of the numbers X~ whose modulus is less than 7r. We define 
a number 6 = S(Y) as follows, If  h is the x,~ of least modulus, and 1 xrra 1 Z irr, we take 6 = 4~. 
If  Iq& iv, we take S=j1r. We denote by CO the contour formed by the semicircle / x I= 6, 
1 arg (- a); s &, and the two lines R(x) z 0, 1 I(g) I= 6. The distance of any point of CO from 
the nearest pole is greater than tr. Hence, if we write 

x0(V)= x0(5, 8, V) = & 
I 

c lcg+zG(- x)8-’ dg, l ...*.* .rn...... . ..(2*21) 
0 

we have X.(v)=U(/ ~e~xi~(-x)@-lj~dx~)=O(l), l . . ~ * * . . ~ . * . . . . . * * ~ . ,  

Gl 
(2*22) 

uniformly throughout any bounded domain T in the plane of s, 

NOW x(v)=&(v) (I%aI~Q4 , a.,,...... .,a..# .a... . ..(2+231) 
and X(v) = X,(v) + (-x&l (1 x,1 < 4~). . . . . . . . . . . . . . ..(Z423~) 

The series 2 WV) 
-P- 

is, by (29, uniformly convergent throughout Y’, and its sum is an analytic function regular 
throughout T. It hllows, from (2-13), (2Ti), (2*231), and (Z-232), that G&) is regular in any 
bounded domain throughout which the series 

is uniformly convergent. This is certainly so if the series 
PD 
2 

1 
1 vkjii9p---“’ 

where 2 is the difference between vB and the integer nearest to v@, is uniformly convergent ; 
and this series is, by Lemma 3 of our paper (4), uniformly convergent in any half-plane 

a21 
k k 

--1++04--- 
l+h’ 

In other words, GE(S) is regular for the values of s specified in the theorem. 

It follows from (2%) that gk (8) is ah regular, except perhaps at the poles s = 1, 2, 3, . . . of 

I? (I- s)* Of these, s = 2, 3, . . , are plainly not poles of gk (8). When s = I, X (Y), and therefore 
Gk (s), vanishes. Thus gk (s) is regular also for s-- - 1, whiih completes the proof of the theorem. 
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3% The method of 5 2 fails when E = 1, and more intricate analysis is necessary. 

Lemmcz A. If B is irmtional aad positive, x Z 0, y = 6x, rind f(0) = g (0) = 0, the?1 

z fcE4) (9 (N -Y (17’1 - l))+n:yg ([;I, (f (n> - f 02 - 1)) =f(CYI) 9 @I)* 
msX =. 

. . . . . . . ..(3*11) 
This is Lenma 7 of our paper (4). 

then 
e-BT Qo -mc u E: 

Xe 
e-it1 a 

1 - ee5 1 
(em -l)+---- s emncl (f&l1 -I)= W; . . . . . . . . . . . . . ..(3*13) 

1 -e-t1 1 

where W=W(c, 6, f)= - 
,441 e-&t e-c e-e e - Cl 

- --- ------ - ---- 
(1. 

- - .  l . .(3+131) 
-e-E)(l-e-~l) l-e-5 l-eBC l-e-411-~-~1 

In (3’11) take f(u)=&em@, g(fti)=l -e+@l, 

where c = BE + & > 0, and make x -+ crsl a We obtain 

Substituting for [mO] and [n/O] ’ ln t erms of h and &, and making some simple reductions, we 
obtain (3.13). 

Taking the limit of (3m13) as % -0, we obtain 

Z a 
e 3 

-, c m 

m eBnlc + a g e nc 
l-e+ 1 

- l)e-‘lC~= w, l . . . . . ,... 1 -.*. 
1 

. . . . . . . . (3.14) 

where 

for all positive values of c, where 
Be+ 1 e+ qJ = v  (q 0) = - --- - - -- 1 e+l _ _..-- 

(1 
--L’ -7 -e ) 2 leemC-c l-eecl’ 

..**.** ..rn..... . ..(3-151) 

The left-hand side of (3%) is 0 (ebc)= o(ce+) if c Z 1, We may therefore suppose c c I. 

In (3m14) we may write 
e-f@ 1 c 

-=--~~+O(d), 
1-p c 

*...*....,.*..I..........~*...... (396) 

e/GC - 1 = &C + &&c”+ 0 (c”j. .~.. I .* . .~~~~*~*..*~* . . , ,  l *  (3.17) 

Since c1 > c and I& ) < 1, we have 

cP&QJ emncl z 0(&1,-C) 

for aI positive integral values ofp and q. Hence the left-hand side of (3%) takes the form 
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Also, by (316), 

+ 0 (ce+) 

1 evC1 =- - ------- - - 
C 1 -edC1 

2; S$W 
+ O(ceec ) . . . . . .  l .  , . . . .  . .(3*19) 

1 

Hence (3.14) takes the form (3%). 

3*2. Lemma E. If  6 is sujkientky large, 

The equation (3%) follows at once from (3-151) by dir& integration. It may be verified 
at once that the right-hand side is regular at its only possible singularities, viz. s =I and s-2, 

343. In what follows we denote by ]D (a) a finite domain in the plane of s, all of whose points 
satisfy Q Z a + 6 > Q[ ; and by R (s, a) a function regular and bounded in D (a). It is to be under- 
stood that the upper bound of such a function depends upon the form of D, and in particular 
upon 6, but not up012 8, and that the 0’s which we use are also uniform lvith respect to 0. 

Lemma F. If $ (c, 0) = 0 (cqeUC), where q z 0, then 

-!I- x (% e) = rl($), o f  m* (c, 0) CS-~~C = R (s, - yj. . rn rn . rn l . . . . . . . . r. l . . ..(3’31) 

For the integral is uniformly oonvergent in D (- q). 

Lemma G. The function 

is regular for Q > - 1. 
Fl (s, 8) + 08E: (8, 19,) + &d+‘Fg (s + 1, 8,) .  .  .  .  .  .  .  .  .  .  .  l . . . . . . . . . . . .(3#32) 

Supposing first 6 sufficiently large, multiply (3%5) by c”+/~?(s), and integrate from c = U to 
c = a0 . The result then follows immediately from Lemmas E and F. We obtain in fact 

Fl(s,0)+88F& 8,)+$sWF&+1, e,)=6~(s-1)-~~(~)-~~-~‘(“,~)+R(s,-l), 
s- 

l .  .  l .4v33) 

and 2, (s) = 21 (s, 0) = 49& - 1) - g (8) - BTzG .  l 1 l 1 l .  l l .  .  .  .  .  l l l .(3*34) 

is an integral function. 

As a corollary, we have 

THEQREM 2. The function & (s, 0) + tPFl (s, 0,) is ~eyular for Q > 0, 

For EJ (s + I, 8,) is plainly a function R (s, 0). 

3’4. We have, from (3*33), 

Fl (s, 8) + es& (8, 8,) = zl(s, 0) + R (8, 0). . . . . . . . . . . . . . . ..*....(3~41) 

Similarly fi (8, 4) + 4% (8, 82) = 4 ($1 6) + R (8, 0) , ..*.** . . . . . . . . . . . . . ..(3~41~) 

and so on generally, From the first ~2 such equations we deduce 

F&, 8)+(-y-qee,... 8,,$F&, en)=Q,+*n, l ms.,..m...ms.. (3.42) 
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Yfi= Y  fl+1(- ly(86, . . . IY~-~)BR(~, O)*. . ..a. . . . . . . . . ..w.. l . . . . . (3.422) 
v=o 

We suppose for the moment that Q > 2. 

Then i Fl (4 &J I < A 

where A is independent of ~2, and s, and the second terln on the left-hand side of (3.42) tends to 

zero. Similarly the functions @, and V, tend to 

4 (s)  = 5 ( -  1)’ (00, l .  .  By-$ &(s, 0 )  y , * . . * * 1 . . 1 . . * . * . . . * * . * . . ,  (3’431) 
v=Q 

Y(s)= z (-l)~(8e~...e”1~)6:R(S,u), .,.,+..,....a . . . . . . . . . ..(3*432) 
v=o 

respectively ; and Fl (s, 0) = 4 (s) + y  (s) ,.*....*~.*..~,*..*...~~~~*~...*~~..~ (3m44) 

for a’> 2. This relation between analytic functions holds throughout any region in which each 
of them is regular. The function V (8) is plainly regular for Q > 0, since 19~&+~ < &, We thus 
obtain 

The study of the singularities of FI (s, O), f  or o > 0, is thus reduced to that of the singularities 
of 4 (s) in the same region. 

3.5. THEOREM 4. If 8 is uf clctss X, then each oj the functions 

E: (4 6, 4 (8) 

is regdar fur 

We observe first that 21 (s) = 0 (P-l) + 0 (I), ..,1.1.*.**,*...*..*.,..**,**.**, (3.51) 

uniformly in 0, on any closed curve C lvhich does not pass through either of the points s = i or 
s = 2, The series for @ (s) is thus the sum of two series, of the types 

r ,  0 (00, . . *  By& r ,  o(ee, l * .  ov-J@8,u-1 

respectively, The first series is uniformly convergent on C if C lies in any half-plane G 2 6 > 0. 
The second is convergent if 

a+(a-l)X>U, 

i.e, if Q > Q,, and is uniformly convergent on Cy if C lies in any half-plane c z C, + 6 > cl. It 
follows that @ (s), and therefore FI (s, 01, is regular inside any curve C subject to these conditions, 
and therefore for 0 > q. 

It remains to show that, when X > 0, c = c1 is a singular line, and it is plainly enough, after 
what precedes, to show that the line is singular for 

or for X (8). We choose 6 > 0, and divide the V’S into two classes v’, v”, writing v  = v’ if 

0, < (SO,  l l *  0,-y . * * I~ * *~ . . . . ~ * * . , * * * *~~*~ , * * . . . * * . . , , . .  (3-53) 

* R (8, 0) is of course a diflerent function in different terms of this series. 
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and v- v” in the contrary case. In virtue of the definition of X, there are, for every 6, an infinity 

of v% 
We write x (8) = 2 = s + z = X’ (8) + X” (8). ..,**....*..~~,..*...~**.*. ( 3m54) 

v  v’ vrr 

The series fur X” is absolutely convergent if 0 + (C - 1) (X - 6) > 0 or 

x-6 
Q>l+h-6’ 

and the number on the right-hand side is less than ul. Hence X” is regular across the line 

u = cl. It is therefore sufficient to prove the line singular for X’. 
Suppose that the values of v’ are v,, v,, . . . , vk, .,. , and write 

e+= Ml . . . 0,. l * . . * . * *~ . . . * . ~ *11 . . . * . . . * . . *~ . . * * * * * * *  (3%) 

Then the series for X’ (s), viz. 

is a Dirichlet’s series of the type 2 ale - ‘k3, and 

kk=+, - Xk = log8 0 
1 1 

++I 9+2 “* 0 
-2 logg-- > (x 

vk+l %+1 

- 6) log &&- e m 
1 l * *  

yk+l- 1 

when k-00. It follows, by a theorem of Wennberg *, that the line c = cl is singular for X’, 
which completes the proof of the theorem. 

We have supposed 0 c h < 00, When x = ~10 the result is stili valid, u = 1 being a singular 
line ; and only trivial modifications are needed in the proof. The case h = 0 is much more 
difficult, It appears to be true that c = 0 is then a singular line, except in the special case in 
which 8 is a quadratic surd ; but we are unable to prove this rigorously. The exceptional case is 
that studied by Hecke. 

3.6. Suppose in particular that 19 is a quadratic surd, The continued fraction for 8 is then 
periodic, and we have 

0 r+kwa =& (rzp, k=l, 2, . ..). 

if p is the number of non-repeated B’s and m the length of the period. 
In this case F2 (s, 0) is, by Theorem 1, regular for 0 > - 1. It follows from Lemma G that 

each of the functions 
FJS, 8)+(-l)~--x(~B,...~p-~~F~(s, Q, 

Fl(S, ep> + ( -  y-l (e,&+l ’ l l &+?n-A8 Fl(& &+m) 

is regular for Q > - 1. But the last function is 

(1 + (- 1y-l OS) E: (8, 0,). 

It follows that Fl (s, BP), and therefore PI (8, a), is regular for c > - 1, except possibly where 

1 + (- ry’ @Is = 0, 

at which points it may have simple poles. These point8 are the points 

where k is an arbitrary odd or arbitrary even integer, according as m is odd or even. 

* Wennberg, (Zur Theo& der Diriohbt’schen Reihen ‘, A n+l-Xs>A, X,jnea:. 

Inmgural dissertation, Ups&t, 1920, 3-7. It hss been See F. Carlson and E. Landau, ‘Neuer Beweia und Verall- 
ahown by Carbon and Landau that the remit is true under gsmeineruqp des Fabrphen Liickeasatze~ ‘, Gattinger 

the more general oonditions NachTichtm, 1921, 184-188. 

218 



526 MR HARDY AND MR LITTLEWOOD, 

3% There appear to be no doubt of the truth of the following propsi tions : 

(ak) Fk (s) ti rep&h for u > uk;; 
(W u = uk is a singular line for & (8) whenever X > 0 ; 

merowmphic when 6 is quadratic; it8 p&s are 
a doubly in&de system of points distributed at 

a-l-k+ (p=O, 1, .*.); 

they are &uated 
along th4 lims 

(ek) &(8, 0) + (- I)k-1 &fk+ E;i (8, 6,) is regzrlar for Q > gk+l - 1; and d = @k+l - 1 is a 

and a complete theory of the functions would contain proofs of these propositions in full generality. 
Of these propositions we have proved (ak), in 5 2 when k > 1 and in 5 39 when k = 1. 
We are unable to prove (ck, in any case. The case in which 8 is quadratic is doubtless best 

treated by the deeper methods of Hecke. We have however shown, in 5 3.6, that our method 
will accomplish something in the direction indicated by (dk). 

There remain the propositions (bk) and (ek), of which, at present, we have proved (b 1) only. 
We proceed now to the general proof, The particular case contains most of the leading ideas, 
and Eve have cbndensed the general argument wherever the ground is familiar. In what follows 
the A’s, O’s, and B (s, a)‘~ depend on X: in addition to the regions D; they are either independent 
of 6, as in 5 3a3, or at any rate, when we have to consider a sequence of irrationals 8, &, &, . . . , of 
the n in 19~~. 

Lemma H, If  k > I we ihave, througho,ut D (as), 

IF~(s,8)I<AZv-kIvB/~-~--:~+A=AT+A~A~~-k~~$juk-~+~a+A, 

This is a straightforward deduction from the results of 8 ZG, 2.2. By (2,231) and (2*232), 

~~I,(s)i~~jx(v)h’-” r~(ix,(v)i+aixmlQ-‘)v-k+ 

Also /X,(V) 1 <A, by (2422); and, since A 1 Ye I< 1 x, I< A, we have 

1 x, y--l < A + A 1 a p. 

Hence ]t?k(~)I<Axv-kjv6jcr--l+A<AT+A. .*.*...**.*...** l ..**.rnrn (3-71) 

Let D’ be the domain obtained by removing from D circles Cl, Cz, . l . of radius $8 surrounding 
such poles 1, 2, , . , of F (1 - S) as fall in D. Then 

Ig&)i=/r(l-$)I lGk(S)i<A Z,V-~I&JI~++A<AT+A . . . . . . . . . . ..(?72) 

in D’. On Cl, 1 - 48 s Q s I + 48, and it is easily deduced that 

1 gk (s) I< A 2 v-~ 1 a 1 -as + A < AT + A .  .  .  .  ,  l .  l rn l .  l .  l .  .  .  .  .  .  .  .  l .(393) 

on Cl. The middle term here is independent of G, and glr, (s) is regular for s = 1, so that the 
inequalities (3.73) are valid also inside QI. Similarly it may be shown fhat 1 gk (s) / < A5? + A 
throughout Cz, C3, ..*, and so, by (3q12), throughout D. A similar argument, may be applied fo 
?&k(s), and the lemma follows, since Fk (s) is a linear combination of the two functions. 

* The important cake is Q < 0. When 
U-C 0 is thought of as the standard case. 

u2S the second term may be absorbed in the first; the proof will be if 
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The left-hand side is less than 

A 2 V-~-T ~YII,~“+‘-‘-ts+A<Ar:,-k-l~~n~u-~s+A, 

byLemmaH. Lete=~~/(~+1)<6,and~~=X+1+4. Then 

where t ,  = (08, l I  l &-Jh-’ = (e .  .  I  &-$+Y l . . * * * . . * .11 . *1 .1~* . . . * . . * *  (3%) 

I f  now P,J&nr is the lntth convergent of the continued fraction for 8,,, (394) implies that 

Qm < Acl QL1, by Lemma 2 of our paper (4), and therefore that 
---- 

1 ue,, 1 > At,v-h. 
Hence 

1 Fk+&++r, &)I < s, V-~-I [A +(A~,,v-~)=-~~) < A + At,~“-Q+-l-h IT-H s A + A&p-+& 2 p-k-l-h(uk+l+& 

The index of v  is’ 
v V 

80 that the series last written is convergent. Hence 

IFk+,(s+r, &,)I <A+A(o... - & l) (*-N (A+@) < A + A (0 .  .  l @ , , )  ~-34 iA+? 

the result of the lenlma, 

3%. We return now to the identity (3*13), and we equilte the coefficients of tk-l/k! in the 
Laurent expansions of the two sides. If  we define +&) to be unity, then 

Hence the coefficient in the first term on the left is 

~f+k(crm+&-+k(&)] e-mc=~~k(me)e-‘“-~k(~)~e-mc. 

The coefficient of Ek$c! in the second term is 

. . . . . . . . . . ..(3*81) 

k (- 19jk--l 2 zc,,eanCI , l .  . . * . . * . * . * * . . ~ . . * . . . . . . . * ~ . . . * ~ ~ . *  (3-82) 

where 

Now 

d k-1 e-iC 
u,, = IL,, (c) = dc 0 ( --- ---- (eS”” 

L-e+ 

say; and it is easily verified that 
( a (x) j < A (x > 0). I.,*~..*...**~..~.**.~.*.~~~,~ (3*84) 

Summing up from (3m81), (3*82), (3*83), and (3*84), we find that the coefficient of fk-l/k! in the 
left-hand side of (3l3) is 
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We consider next the co&Gent of Ek-‘/kI in W, the right-hand side of (3*13). Now W is 
regular at 5 = 0, and, expanding formally, we have 

Collecting the coefficient of Ekal/k!, a.nd equating it tb (8*85), we obtain 
Ik+1 

d+k (m0) e-MC + (- O)k-l 2 $k (d,) ewncl + C (- 
r-1 

= 0 (8”) @A + K(c), . . . . . .(3?361) 

where 

Vk = i (", t&(O) (- @jk" (;)- (-'-) 
r=O r c ec - 1 

-~{(.Ky2!2)-~~~~}. 

1 1 
In (3*$62) WC associate a term - - with p 

ea c 
. . . . . . . ..(3-$62) 

and -p 
c ec - 1 ec - 1 

, perform some trivial rearrangements 

and reductions *, and obtain the alternative expressions 

+ (- l)kkP1 
er,_l {(;j”-‘(e& -5) -z,e;/ . . . . . . . ..(3%63) 

Or v. = vk, 1 + vk,s + 0 (Ck+‘) e& t .~...**......~~~,~.*~*..., (3.864) 

where VQ and &,e are the first and second ferns 0x1 the right-hand side of (3*863)$ 
We now multiply (3*861) by cB+/r (s), integrate from c = 0 to c = 00 , and obtain 

k+l k 
Fk (s, 0) + (- l)k-lt?k-l+s Fk (s, 8,) + (- l)k-l r: t?k-l+s+r -- ’ @ + “) 

r=l k+r r(S)r(r+ 1) 
Fk+r (s + cr, 8,) 

= fii $9 
-k-l)+r(s). 0 

-J- fa {Vk,l (c) + Vk,,<C)] F-'dc 

= R (s, -k:-l)+Z&, 0), .*~.,*...*,.*.*.....*~**.=.......*~..~.~*.*,, (3*871) 

say. By (3.864) and (3*862), 

vk L + vk z = 

Further, the formulae which ;efine’V 

vk + 0 (ck+2e-c) = 0 (Ckf2eaC) (c > 1). 

k,l and Vk,2 show that these functions tend to limits w 
c--p 0. It follows that 

I 
m( vk,l + vk,2) @--l& 
0 

exists, and defines a function of s regular for Q > 0. 

Next, we observe that 

&j C(~s-r(~l-~)~-ldO=~ris), 

+ Observing in paMmaIm that the term for which T= k + I + The expression in curIy braokets in the third term ie 

vanishm, since &+I (4) =O. 0 (P). 
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exist and d&e function6 regular for 0 < d < 1. Hence 

Zk (9, 8) = Fz A,Ok-vr (8) + P’z (8) ,~*.**.~.*,*.......**~*~.~.~ (3g88) 
f=O 

this equation giving, moreover, the analytic continuation of & wherever qr and z are regular. 
Now + and z do not contain 8; they belong to a well-known ~1~s of integrals; and it may be 
shown that they are regular everywhere, except possibly for aimple @es at certain pmitive 

integral values of 8*. This being so, and if we suppose positive integral values of 8 to be excluded 
from D (- k - 1) by circles of radius 8, we have 

;: &$k-r+(s)=R(e, -k-l); 
r=O 

for only positive powers of 8 occur on the left-hand side, Hence, from(3*871), 

Fk (s, 8) + (- fjk-’ dk--l+’ Fk (s, 8,) = 22 (8, -k- 1) + Wz(s)+ &@, &), . . . . ..(3%9) 

where 

319. We are now in a position to prove that O= uk is a barrier for & (8, 8) when x > 0. The 
case h = XI is comparatively trivial, and we suppose that 0 < h < 30 l Then 

ok > 1 - k, gk > bk+v 

We write 0,~, for 19 in (3*89), multiply by (- I)kn (190, . , . O,+2)k-1t8, and sum as in 5 3%. We then 
apply our former argument, lvhich shows on the one hand that 

22 ( -  l)k’a (e l . , &-Jk-1+8 R (s, - I;; - 1) 

is regular fur Q > I - k (except possibly for certain positive integral values of s), and therefore 
regular across d = Q; and on the other that 

2 (- 1p (0 . . . t9,1-Jk-1+6e;I: z (8) 

has CT = gk for a barrier. To complete the proof of (bk) it is sufficient to show that 

IS (- l)k?a (0 , . a i9,,-2)k-1+x Q (s, 0,,) 

is regular across Q = flk ; and this is true provided that, for some Q’ c ok, the series 

X (0 . . , 0nw2)k-1+= 1 Q (s, 0 yb ) i I * . *m+.m. * *n  .  .  .  .  .  l .  . . * * . * . . . * . . *  .  .  .  .  + 
(3.91) 

ia unifornlly convergent iii the part of D (ak+l) for which c 2 cl, xow every term in (3~$91) 
contains 0 to the power k - 1-t c at least ; hence, by Lemma K, 

(Q(s, &)( < As,ky;+“{l+ (8...~~1)(a-~S)(~+~)j, 

and the general tern- in (3#91) is less than 

A (0 I  l l e,&-Jk-- + A (0 .  l l &-p+J’+ @‘-So (*+*)* 

The first index is positive if ok - U’ is small enough, since flk > 3 - k ; and the second i6 

k--1+Uk+U&f~)-(Uk- u’)(l+~+6)-~~(~+~)=h+~~k--(a~--‘)(1+~+~)--~~(X+~), 

and is positive if 6 and ak - u’ are small enough. This establishes the uniform convergence of 
the series (3#91), and SO finally the general result (bk). 

There remains (ek); and for the proof of this the material we havs already ii3 sufficient. 
We observe that 

q+1- 1 s - k-l, Q-r s Qk+l (r 2 1). 

* he for example A. Hur witz, ‘ Ueber die Anweudung 
Integrale’, Math. Ann&n, 53 (1900), 220-224. 

functionen theoretischen Prinoipm auf gemisse bestimmte 
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From these facts, and frown (3.871) and (3*88), it follows that the only posiible singularities of 

Gk (s) = Fk (s, 8) + (- l)k--i e-t”& (s, e,), 

in u> ak+l- i, are the singularities of Zk in this region. These can occur only for positive 

integral values of 8. On the other hand (3%71) shows that (when x < 30 ) * Zk is regular in Q z c’, 
where P’ < I+ Hence Zk and Gk are regular in c > dkfl - 1. 

On the other hand; if )L > 0, 
crk;+l - 1 > - k, 

nnd ck+r is a strictly decreasing function of r. It follows from (8%71) that Ok and 

(- l)“e”+k & s Fk+1 (s + 1, 8,) 

are equi-singular in the region Q > Max (- E - 1, OIJE+~ - 1). Since Fksl (s -+ 1, 0,) has a barrier 

Q = =k+l - 1 in this region, this line is also a barrier for Ok. 

We have therefore proved 

THEOREM 5. If  X > 0, the Line d = gk is a &$&t?- h&e of Fk (8, 8). 

THEOREM 6. If  X > 0 and 8 = l/(a, + O,), thea tHe fwcticm 
Ii;,@, 8)~(- 1) k-1 8 8fLFk(S, 0,) 

is regdar for c > ok+r - 1 ; med the line Q = ck+.a - 1 is a si~2gula7~ he of the fum%m + 

4* I, We conclude with a brief discussion of the problem of the convergence or summability 

of the series &$k (~6) 121~~ in the region of existence of the corresponding function Fk (s, 8). It 
will be seen that our conclusions may be roughly expressed by saying’that whatever could be 
true is true. A Dirichlet’s series cannot be summable outside its half-plane of regularity, and it 
cannot be summable (C, r) unless its nth term is of the form o (927 : we shall show that our series 
is summable (with least possible order) except when these restrictions apply. 

THEOREM 7. The series I&#&+P is cowwged ifd > ck, c >O; ccnd sumnzubLe (C,- fl+8), 

for eve?y p&i& 8, if g > flk, c c 0. 
The case x = 00 is trivial, since ok= 1, and we suppose that X < ~0. We may confine our’- 

selves also to the case k > 1; for the result for k = 1 is an immediate deduction from the 
formula 

We shall in fact prove rather more than we have stated, when k > 1, viz. that the series is sum- 

mable (C, - 6’ + 6), where C’ = Min (a, I). 

When II- > 1, & (nQ) is of the form A (& (PZ@ & I/Q (- &)), where t,b,(~Ze) is the function 
(~21). It is therefore sufficient for our purpose to show that the series 

r3/& (nB) 7P, I S& (- n 0) 72-y 

are summable (c, - Q’ + 6) for Q > ok. Further, it is enough to prove this for real values of 8, 

and hence also, since qk (no) and qk (- n0) are then conjugate imaginaries, enough to prove it 
for the first series. This we do by a series of lemmas, 

+ The case X=a, ie a trivial deduction from (3*89). gularity at most a t3imple pole at 8 = 1, the residue being a 

t Thus ZIc is an integra1 function of 8 when XC do, This rational function r (8) of 8, Since r (8) vanishes for every 6 

conclusion may be extended aieo to the cafle X= 00 . For our for which 0 -K A c CO , it must be identically zero. 

argument shows that, in any case, Xk can have as a sin- $ See OUT paper (Q), Theorem 2. 
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42. Let p be a (large) positive integer, and let 0 < # < 1, - 1 < Q < /3 s a + 1 ; 

531 

Let A, be the contour L, + L1’ of the figure (in which the sense of description is indicated by 

an arrow j, A, be L, + Lk, and A be A, + A,. Finally, let C be the indented rectangle 

L,+ L, +M,+N~+N, + Mp 

In what follows A’s denote positive constants depending only on E, a, and P, and the O’s have 

a corresponding meaning. 

2;ennna L : ) S ($) 1 < A @-(a+Y 

This is a particular case of a known result. In fact the function f(Z) defined, for j z / < 1, by 
the series SP,P, has z = 1 for its sole singularity, and 

If(z)) < A 11 e zpa+l), 

so that / S ( c$) 1 = j f  (emi+) j < R 11 I ea+ j -(a+l) < A #--C+l), 

This is a particular case of a very general formula in the theory of reGdues*, 

* See Lindeliif, IA, ch. v, $ 53. 
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We may suppose that 0 < C#B ;( 8, and we begin by showing that 

X(p, +)=J,,Lz+-;)B --g9~+o(T),*.m.***.* ..I. . . . . . . ..(4*31) 
1 !4 

eb9i+ 2” - eati-1 dz + 0 (T), 1..*..~*..***...*.I..*.~...*,. (4~32) 
&+L, 

where T = $r@+l) pa-@. In the first place, by the theorem of residues, we have 

Now 

and so 

Hence the contributions of MI and & to the right&d side of (433) are of the form 

0 (pa+1 e-49 ) = 0 (T) (p+)8+’ eMAp+ = 0 (T), 

since fi + I > (1, so that (&,Y+l e -AM < A. Similarly the straight portions of I&, IV2 contribute 

Lastly, the curved portions of 2v, and IV2 contribute 0 (~~-8) = 0 (T). Thus the contour C, 
less L, -I- L2, contributes 0 (T), and (MI) is proved. 

For X (4) we have 

W) 1 

eezrie e-2&+ 
- p --- 

e2Z+i - 1 dx= 
i 

P - 
&+L! Ll’+& e2rwi - 1 dz=O(/m~ewA~+dy) 

I 0 e-APcP 
( I 

ao ya e-AY* dy) = 0 (e-AP+ 
0 

@‘a-l) = 0 (e-49 (&)@-a T) = 0 (T). 

This is (4m32). 
From (4.31) and (4#32) we deduce 

NOW 
z! 
I 1 i, 

on L,+L,. Hence the straight portions of L, + L, contribute 

0 pya.L- 
(I 3 P 

AUPdll)=O(~~~u.(~~-,e-A~~d~)=O(2-8)~~~yBe-dy(d~=O(TX 

since fl- a ~landy/psl. Finally the curved portions contribute 

0 (‘) = 0 (/P-q = 0 (T). 
P 

This completes the proof of Lemma N. 

4*4. We can now deduce that x .\I’k (~9) n-c is summable (C, - G’ + 8) for u > ~k;~ We may ’ 
suppose that Q < 1, since a convergent series, whose general term is 0 (‘]./~a), is summable 
(C, - 1 + 6)*. Also Q c 1, since X < 00. Hence we may sll,ppse that ck < 6 = u’ < 1. This being 

* 0. H. Hardy and J. E. Littlewood, ‘( Contributias to the tlrithmetio theory of pleriea ‘, Proc. Lodm Math. Sot. (Z), 
11 (19121, 411-478 (462, Theorem 37). 
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so, we take OL=-d=-d>--1,/3= - Q’ + 8 = a + 8 > a. We shall furthk suppose, as we may, 

that S<a-ukand 6~ J., so that p-a< 1. 
Now 

C g Y-v ((UB)) -#- ” u -k (S (p, (ue)) - 8((d))}, . l . . l I l l .(4D41) 
pr=l Y=  

provided that one of the series on the right converges. But 

l~(~,(ue))-s((;e))I=ls(Cc, ve)-8(a)l<A l;;ep”‘p+, 
by Lemma N, Also, since - /3 = Q - 6 > t& the series 

2 v-k 1 VB p-l 

is convergent, Hence z v-k] S(p, ye)-s(a)/ 
U=l 

is convergent, and its sum tends to zero (like pa+) as p - ob . It now follows from (4m41) that 

2 v-k s ((v0)) .~1~*,~....~.*~..*~*..~~.~.~.,,*~....*..~* (4*42) 

converges, and that the series 2 qk (no) n-” 

is summable (C, @), i.e. (C, - U’ + S), the sum being given by (4a42). This completes the proof of 

Theorem 7. 

COMMENTS 

This paper is concerned with the convergence and analytic character of X{d}n-3, considered in 
1923, 3 when 8 is a quadratic irrational, but now treated for general irrational 8. The problem 
stated in the penultimate paragraph of 8 1.2 is one of the unsolved problems mentioned in the 
Introduction. 
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SOME PROBLEMS OF DIOPHANTINE APPROXIMATION: AN 
ADDITIONAL NOTE ON THE TRIGONOMETRICAL SERIES 

ASSOCIATED WITH THE ELLIPTIC THETA-FUNCTIONS. 

BY 

G. H. HARDY and J. E. LITTLEWOOD 

New College Trinity College 

OXFORD. CAMBRlDWL 

I. In this nute we give &II alternative and more instructive proof of the 

fundamental theorem un which our earlier researches in this field1 were based. 

The theorem may be dated as follows. 

Theorem A. Suppose that 

(1. 4 O<XCI, 05851, Cd>1 

and 

(1.2) S(W)=S(W,x,8)=~~-"9"i"cos 212ne. 

0&7i~S-, 

The92 
1 -pi ai8’ 

(I* 3) s(w, x, d)- ee x 
v X 

8(X%, -;, i) -o(k) 

u?2iformly in CI) and 6 se 

i G. H. EARDY and CT. E, LITTLEWOOD, ‘Some problems of Diopbantine Approximation’, 
. Acta mdhemathz, 37 (IgIg), 193-238, and &X k&-i@ Phil. SW., 2X (r923)1 I---$ 

1 -- 
’ That is to q, the abeolnte valne of the left hand side is leas than kc * 2, where A is 

an tibeolu te consfant. 

1925, 4 (with J. E. Littlewood) Ada; Mathemtka, 47, 189-98. 221 
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Our earlier proof, which followed the classical lines of the calculus of 

residues, as exposed in Lindeliif’s book’, was fairly straightforward, but very long. 

Two other proofs have been given recently by VAN DER CORPUT? The proof 

which we give here proceeds on lines different from any of these, and seems to 

us in some ways the most natural. It has also the advantage of being appli- 

cable, in principle at any rate, to the Hum9 associated with any power of a 

a theta-function, such as the sum 

where Y (12) is the number of representations of n as a sum of two squares. 

The proof which we give here owes very much of its comparative simplic- 

ity to the criticism of Mr. A. E. INGHAM, to whom we submitted our original 

version. In particular Mr. Ingham pointed out to us the usefulness of the 

elementary identity (5. z), and we have rewritten the whole of @ 5-7 in accor- 

dance with his suggestions. 

2, We begin by showing that we may assume certain supplementary 

hypotheses without prejudice fo the generality of the theorem. 

In the firat place, since we are aiming at & resdt which holds uniformly 

in 0, we may suppose that o <8< I . The result for 8-o or 8= I will then 

follow by continuity. 

Next, we may suppose that 

(2. 1) ad-i 

is excluded from each of the sets of intervals 

' E. LTNDEL~F, Le cakul de8 rrhidt~, 1905. 
’ J. G, VAN DEB CORPWT, ‘u&r Summen, die mit den elliptischen 9-Funktionen eusammen- 

hiingen’, Math. Annalqn, 87 (I~zz), 66-77, and go (Igzj), I-X%. van der Corput proves a good 

deal more than is aaaerted by the theorem, stnd. his proofs appear for this reason to be more 
elaborate than they are. The first proof is based on the theory of Fourier series, while the second 
follows lines more like those of our original proof, on which it is (when reduced to its simplest 

terms) a considerable improvement. 
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where Q is an appropriate gositive constant. Here m = o, I , 2, . . . , and any 

negative part of any interval is to be discarded as irrelevant. 

To prove this, consider the interval I defined by 

ogl!.!.<a<M+ I =M+p. [ 1 v X 

and j’s, For each i is of length ---= 
v 

and .is followed by a complementary in- 
X 

terval k of length 

There may be no complete k inside 1. In this case there is at most one (com- 

plete or incomplete) i, and at most 

of 1 is inside i’s, Otherwise 1 contains at least one complete k, and the number 

of complete or incomplete 2:‘s does not exceed twice the number of complete k’s, 

The ratio of the total length of the i’s to that of the k’s is accordingly less than 

46 
I -29 

T 
which is less than 8 d if d’<- ; and then the length of the i’s is not greater 

4 

than 8 bp. A similar argument applies to the j’s, and the part of I, inside one 

interval or another of the two systems, can in no case exceed 16 6~. Our 

conclusion follows if S < $6 l 1 

Suppose now that Theorem A has beea established for k’s excluded from 

the i’s and j-k Any given value of ;1 lies in an 1, and there is therefore 

a A subject to our restrictive conditions .and differing from A by less than p. 

It is plain that, if we change A into A’, the alteration of the left hand side 

of (I. 3) is 

1 It would naturally be enBy fo improve on this number if it were necessary, 
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o(k) + o(i-:,)o(‘)=o(~)~ 

so that the theorem, if true for A’, is true for ;1. 

3. We write 

(3 1 l I  f (8)-f (8, e) = I + 2 2 e-71”fi8 ~0~ 2 tine, 

where s=crt it, a>o. It is well-known1 that 

We write also 

Elt = T (?a=o), &)I =2 (17>0). 

on writing s --ix for s and using (3.2). 

We may invert the order of integration and summation; for, when t is large, 

and 

= o(m) = O.(l t I), 

1 See for example E, LANDAU, H&dbuclb der Lehre van tie?* verteilmg dw &imza/ikn, 277. A’ 

2 See G. H. HARDY and M. RIPSZ, The general theory of Dirichlet’s se&a, 50 (Theorem 39). 

We require the result of the theorem for absolutely convergent series only. 
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m 
s 

5 t-h& 
is convergent. We have thus 

(3 3) . 

where 

If we suppose now that A=l/w is .non-integral, as plainly we may do without 

loss of generality, and differentiate (3. 3) formally with respect to c;t) , we obta’in 

139 5) 

where 

(39 51) 

This process is certainly legitimate if 2 Jn is uniformly conve?gent in a neigh- 

bourhood of the particular value of ct) considered. That this is SO will appear 

- incidentally in the sequel. 

4. Our main idea is to approximate to J,) , in (3, 5), by the saddle-point 

method or ‘method of steepest descents’. 

The saddle-points of est8) are given by L 

w ISEQ 

or 

s Z +;I -el --_I 
A 

-&‘N, 

’ See G. N. WATSON, Theory of Bessel Bhctiom, 235, for it general account of the method. 
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194 G, H. Hardy and J. E. Littlewood., 

say. The curve of ‘zero level’, given by % cP(s)=o, has t,he equation . 

o((T” 3- t”--Ny==o, 

and consists of the imaginary axis and the circle described un the line joining the 

saddle-poipts as diameter. It divides the plane into four regions, the ‘low’ regions, 

for which 5% m(s) < O, being the right hand inside and the left hand outside 

regions, 

We define the path C = CI + C2 by the lines CI and Cz from the point 

s=LNto l 

2 
Infinity through the upper and lower saddle-points respectively. The 

whole path lies in low ground, except at the saddle-points, and it 

through S=Y’X, since ( owing to the restrictions of § 2) 

cannot pass 

for any value of ~11. 
l 1 

‘V6fe can deform the path of integration in (3, 5 I) into C, 

if we introduce the appropriate correction when this deformation involves crossing 

a pole. This is so if and only if x > N, i. e. if 111-8 1 < Rx, and the correction 

required is accordingly 

which differs from 
1 

e 
- h7ri ,z i tP -- I 8 

2- - r- 
I/X 

e x s x269: --) - 
( x x 

We thus obtain 

where XL differs from JTL in being taken along C; and the proof of Theorem A 

is reduced to a proof that 
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5 . It is convenient to write 

X 
X Lx 

c-=- 

AT 6 
>o, l’=I~=wN>o, 

and to transform J,1- by writing LVs for s. We thus obtain 

where the path of integration r= r; -+ I‘, is C= CI + CL reduced in the ratio I : N, d 

I : 
so that .it passes through the points --i, 2, z l 

Since 

(59 2) 
I i(8- .;) i(s+i) i(2+ 1)x -z 

s-i s 2s(I +X) - 28(b---X) + s(s--iX)(I-X2)’ 

we may write (5, I) in the form 

(5 3) 
R 

n -(h;,,1-K,l,2+~n); 
5 

where 

(5. 34 

(50 33) L 
X 

1L= 
s 

e 
nY 8--f 

( ) s2+ I 
2Z(I -X”) 3 ds. 

(84X)2 

6. The integrals K R, 1 and K,&, 2 are linear combinations of Bessel functions 

I I 
of orders 2 and- ;, and may accordingly be evaluated as elementary functions? 

We have in fact 
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i 
. 

K - 
%l- 27c(IfX)VY 

g-237iY, z 
5 ,-2.zii.z 

27t: n Ax+C’ 

i , G 
K n, 2= 

e2ntY=- z 

2741 -X)VY 27x If 
Se 

2nil;‘ 
-- 

;1 nx-5’ 

Thus the contribution fo 27, of these integrals is 

when we combine the positive half of each series with fhe negative half of 

the other. 

Now 1 

O” g--3niR(a-8e) 

2 
2niRe 

e2titd (ix-@) 

iz+n-e=rre 
-a 

sin (Ax-4) d 

where 

and this is 

A=&[A]-’ 
2’ 

in virtue of the restrictions of 8 2. The second series may be treated in the 

Same way, so fhat the total contribution of Kn, 1 and K,l 2 is 0 1 

7. It remains only to discuss the contribution of L,, , It appears at once 

from a figure that, un either & 01” &, 

(7 ) l I  (8-ix1 >A(.l-xl, 

I  I  

sz >A, Is*+ I 1 <AIgI 

if 
I --g& and 
2 2’ 

I See, for example, T. J. I’A. BROMWICH, hjhik 8ede8. 
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(7 1 . 2 

197 

I 
if at-;, the A’s being absolute constants. Also 

is negative except when IT-O, and 

(7-3) I(s-+-Ao8 (-fd), +;)<A~ (o<-‘;). 

It U~OWS from (7, I) - (7m 3) that 

AX 
IL4 < (I-x)e(I +X) 

s 

AX 
io(e-A”d~~+(I-X)‘(I +X) 

s 
wl~-4~~~~~ 

1 -- 
2 

--03 

AX AI/X AX 

<(I-X)yI+xj (I-x)“Y+ 1. 
I- 

xIsy: d 

Thus the contribution of L,, is 

In these series there are at most four terms in which the denominator is less 

than unity, and the ccdribution of these terms is 

in virfue of the restrictions on ;1. The contribution of t.he remaining terms is 

obviously 0 (I). Thus the total contribution of Ln is 0 
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This completes the proof of the theorem. It is only necessary to add one 

word in justification of the assumption made provisiona.lly in 5 3, tlhat the series 

CJ,, is uniformly convergent in a neighbourhood of any particular value of ctl 

under consideration, The series has in fact been decomposed into a number of 

parts, all of which have been proved uniformly convergent by direct estimation 

of their terms, except those which were summed in 5 6. The uniform conver- 

gence of these last series is classical. 

COMMENTS 

The proof of the approximate functional equation of the theta-function given here is much 
simpler than the original proof given in 1914, 3. But it is not entirely self-contained9 in that, the 
functional equation for O(z) is assumed. See the references to Mordell and to Wilton in the 

comments on 1914, 3. 
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A SERIES OF COSECANTS. 

BY 

G, H, HARDY (OXFORD), AXD 5. E. LITTLEWOOD (CAMBRIDGE) 

[Read December 29, 2928.] 

1, We consider here some properties of the series 

W) (S) z -L 
n sin &r 1 w 2 && I 

where 0 is irrational+ The analytical and arithmetical peculiarities of these 

series resemble those of the series 

s *e”afly z (d- [se]-,)*1 

which have been discussed very thoroughly both by ourselves and by 

others? The analysis connected with the series (14) is however in some 

ways parCcularly simple, and, although many writers, ourselves included, 

have considered similar series from time to time, there are some obvious 

questiona concerning them which have remained unanswered, 

We do not aim primarily at generality. The ca*se in which we shall be 

interested particularly is that in which 

esa+L 1 
2a+ 2ac+ *I. 

= d(cP+l), 

where a is an odd integer. It will however sometimes be obvious that our 

arguments a.pply to wider classes of irrationala. In particular a good macy 

of our results hold lfor the class 0 of irrationals whose continued fractions 

have bounded co-efficienta. O-+L 
T 

‘-fiT, -P*- I;,. 

1 [s] ie the integral part of s:. 
s Eapcially Hecke, Mrowaki, asd ‘Bebnke, SW the list of papers at the end, 

Bdetlirrz of the Calczdtta Matliemtical 1930,3 (with J. E. Littlewood) 
So&et yt 20, 251-66. 237 
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We denote the general term of S by s,, and the Burn of its first TZ terms 

by S,, and use a similar notation in T and other letters. It is plain that 
there is no universal upper bound for S II valid for all irrational 8 ; I]S,l will. 

be, for appropriate 0 and rc, larger than any assigned function + (n). lt is 

also plain that S cannot converge for any 8, srince ] sin n&r / <A/d for any 

8 and an infinity of KL The first question which suggests itself is whether S, 

is boutided for any 8, and, if so, whether S is then summable by Ceshro’s or 

other means. Our first object is to answer this question by proving Theo- 
rem I below. 

Theorem I. There are quadratic B for .which S has the following proper& 

ties : 

(i) S osdhtca finitely ; 

(ii) S is nut summabh by any CesW mean ; 

(iii) S is summable by Riesa’s logarithmic means of any positive 

order. 

In particular ull this is true when 

where a is an odd integer, and the (Riesxian) sum uf the series ir* then 

The theorem shews that the behaviour of the series in these respects is 

like that of 
I-lsO+l+OtO+0-1$-o+.., 

(where the ranks of the non-zero terms are 1, 2, 4, B,...). The most difficult 
part of the proof is the proof of (ii, which we defer to $ 3. In 6 2 we prove 

the rest of the theorem, taking (i) for granted where it is necessary. 

Proof of Theorem I, (ii) and (iii>, 

29. It is convenient to work in terms of the series, 

(Z-11) 

a Here and later A=A (0) 

Qiue value ia immrtaxi81. 

& poeitive number depending only UD 0, 
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(which differ onlg trivially from S and T, becoming S and T when 8 is 

replaced by O+l). We shall also have to mnsider the series 

(2-13) f (4 =f b1 0) = 

is absoltitely convergent whest the red part 0 of sru+it ir su&iently Eargs ; 

and 

(2’14) O’y(s,e) +w’ #-I f(%;) 

where [, is the double zeta-fmction of Barnes.1 

For the proof, see Hardy and Littlewood, 3 (Lemma p, p- 29). There ~0 

consider the algebraic case. If 8 belongs to 0 (when of course it is not 

generally a@braic) the result holds for u> 1. See Hardy and Littlewood, 

Ik (Lemma 3, p. 216). 

Suppose DOW in particular that 

(2%) e- g-+&+& = qa”+l)--a, 
l a* 

where a is odd. We t&e 

og=J(a9+l)-a, w%~~a*+l)+a, 

(2’16) f0 ’ s 
= (2r)u[o(1-8, &&;d8 O8 d) 

as(s) sin $A cash {(s-l) log 0’) 
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The zeta-function is regular all over the plane, except for simple poles 

at s-0 and $=--I, and vanishes when s-2, 4, 6,.., .,* . . . . . . . 1 Bence f(s) is 

meromorphio, with poles st s=O, S= -1, and 

d+(Z++)“’ 
log w t 

.where 2 ia an integers positive or negative. If  now we write 

(297) ds)=Y(% Q=fb+l, d+l)=z ?ii 
,+l ,li, &$ 

Lemma 2. If e= J(a’ + I), where a Z’S an odd irtteger, then g(s) z’s a 

meromorphic funGtien of 8, regular except for pde6 at ss - 1, 8~ -2, id 

(2M) (22+ l)xi 
6=hi$ (J(a8+1)-a) 

We may remark in passing that the main result of the lemma, that 

g(s) is meromorphio, holds for all quadratic 8. The proof ia in principle the 

same &13 that which we have given in the special case, but it ia naturally 

more elaborate and (except whefi, ati here, ~11 the partial quotients of the 

continued fraction for &are even) it is necessary to treat the two fun&ion8 

simultaneously. g 

2% The Rieszian mean of )u,, of logarithmic type and order k, i8: 

(221) uk(w)=w-k r; 2c, (w-log ny 
log nga 

l Bee Banlea, pp* 338, 340. That the zeta-function which occura here vanishe8 

for Pa, 4*r..m*u follow8 from the regulwify of /(e) at thoere points, and may be vbfiad 

directIg from Barnes’ contour in&@. 
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When k=O and ew is an integer, U”(w) reduces to U,. I f  we suppose 

that, aa here, the series g(+~~~n-’ is absolutely convergent for o>O, we 

have 1 
c+i- 

(2’22) 
s, 

id 1 6 - eW”ds. &l+k 

The zeta-function in (2ml6), and 80 g(s), in of finite order tin the sense of 

Lindelijf and Bohr)’ in any ship q ~(t~q? It follows that, if k irJ a 

sufficiently large integer, we may deform the path of integration inb the 

line (-b-h, 4 +ioc ), where O< b< 1, if we introduce the appropriate 

corrections for the residues. We thus obtain. 

where R* is the residue of the integrand at the origin and R 1 a typical resi- 

due at a pole (2.18). 

The residue R* is the coefficient of 8’ in g(s) P’, which is a polynomial 

of degree k in w whose leading term is 

The series >R 1 is 

where G, is the residue of g(s). Since g(s) is of finite order, this series con- 

verges, absolutely, and uniformly in W, when I% is suffioientljr large, and is a 

periodii: fucction of W, with period 4 log w. Finally the integral in (2*23) is, 

for the same reason, the product of w-’ by an absolutely and uniformly 

convergent integral. It follows that 

IJO that U is summable, to sum g(O), by Riese 23 means of sufficiently high order. 

So far our argument demands no. unproved assumption. If  we now assume the 

k Hardy and Rieaz, 11, 50. p* 
g Hardy and Rieaz, 11, 14. p. 
3 Hardy and Littlewood, 3, p. 81. 
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truth of clause (i) of Theorem 1, it follows, by the ‘ convexity theorem ’ for 

Rieszian means ,1 that U is summltble, fo sum g(O), by means of any positive 

order. 

2’ 3. we have thus (subject to otxr provisional assumption) proved 

clause (iii) of the theorem. To prove clause (ii) we consider R&z’s 

’ arithmetic ’ means, known to be equivaren t to C&WO’s. B The arithmetic 

mean of U, of order Ii, is s 

($31) U’k’(zu)=~-kS ~,(w-fi)~, 
nsw 

s 
c+i- 

(2a32) U’k+~)= “‘z’i”’ 
77 9( ) 

w , 
s r(*+ lS+ k) 

w’ds, 

c-i= 

if w>O, c>O. The characteristic difference between this formula and (2*22) 

lies in the absence of the faotor w-k on the righthand side. 

It is plain that we may transform (2 4 8B) as we transformed (2 l 22). 

But there will be. no factor wok multiplying the series which corresponds to 

the series (2 n 24) and which is, like that series, periodic in UL It, will follow 

that U I W (w) oscillates finitely for sufficiently large k, when ZL’,->oo, and 

this will prove (ii). 

It is important to observe that we have proved incidentally, and without 

assuming t#he truth of (if, that the arithmetic means (and therefore the 

Ces$lro means) of sufficiently high order are bounded. As this observation 

plays an essential part in the proof of (i), we state it formally in a lemma. 

Lemma 3. The Oesiro means of U# of suficiently high order, are bounded, 

3.1. We pass to the proof of (i). It now becomes necessary to take 

account of the properties of the continued fraction for 8. 

1 See Riesz, 16;. Particular c&Beg of the theorem had been proved before by oumelvem 
and other writers. 

9 The only complefe proof of the equivalence is that given (after Rieszj by Hohson, 

13, pp. 90-98. 

8 Hardy and Riesa, 11, pl 23. 
j Hardy and Riesx, 11, p. 51. 
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Throughout what fotlows 0 and o refer to the limit process n,->oo or 

s->oo ; l the constants implied by the O’s depend on 8 (i.e. on a) only. 

Also A =A 0) denotes generally a positive number depending only on 8, 

c=c(e) a number between 0 and 1 depending only on 8. 

W’e suppose that 8 is defined by (Z+ 15), and that 

are the convergents to 8. Then p, =qoml t and pI and qI are of opposite 

parity. We denote by 2~’ the complete quotient corresponding to the partial 

quotient 2a, so that 

2af=2a+8= J(d+i)+a, 
and write 

Then 
de+1 =2a’q, +ql-y 

(341) q8+1cAq8r qr+lMf+A)q8~ qf8+1w+A)q8+l. 

It is familiar that 

(342) C c =(-1)’ ,$-c =.(-1.>‘* H-1- 8 
!I 8Qlfl 8 wta+r 

I f  Y is an integer less than q,, we have r 

for all integers a’. Also 

(3.14) cosec v&=0(v) 

for all v, and 

(3 ’ 15) I cosec v&r 1 >Av 

fur an infinity of v  (-e.p. ~=9,). 

34, We shall make repeated use of the following lemma, the form of 

which was suggested to us by Mr. E. C. Titchmarsh. 

l 8 ia tt positive integer ; the 

a Qerrun, 14, p1 m* 

s of 42 does nut appear again. 
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Lemma 4. Suppose that 01, that v<q,+l, md that v  isnot a mdtipk 

Of Qa- Then there is a Positive p(O) less thun 1 such that 

(3.21) l-C< sin v&r 

I I - <l-f-t: 
sin VC ,7r 

for all v for which either v0 or VC, di’ers from an thteger by less then 3, 

And for a21 v  

(3*22) cdsec v&r= O( 1 cosec VC ,7r 1 ).. 

Write v=rq,+p, where r=[v/4,], so that O<p<q, if r<Zn aqd 

o<p<qI-l if r=2a ; and write 

VC, =4, +fp 9 ve=fp +f’, 

where fp and I$ are integers and 1 fp 1 and 1 [ f’, I do not exceed - .I Then 
2 

The l&hand side is e r hy@iesi numerically less than 3 and the ]a& term 

on the righthand side k numerically less t.han 1 /qH < 2, It follows 

that ta’ =$ and that 

But 1 fp 1 21/q 8a Hence fp and ~ have the same. sign and 

it result plainly equivalent to (3-21). Asregards (3*22), this follows from 

(3b21) if either fyP or f’, is less thah Q, and is trivial if neither is less than i. 

’ I f, 1 may be b* in whiob caee there is ambiguity ; we may agree then to take’fp 
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qr-1 
313. Lemma 8. Z 1 

=O(q? 1 
1 sin%C,w 

When v  varies from 1 to qI -1, ffi assumes, each once, the valuee 

+x/g, (A=& 2,..m, As* q,) - 
the value +J, occurring, if at all, with one sign only. Hence 

2 coseca &,w=O {q/ 1+ ' +-1_+.., 
2; 39 > 

)=O(q,*), 

which proves the lemma. 

Lemma 6 1: 

Since q , + ,/q I is bounded, it is enough to prove 

term ti=q, contributes O(p,*). The remainder, by 

tribute 

O(S case@ ~&x)=O(q,~) 

this when ti=q,. The 

Lemmas 4 and 5, con- 

zP4. Lemma 7. I f  p and q are coprime integers of opp@te parity, and 

B (p, q)=‘i’ (-1)’ VPr cosec - , 
Y=l 4 

(3.42) 1-BCp, q)+L B(w)=~ 
$Q+q-i 1 1 

9 P w (z=-l)~xa~-l) - ?& 0’ 

1 1 

-4s (a+l)P 
dx. 

It is easily verified that the integrand is bounded for 2~1 and s:- -1. 

It followra from Cauchy’s Theorem that the value of the integral is 4i time8 

the sum of the residues of the integrand at poles above the real axis. Cal@u. 

lating these residues, we obtain (3042)~ 

Lemma 8, If C, =p I /q I is a convelrgent to 8, then 

(3*43) 

2 This leppna is not. actually used, and we include it because it ie interghing in ifealf, 
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We denote the integral in (3942) by J(p, 4). Making some obviona 
% elementary transformationa we obtain 

Qo 

1 1 1 I 
sinh w sinh +ta -JG cash a (w/2q) 

--I- 

1 
sinhg(w/2q) 1 1 1 =- 

- 29 s sinh w ljinh + WI-+? I 
0 

1 1 
4pq- cosh*(w/2q) 

+ 1 
sinhg(w/2y) 

where +=p{ q. The integral here is 

t-O0 Pw 1 
sinhnsinh t#d 3 

dw 
cwh’ w 

when q->oo, p/qb->8. It therefore follows from (3.42) that 

when B->oo. 

Now 

qq,, P,)=B(2aq,,,+q,-,, qr-t)=B(qr-3, h-a)=B(~m qd 

rnd so, from (344), 

=0(1)90 ( * )+o ( 2 ) +r.rn*rr* 

on repeating the argument. Since q, inareases more rapidly than a gee 
metrical progressioll, this is 0 (Q. 



We may observe that the results of Lemmas 6 and 8 are in frtct true 
for any 8 of 0 Etnd in particular any quadratic 8, Only slight ahanges rare 
required in the proof of Lemma, 6, or in that of Lemma 8 when zlll the partial 
quotients of 8 are even. But in the general case the proof of Lemma 8 
becomes more complicated became (&B in the extension of Lemma 2, referred 
to at the end of .§ 2.1) it is then nsoessrtry to consider simultaneously Burn8 

of two slight,lg different types, 

go (-1y 
3.5. bmma9. VqB (e)= iE a;nw =QW 1 

The contribution of the term v=q, is O(p,*), If O<u< q,, we hsve 

8in &r-sin vOr9=0 
(I 

sin $ I+-0,) 
I)=O (3 

by Lemmaa 4 and 5. The result now follows from Lemma 8. 

L0mm810, V.C~)&--k$& =0(n). 
? 

This is tbe principal lemma. It has been proved (Lemma 9) whets 

n=q,. If Q*<rr<q,,,, w0 u&n write 

fi=bp, -i-n,, 

since then, repeating the argument, we obtain 

v,=~1q,)+o(q,-~)+...=o~q,)=O(~):. 
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we writ0 

say. We first consider V,, r. We can omit the term v=(r+l)p I with error 

Wq,) : in the remaining terms v-q, + p, where O< p <q I l For such v  we 

have 

co880 ve?r - co8ec VC I T = 0 
(I 

sin 
VT 

%?&i+, ’ 
~050~ verr, cosec &,A 

I> 

by Lemma 4. Hence 

+(-1) 
+?, +p.) %--l 

>; 
-( qp 

p=l 
- =O(qA sin pCp 

by Lemmas 5 and 8. If  follows from @TL4 and (3453) that 

(3’54) v,=o(q,)+v’,l l 

In tho last term on the right we have v=bq, +p, where ()<pg,~ and 

248 



by Lemma 4. 

PROBLEMS OF DIOPHANTINE APPROXIMATION 263 

Hence 

by Lemma 5, From (3 * 54) and (3’55) we deduce (3*51) and so the lemma. 

.3m6. Lemma 11. I f  some Ceshro mean of U is bounded, and 

y+2~, + . ..+ny.=O(fi). 

then U, i8 bounded. 

We writa for convenience zc, = 0. Then 

Hence the difference between the CesAro means of U, of orders 0 and 1, 
is bounded, If fallows tlhat the difference between the means of orders k 
and h+ 1 is bounded, and this proves the Lemma. 

3’7. We can now complete the proof of the theorem. By Lemma 3, the 
Ces&ro means of U, of sufficiently high order, are bounded, By Lemma 10, 
the second hypothesis of Lemma 11 is satisfied, It follows from Lemma 11 
that U oscillafes finitely. 

Further Results. 

4% We add a few remarks about the behaviour of our series for general 
quadratic 8 or general 8 of class 0, without attempting b justify all that 

we say in detail. 

The arguments of § 6 302-305 are extensible, without new difficulties of 

principle, to any 8 of o ; the results 

(4Il) v, =0(n), IV. =O(nB) 

of Lemmas 10 and 6 hold for all such 8. When the quotients of 0 are al1 

even, but little elaboration is needed; in the general case there is the 
complication alluded to in $ 3% The results (411) are obviously ‘ best 

possible ’ for any & 
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The situation in regard tS U is a little more complex. It is easy to prove 
that 

(4.12) U.=O(log 9%) 

for till 6 of 0. For some 8, as we have seen, more is true (c, being 

bounded), but 1432) is the most that is true even for all quadratic 8, For 

quadratic 8, in fact, there are only two possibilities, tlk. U,& =0(I) and 

($43) &=A log n + O(1) (A#W* 

I f  is interesting to give an example of the secoCi case, 

Recurring to theanalysis of $Zal, let 

where a#b. Then 

where 

O=d ( > b (J(ab+l)- d(d)), 9,= 4 ;- (q&+1)- d(q)* a ( > 

we obtain, by analysis sitiilar to that of $2, 

The arithmetic mean of ‘D of order k is @en by (%32), with h(b) in play 
of g(s). The difference is that there ie now a double pole at the origin. 

Otherwise we may argue as in 5 2.3, and we tid that dk)(w) is, for suffi: . 
oietitly la;rge k, of the form 

A log w + 0 (I), 

A 
= 

J (b-u)r 
-12 log { .sr(d+1)- d@a>) 
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It follows (substantially, as in the proof of Lemma 11) that U, itself icr 

of khe smne form. If in particdar a ~2, kl, we find 

k$I/6-11 A= 
12 log (A- 42) 

I 
’ 

We add in ooncluaion that 

for all 8 of 0, a;nd that these results also are the be& possible of their 

kind. I 
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CORRECTIONS 

p. 254, footnote (2). Read: en’%P. 

p. 258, Line 4 from below. Read: Hence fp and f; have . I . 

COMMENTS 

As mentioned in the Introduction, it would be 
direct proof of the results of this paper. 

desirable to have a simpler and more 
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NOTES ON THE THEORY OF SERIES (XXIV): 

A CURIOUS POWER-SERIES 

BY G. H. HARDY AND J. E. LITTLEWOOD 

lifewived 13 November 1945 

1. This note originates from a question put to us by Mr W. R. Dean concerning series 
of the type 

. (1 1) lza 
Xn 

m sin 077 sin 2077 . , . sin 724%’ 

where 0 is irrational *, Series of the type 

l 

(1 2) Ca -2.Y 

‘a sin E&T 

are familiar: it is well known, for example, that 

WV c 
Xn 

sin non 

may have any radius of convergence from 0 to 1 inclusive, according to the arithmetic 
nature of -0. It is natural to ask how this radius is connected with that of 

(14 c 
Xn 

sin Bm sin 287~ . . . sin n0ti ’ 

and, more generally, how those of (14) and (1.2) are connected. 
We show here that the radius of convergence of (14) is usually half that of (142). 

We prove this by two methods each of which has points of interest. The first, which is 
rather oddly indirect, depends on an algebraical identity, the second on arguments 
of a type more usual in the theory of Diophantine approximation. 

Actually we shall use not (1.3) but 

( 1*5) c 
Xn -- 

n sin nBn ’ 

which has obviously the same radius of convergence. 

* See Proc. Cambridge PM. SW, 42 (1946)? 24. The actual series encountered by Dean was 

c 
cos 077 cos 2&T l .  l cos n&T xn 

sin877 sin28n...sin(n+ 1)&Z” 

1946, 1 (with J, E. Littlewood) Proceedings of the Cambridge Philo- 
aophical Society, 42, 85-90. 253 
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2. We begin by proving 

THEOREM 1. If the diw of convergence of (13) is p, where 0 sp 5 I, then thut of 
(1.4) is Qp. 

WeshowfistthatifIxI<l, Iplcl,and 

(24 f(w) = +&)+..., (2-2) F(x,q) = 1+ 5+ x2 
- l-q (1-q)(1-q2)+m**J 

then 

(2 3) . 

In fact 

and so 

(2 5) . 1 
ef(x,*) = (l-x)(1-qx)(&q2r$) ,., = G(x,q), 

say. Also G(x, gx) = (1 -x) G(x, q) and, if 

Q(x, a) = 1 +c,x+c2x2+ l **, 

tjhen 1 +c1qx+c2q”x2+ . . . = (l-x) (1 +c,x+c,x”+ l .*). 
Equating coefficients, we find that c,( 1 -qn) = cndl and so G(x, q) = F(x, q)*. 

If (lG5) diverges for all x, then (1.4) plainly does the same. We may therefore suppose 
p > 0; and we shall show that (2.3) is then still true when 1 x 1 c p and 

so that 141 = 1. 
q = q. = @ie, 

The series f (x, q*) = &+) = ii c (,,-nio)n - ?h sm ?t7To 

has aIs0 radius p. If 

then 

where A is an absolute oonstantt. Sincef(x, qO) is uniformly convergent for 

jxIsp-s<p, 

it follows that f(x, q) is uniformly convergent for 1 x f =< p - 6,O 2 5 5 1; and that 

f (x3 a) +f (x3 40) 
.when &+ 1, uniformly for I x 15 p - 8. Hence also 

F( x, q) = eR% d+ ef@, !I& 
with the same uniformity. 

* The identity (2.3) is naturally not a new one, though we cannot refer to a quite explicit St&t@- 
ment of it. The expression of ‘F(x, q) as an intiite product goes back to Euler (see for example 

Macmahon, Combinatory an&y&, vol. 2,2), and the transformation in (2-4) is one of a type familiar 
in the theory of elliptic functions. 

t For / ;--gz:~12= 4 sin9 fin0 

(1-Y”)B+4psin2nn8’ 

which does not exceed 16 if p s & or 2. if 5” 2 8. Actually the best &ue of A is 2. 
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It now follows from a familiar theorem of Weierstrass* that, if 

F(x, q) = CC,(q) xn, ef(x*Qo) = lzC,(q,) xn, 

then C,(q) + C,,(qJ when &-+ 1; so that 

Cn(qo) = limC,(q) = lim 
1 1 

(1 -q) .*. (1-qy = (l-40) .*. (l-q,“)’ 

Thus the functions in (%3) remain regular, and the identity valid, for 1 x 1 <p, when 
Q is replaced by qO. In particular, the radius of convergence of F(x, qO) is at least p, 
and therefore that of (b4) is at least +p* 

3. We have still to prove that the radius of convergense of P(z, aO) does not exceed 
p. From this point on we drop the suffix in go and suppose that Q = e2nie. 

If F(x, q) has a radius c greater than p, and p < 7 KC, then F(x, q) is regular, and has 
at most a finite number of zeros, in. 1 x I=< r; and hence 

(34 fW) = 5 PJog(a,-x)+w~ 
Z-1 

where 1 C+ 1 5 7, the p1 are positive integers, and #(x) is regular for 1 x 1 5 r. If a,, a,, . . , , a, 
are the a, with smallest modulus, say a, and 

% 
= we--ial (1 ggs, uscc,<2n, q+q if l*l’), 

then f(x, q) = 5 p,log-(we-i”J-x) + @(x), 
I=1 

where ti(x) is regular for 1 x ] s a, It follows on equating coefficients that 

wn 
S 

-=_ 

1-p 
CP ze 

nial + O(P), 

z-1 

whereO&<l,forrz>l;andsothat 

(34 

where 

= P+ZQ-+O(Sn), 

P= s;+o, Q = &~;cos~(a,-q+ 
Z=l 141' 

It, is now easy to derive a contradiction. It is plain that (3.2) is impossible if w 2 I, 

since then the right-hand side is bounded and the left is not. We may therefore suppose 
m < 1. Summing (3~2) from n = 1 to n = N, and observing that cc, =+ q, we obtain 

WV 

Hence, first, 

Iv 

s 
Wn 

N c- = - 4PN+O(1). 
n.=l sin2ne7r - 

Wn 
- = 4P+O(l)<H, 
sin2 988~ 

say, for all n. Secondly, since 0 is irrational, the numbers lze, taken mod 1, are uniformly 

* See for example Harkness and Morley, Introduction to the theory of u&ytic functions, 134-6. 
The theorem is stated there in the form in which the coefficients depend on an integral parameter 
im which tends to infinity (‘ Weierstrass’s double series theorem ‘). 

Alternatively, we mny appeal to the representation of C,(y) as an integral by means of Cauchy’s 
theorem, 
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distributed in (0,l) *. Hence, if N is large, and 7 independent of n, the number of n 

in (1, N) for which sin2 n&r < 11 is less than NC(r), where c(q) + 0 with 7. Thus 

for small 7, in contradiction to (3m3). 

It follows that the radius of convergence of QC, q) does not exceed p, and this com- 

pletes the proof of Theorem 1. It will be observed that this is a theorem about all 
irrational 8, whereas those in what follows are theorems about almost all-f-. 

4. The radius of (1.3) is 1 for almost all 0, in fact whenever 

(44 
1 

0 = a*+- 
a,+ l .*’ 

23,/q, is the rth convergent to 8, and 

P-2) a r+l = qey 

for every positive E, a condition satisfied by all but very abnormal 8. It follows that 
the radius of convergence of (14) is 8 for all such 8, so that . . 

lim VI cosec 7~0 cosec 2ne . . . cosec nd 1 = 2, 

W) 
for all such 0. 

y-1 n 
lim - C log 1 cosecmd 1 

n+anm=l 

On the other hand it is easy to show that 
1 n 

lim - C log 1 cosec rn7r0 
n-+ao ?bw=l 

Z log 2 1 

1 zlog2 

for all irrational 8. For, if we define a function fs(x), with period 1, as log cosec 7rx in 
(&I- 6) and 0 in the rest of (0,1), then fs(x) is Riemann integrable, and therefor@ 

1 n 
,‘Fm ,my8w) =jIf&)dx =~~~dlOg~Ose~~~d~. 

Hence lim: 5 log ] coscc 7~3~~0 1 2 lim A- 5 
---nmzl n nz=l 

f&(mO) 

l-6 1 
= 

s 

log cosec nxdx > 
s 

log coscc nxdx - E = log 2 - C, 
s 0 

for any c and a corresponding S. 
Combining our results, we obtain 

THEOREM 2. If 0 satkftes (4m2), then 

1 n 
bw lim - C log 1 cosec rnd 1 = log 2; 

n+a, n n&=1 

and this is true for almost all 8. 

* By a well-known theorem of Bohl, Sierpinski and Weyl: see Weyl, Ma%, Annalen, 77 (1916), 
313-52 (314), or Hardy and Wright, Introcluction to t7he theory of numbers, 378-81. 

t Except Th oorem 5, which refers to a special class of 0. 
$ By another theorem of Weyl, substantially equivalent to the theorem of uniform distribution 

already quoted. 
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It is also plain that, when (4.5) is true, the result of Theorem 1 may be extended to 
the more general series (1.1) and (1.2). 

THEOREM 3. The radius of convergence of (U 1) is half that C$ (14) for almost all 0. 

5. It is natural to ask for a more direct proof of Theorem 2, and for more general 
results of the type 

W) Iim 1 $ f(w9) = 
s 

1 

n-+00 wn=l 
/(x)~x, 

where f(x) is a function with infinities at x = 0 and x = 1. We suppose throughout 
what follows thatf(x) has period 1, so that 

where X is the difference of x from the nearest integer, that it is Riemann integrable in 
(&I - 6) for every positive 6, and that it increases steadily to infinity when x + 0 and 
x+1. We prove 

THEOREM 4. If  

(5-2) 
1 

f ( 
f(x) 

0 
log2 I+ log2 +x) dx < co 

X - 

then (4m 1) is true fur almost aZ1 0. 

THEOREM 5. If  the partial quotients a, of 0 are bounded, then (51) is true whenever 

the integral on the right is jinite. 
We might replace the logarithmic factor in ($2) by 

where jk is any positive increasing function for which 

s 

a dU 

u@(u) < O”* 

We use two lemmas, in which N > 0, h 2 2, and the results are asserted for almost 
all 8, viz. 

(a) tk number of n for which 

NsnsN+h, jnel<h-I, 

is O(log2h), uniformly in N; 

(b) the number of m for which 

lsmsn, ]nBI<h-l, 
is O(n log2 h/h). 

It is plain that (b) is a corollary of (a). To prove (a) we observe that, if it is false, there 
are, for large h, numbers n, and n2 such that 

h 
Nsn,<n,<N+h, p = n,-n,<- = 

log2 h ’ 

But then h>,ulog2hzplog2,x, j!8= 0 

and p is large with h, since 2 = O(h-I) is small, It is well known that this is false for 
almost all O*. 

* See for example, Hardy and Wright, 168. 
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If nowfs(x) is periodic, isf(x) in (&,I -S), and is 0 in the rest of (0, l), then 

s = iif = l n G+f&W + k + tf b-4 -h(me)> = sl +- s2, 

where c 
n k-0 2-~-1~~~75j~<2-~s 

f  (mt?) = 1 i 
n k=O 

T,, 

say. When 8 is small, f (me) is positive throughout &. 
The number of m in Tkk is, by (b), 

and one or other of 
f(m@<f(2-k-1S), f(~@~f(l-2-k-Q), = 

is true for each such ?n, according to the sign of mB. Hence 

<H = ‘f(x)log2 %Zx+ 
0 X s 

:J(z)log2 +$x), - 

for an appropriate H depending only on 0. Thus 

(54 O<S,<E 

for 6 s a&) and sufficiently large n. 

On the other hand 
sl -+/If8(x) dx = [I-‘f (x) ax 

when n+-oO, so that 
1 

(55) 
I s 
s1- f( v 1 

0 
x x,<e 

; 

for 6 s &(e) and sufficiently large n; and it follows from (53)-( 55) that 

is-~)(x)dx~ c2E 

for sufficiently large n. 

This proves Theorem 4. The proof of Theorem 5 is similar but simpler, since we can 
omit the logarithmic factors throughout the argument. 

6. We end with a remark about the actual series encountered by Dean. The effect 
of the factor (%!)-I is naturally to make p = 0~) for almost all 8 (though it may still be 
0 for sufficiently eccentric 8). If we omit this factor and consider 

(W c cos en cos 2077.. . cos n&r 

sin 6% sin 2Bn . ..sin(n+l)h 
xn, 

then the odd factor in the denominator does not affect the results. The effect of the 

cosines is to replace Jlog ] cosec TX 1 dx by Slog 1 cot nx 1 dx, log 2 by 0, and + by I j so 
that (6* 1) will have the same radius of convergence as (l-3). 

TRINITY COLLEGE 

CAMBRIDGE 
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CORRECTION 

13. 89. In the statement of Theorem 4, for (4.1) read (5.1). 

COMMENTS 

It is surprising that the problem raised should admit of such a simple answer 
that, the main interest 

be relevant. 
Theorem 4 is perhaps 

result. If j(x) is period 

well known that 

of the PaPer lies in the variety of types of reasoning that 

deserving of separate statement, being a useful supplement to a classical 
.ic with period 1, and is bounded and Riemann integrable in (0, l), it is 

l Apart from 
are shown to 

for any irrational 8. Now suppose j is no longer bounded but increases steadily to 00 as x + 0 

from the right or from the left. Then the result still holds for almost all 8 provided that 

0 

is finite, where #(u) is any positive increasing function for which 

O” du 

s qw 
mnverges. 
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2. ADDITIVE NUMBER THEORY 

(a) Combinatory Analysis and Sums of Squares 





INTRQDUCTION TO PAPERS ON COMBINATORY 

ANALYSIS AND SUMS OF SQUARES 

It is no accident that of all Hardy’s papers on additive number theory, those on 
modular forms come first in chronological order. The general idea is to determine 
(either exactly or approximately) an arithmetical function r(n) by means of the 

formula 
1 

r(n) = fi f(x)x-n-1 dx, 
n s 

where the ‘generating function’ 
f(x) = 2 r(?2)xn 

n=O 
is regular in the interior of the unit circle and the integral is taken along a circle 

I I X =r<l. 
The most interesting case arises when the unit circle is the natural boundary of 

the function J?(X). In many important cases the function f (@) is a modular form in 

r in the upper haIf-plane, so that the behaviour of f(eri’) as T approaches a rational 
number h/k is easily determined from the behaviour off(eniT) as T approaches 0. 

The first example of this type which Hardy dealt with, in collaboration with 
S. Ramanujan, was the partition function p1L9 the number of partitions of n into 

positive integers without respect to the order of the terms, but with repetitions 
allowed.* The generating function in this case is 

fi (l-x”)-l = I-t- g pp, 
Ti%=l n-l 

which is closely related to the well-known modular ‘discriminant’ : 1 

= &T fi (1 wenim7)24a 

? I 

4 
i; QC---L 

4 1 T !J \ 
m=l 

In their first paper on the subject (1917, 4) Hardy and Ramanujan had already 
obtained the result 

Their method consisted of the application of a Tauberian theorem to f (x) near x = I 

only. Though the method can and did lead to fairly general theorems, it could not 
produce results as deep as those found in their later work. 

In the paper (1918, 5), for which the papers (19 16, 10) and (19 I7, 1) are preliminary 
announcements,? Hardy and Ramanujan obtained a rapidly convergent asymptotic 
formula giving pn with an error term O(n-4). Twenty years later H. Rademacher 

(Proc. London Math. Sot. (2), 43 (1937), 241~54), by a slight but far-reaching modi- 
fication of the proof, replaced the asymptotic expansion by a convergent series for pm. 

* J. V. Uspensky alao investigated the asymptotic behaviour of pn by means of the contour integral; 
see Bull. de Z’Acad. des Sciences de Ruasie, (6) 14 (1920), 199-218. 

t An abstract of the paper itself wa8 publ&hed in PTOG, Loch Math. Sm. (a), 16 (1917), xxii. 
$ There was also an amouncement in Proc. London Math. Sot. (Z), 17 ( 1918) xxii-xxiv. 
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COMBINATORY ANALYSIS AND SUMS OF SQUARES 

The next paper (1918,2) deals with f+unctionsf(x) based on modular functions which 

have poles, but no essential singularities, in the upper half-plane. 
The paper (1920, 10) deals with the number r,(n) of representations of n as a sum 

of s squares. [ (1918, 10) is a preliminary announcement. $1 The relevant function is 
W 

e( )  
T= 

2 

@a% 

? 

n=- co 

which satisfies the functional equation 

(p) = e(-;)* 
Hardy and Littlewood had already studied the asymptotic behaviour of e(r), 
particularly in (1914, 3). 

By the use of the formula 
e(T)8 = f r,(n)&nT 

n-0 

and Cauchy’s integral formula, Hardy obtained an exact expression for r,(n) if 
5 < s < 8 and an asymptotic expression if s > 9. Hardy was, of course, aware of 
the fact that his results for 5 < s < 8 were not new, though he stresses quite rightly 
that his method deals simultaneously with even and odd values of s and presents 
a unified approach to the problem for all values of s, though the classical cases s = 4 
and especially s = 3 present some special difficulties. On the case s = 3, see T. Ester- 

mann, Proc. London Math. SW. (3, 9 (1959), 575-94. 
The whole matter was put into a more general context by C. L. Siegel [Alznals of 

Matk (2) 36 (1935), 527-6061. He proved not only that Hardy’s formula holds, 
mutatis mutandis, asymptotically for the representation of a number by any definite 

quadratic form with rational integral coefficients, but that it holds exactly if a system 
of forms is considered, which has one representative from each class in a fixed genus. 
As the number of classes of positive definite quadratic forms of discriminant 1 is one 
if and only if s < 8, it is now apparent why Hardy’s formula holds exactly for $ < 8 

only. H. H. . 

NOTE 

The four papers [1917, 1; 1917, 4; 1918, 2; 1918, 51 written in collaboration with Ramanujan 
are reprinted from CoLlected Pupers of S. Rumanujan (Cambridge, 1927). 

The reader is referred to Hardy’s own comments given there, and to Chapters 3, 8, 9 of his 
Ramnujun (Cambridge, 1940). 
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ASYMPTOTIC FORMULAE IN COMBINATORY 
ANALYSIS. 

BY 

G. H. HARDY. 

Trinity College, Cambridge (England). 

1. The researches of which I propose to give a summary 
here are the joint work of tOhe distinguished Indian mathemat- 
ician, Mr. S. RAMANUJAN, and myself. They are the result of 
an attempt to apply to the principal problems of the theory 
of partitions the methods, depending upon the theory of ana- 
lytic functions, which have proved so fruitful in the theory of 
the distribution of primes and allied branches of the analytic 
theory of numbers. 

The most interesting functions of the theory of partitions 
appear as t.he coefficients in the power-series which represent 
certain elliptic modular functions. Thus p(n), the number of 
unrestricted partitions of n, is tile coefficient of P in the ex- 
pansion of the function 

j(x) = 1 + &(n)P= 
1 

1 (1-2)(l-x*)(1,5y l * : 

If we wri.te 

where the imaginary part of z is positive, we see that f(x) ia 

1916, 10 Qtiatrikme Cmgrks des Mathdmztickm Soadnaves, Stock- 
holm, 1916,45-53. 265 
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substaptiallz the reciprocal. of the modular function called by 
TANNERY and MOLK h(z); that in fact 

The theory of partitions has, from the time of EWLER on- 
wards, been developed from an almost exclusively algebraical 
point of view. It consists of an assemblage of formal identi- 
ties - many of them, it need hardly be said, of an exceedingly 
ingenious and beautiful character. Qf asymlptolic formulae, one 
may fairly say, there are none. So true is this, in fact, that 
we have been unable to discover in the literature of the sub- 
ject any allusion whatever to the question of the order of 
magnitude of p(n)* 

2. The function p(n) mav of course be expressed in the L 
form of an integral 

U) Fw 
1 

J 
i( ) X 

E- 
2zi xn+l 

dx 

by means of CAUCHY’S Theorem, the path of integration en- 
closing the origin and lying entirely inside the unit circle. The 
idea which dominates this paper is that of obtaining nsymp- 
totic formulae for p(n) by a detailed study of the integral (-1). 
This idea is an extremely obvious one: it is the idea which 
has dominated nine-ten ths 

it theory of numhers; and 
of modern research in 

may seem very strange 
the analytic 

that it should 
never have been applied to this particular problem before. Of 
this there are no >doubt two explanations. The first is that 
the theory of partitions has received its most important deve- 
lopments, since its foundation by EULER, at the hands of a 
series of mathematicians whose interests have lain primarily in 
algebra. The second and more fundamental reason is to be 
found in the extreme complexity of the behaviour of the gen- 
erating function f(x) near a point of the unit circle. 

It is instructive to contrast this problem with the cor- 
responding problems which arise for the arithmetical functions 
a(n), 8(n), q(n), /l(n), d(n), c . . which have their genesis in 
RTEMANN’S Zeta-function and the functions allied to it. In 
the latter problems we are dealing with functions defined by 
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DIRICH~[~ET’S series. The study of such functions presents dif- 
ficulties far more fundamental than any which confront us in 
the theory of the modular functions, These difficulties, how- 
ever, relate to the distribution of the zeros of the functions 
and their general behaviour at infinity: no difficulties whatever 
are occasioned by the crude singularities of the functions in 
the finite part of the plane. The single finite singularity of 
&), for example, the pole at s = 1, is a singularity of the 
simplest possibla character. fit is this pole which gives rise to 
the 
meti 

dom 
cal 

inant terms in th&ymptotic formulae for 
fun&ions associated with c(s)7 To prove s 

the 
uch 

arith- 
a for- 

mula rigorously is often exceedingly “difficult; to determine 
precisely the order of the error which it involves is in many 
cases a probl.em which still defies the utmost resources of ana- 
lysis, But to writ-e down the dominant terms involves, as a 
rule, no difficulty more formidable than that of deforming a 
path of integration over a pole of tho subject of integration 
and calculating the corresponding residue. 

In the theory of partitions, on the other hand, we are 
dealing with functions which do not exist at all outside t.he 
unit circle. Every point of the circle ia an essential singularity 
of the function, and no part of the contour of integration can 
be deformed in such a manner as to make its contribution 
obviously negligible. Everv element of the contour requires ” 
special study; and there is no obvious m&hod of writing down 
a ‘dominant term’. 

The difficulties of the problem appear then, at first sigtlt, 
to be very serious. We possess, however, in the formulae of 
the theory of the linear transformation of the ellipt.ic functions, 
an extremely powerful analytical weapon by means of which 
we can study the behaviour of I(X) near any assigned point 
of the unit circW It is to an appropriate use of these for- 
mulae that the accuracy of our final results, an accuracy which 
will, we think, be found to be quite startling, is due. 

3. It is very important, in dealing with such a problem 
as this, to distinguish clearly the various stages to which we 
can progress by arguments of a progressively ‘deeper’ and less 

1 See G. H. TARDY and L E. LITTLEWOOD, ‘Some problems of Dio- 
phantine approximation (IX : 
elliptic Theta-functions)‘, 

The trigonometrical series associated with the 
Acta Mathematics, vol. 37, 1914, pp. 193-238, for 

applications of the formulae to different but not unrelated problems. 
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elementary character. 
as t ‘he particular pro blem is concerned) superseded by the later. 
But the more eleme n tary methods are likely to be applicable 
to other problems 

. 

The earlier results are naturally (so far 

in 
practicable. 

we have 
able number 

attacked this particular problem by a consider- 
of dif feren t methods, and cannot profess to have 

which the more subtle analysis is im- 

reached any very precise conclusions as to the possibilities of 
each. A detailed comparison of the results to which they lead 
would moreover expand this summary to a quite unreasonable 
length. I shall therefore content myself with referring to 
a brief note entitled ‘Une formule asymptotique pour le nombre 
des partitions de n’, which appeared in the Comptes Rendus of 
2 Jan. 1917, and to a full account of our researches which is 
to appear in the Proceedings of the London Mathematical Society;’ 
aI]d pass on at once to an account of the more powerful me- 
thods which give the best resul6s in this particular problem. 

4. In order to obtain a good approximation to p(n), we 
begin by constructing an auxiliary function P,(X) which is 
regular at all points of the unit circle except x = 1 and has 
there a singularity of a type as near as possible to that of 
f(x). We may then hope to obtain a fairly close approxima- 
tion by applying CAUCHY’S Theorem to f(x)- P(x) instead bf 
to P(z). For, although every point of the circle is a singular 
point of f(x), the point x = 1 is, to put it roughly, much the 
heaviest singularity. It foll.ows from the formulae of the trans- 
formation-theory that f(x) satisfies the equation 

(2) 

where 

so 
an 

that, when 
expon .ential 

x--, 1 by real values, f(x) tends to infinity like 

x’==exp - 

( 

47E2 
-1 ; 

log - 
) X 

’ Since this was written, the memoir here referred to haa been published* 
See Proc. Lo&m Math* BOG., ser. 2, vol. 17, 1918, pp. 75; 115, 
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2Jriip -- 
On the other hand it may be shown t#bat, when x= re q , 
p and Q being co-prime integers, and r - 1, J(x) tends to in- 
finity like an exponential 

( 
d 

exp 6q’(l-r) 1 
; 

and if x=re20ni, where 0 is irrational, f(x) can become infinite 
at most like an exponential of the type 

-(o(&)) rn 

5. The function required is 

F(x) = 

where 
t/l(n) = g (oosh yn- ‘) 9 

n 

This function may be transformed into an integral by means 
of a general formula given by LINDEL~F; and it is then easy 
to prove that the ‘principal branch’ of F(x) is regular all over I 
the plane except at x = 1; and that 

where 

is regular for x = 1. If we compare (2) and (3), and observe 
that f(x’) tends to unity with extreme rapidity when x tends 
to 1 along any regular path which does not touch the circle 
of convergence, we can see at once the very close similarity 
between tfle behaviour of f(x) and F(x) inside the unit circle 
and in the neighbourhood of x = 1. 
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k!pplying CATJCHY'S Theorem to f(x) - F(x), we obtain 

(4) + O(eDvG) t 

where D is any number greater than 

6. The error term in (4) is of an exponential type, and 
may be expected ultimately to increase with very great’rapidit-y. 
It was therefore with considerable surprise that we fuund what 
exceedingly good results the formula gives for fairly large values 
of n. For 32 = 61, 62, 63 it gives 1121538.972, 130Q121.359, 

X505535.606, while the correeb values are 1~21505, 1300156, 

1505409. The errors 33.972, - 34.641, 36 c 606 are relatively 
very small, and alternate in sign. 

The next step is naturally to direct our attention to the 
singular point of f(x) next in importance after that at x= 1, 
viz. that at x = - 1; and to subtract from f(x) a second 
auxiliary function, related to this point as F(x) is to x= 1 l 

No new difficulty of principle is involved, and we find that 

1 
where D is now any number greater than 3 C. 

@fi) 9 

It now be- 

comes obvious why our earlier approximation gave errurs alter- 
nately of excess and of defect. 

It is obvious that this process may be repeated indefinitely. 

The singularities next in importance are those at x = eini and 

J% the next those at x= i and. x = -i; and so on’. The 
next two terms in the approximate formula are found to be 

and 
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As we proceed further, the complexity of the calculations in- 
creases. The auxiliary function associated with the point 

zpni 
X =e Q involves a certain Z4p-th root of unity, connected 
with the linear transformation which must be used in order 
to elucidate the behaviour of f(x) near the point; and the 
explicit expression of this root in terms of 1) and q, though 
known, is somewhat complex. But it is plain that, by taking 
a sufficient number of terms, we can find a formula in which 
the error is 

where v is n fixed, but arbitrarily large, integer. 

7. A final question remains. We have still the recourse 
of making Y a function of n, that is to say of making the 
number of terms in our approximate formula itself a function 
of n. In this way we may reasonably hope, at any rate, to 
find a formula in which the error is of order less than that of 
any exponential of the type ,an; of the order of a power of n, 
for example, or even bounded. 

When, however, we proceeded to test this hypothesis by 
means of numerical data most kindly provided for us by Major 
P. A. MACMAHON, we found a correspondence between the real 
and the approximate values of such astonishing accuracy as 
to lead us to hope for even more. Taking n = 100, we found 
that the first six terms of our formula gave 

190568944.783 

+ 348 l 872 

- 2.598 

+ .685 

-I- + 318 

,064 

190569291.996, 

while 
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p(100) = 190569292; 

so that the error after six terms is only . OM. We then pro- 
ceeded tmo calculate p(ZOO), and found 

3, 972, 998, 993, 185.896 

+ 36, 282 w 978 

-87.555 

+ 5.147 

+ 1.424 

+ 0.071 

O*OW 

+ 0.043 

3, 972, 999, 029, 388.004; 

and Major MACRIIARON’S subsequent calculations showed that 
p(200) is in fact 

3, 972, 999, 029, 388. 

These results suggest very forcibly that it is possible t,o 
obtain a formula for p(n> which not only exhibits its order of 
magnitude and structure but may be used to calculate its exact 
value for any value of n. That this in fact is so is shown by 
the following theorem. 

Theorem. Suppose that 

where 

for all positive integral values of q; that p is a positive integer 
less than and prime to q; that cop,q is a 24 q-tit root of unity, 
defined when p is odd by the formula 

1 This term vanishes identically. 
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awl when q is odd by the formula 

‘tip,* = (+p(-[a(n-l) + & (4j (w-PpI +Pw]7ci) 1 

Q 
where -- 

0 
b is the sydml of LEUENDRE and JACOBI, and p’ is any 

posilive integer szxh that 1 -I- pp’ is divisible by q; that 

?472) = 2A,+, + O(?L.-:); 
1 

so that p(n) is, for all su&cieutly large values of n, the integer 
nearest to 

The proof of this theorem is naturally intricafe, but it in- 
volves no fundamental idea beyond those which I have ex- 
plained. 
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UNE FORMULE ASYMPTOTIQUE POUR LE NOMBRE 
DES PARTITIONS DE n 

(Cmytes Rendzcs, 2 Jan, 1917) 

1. Les divers problhes de la thborie de la partition des nombres ont &6 
&udi& surtout par les mathbmaticiens anglais, Cnyley, Sylvester et Mac- 
mahont, qui les ont abordbs d’un point de vue purement algbbrique. Ces 
suteurs n’y ont fait aucune application des m&hodes de la theorie des 
fonctions, de sorte qu’on ne trouve pas, dans la theorie en question, de 
formules asymptotiques, telles qu’on en rencontre, par exemple, dans la 
thborie des nornbres premiers. 11 nous semble done yue les rksultats que 
nous allons faire connake peuvent p&enter quelque nouveautk. 

2. Nous nous sommea occuph surtout de la fonction p (n), nombre des 
partitions de n. On a 

1 c10 I 
f(x)=(1-x)(l-x2j(1-~)~~.=~~(njxn (1x1< 0 

Nous avons pens& d’abord & faire usage de quelque thdor&me de caractere 
3’ccuMien : on dbsigne ainsi les th&or&mes rkiproques du thAor&ne classique 
d’Abe1 et de ses g6n6ralisations. A cette catkgorie appartient l’enonc6 
suivant : 

Soit g (5) = Saenxn une she de puhwances h coe&ielzts POSITIFS, teh? yu’o?z 
clit 

A 

quand x tend vers m par des valeurs positives. Alors on a 

logs,=log(a,+u,-t... +a,)-Z@n), 

quand n tend vers E’in&i f.  

+ Voir le grand trait6 Combz’nutory Atialysis de M. Y. A. Macmaholl (Cambridge, 

1915-16). 

$ Nous awns do& des gh&alisations &endues de ce thhr~me dans WI m&moire 

qui doit yaraftre dans un autre recueil. 

1917, I (with S. Rttmanujan) Cbnptes Rends, 164, 35-38. 



240 Une Furmule Asynxptotique 

En posant y (x) = (I- x) f (x), on c?l 

et nous en tirons 

A 
T2 

=--- 
6 

; 

p (n) = ,*JGn) (I + 4 I ..*,..,,,1.~~*...~.~*~.~,.~ (I) 
oh E tend vers zh avec l/n. 

--L,.-y ,,.. h-e...m-..,U __ .,.__, ” -_I- ..-3-y .I...--- 1 --.e.-,... -..-~--I-‘“.r__U----~-““- 
3. Pour pousser l’approximation plus loin, il faut recourir au th&or&me 

de Cauchy. Des formules 

avec un chemin d’intbgration convenable int&ieur au cercle de rayon un, et 

(fournie par la thborie de la transformation linkaire des fonctions elliptiques), 
nous avons tire, en premier lieu, la formule vraiment asymptotique 

p (n) r~, P (n) = 

On a 

p (10) = 42, p (20) = 627, p (50) = 204 226, p (80) = 15 796 476 ; 

P(10)=48, P (20) = 692, P (50) = 211590, P (80) = 16 606 781. 

Les valeurs correspondantes de P (n) :p (n) sont 

1945 ; 1904; 1965 ; 1951: 

la valeur approximative est toujours en excbs. 

4. Mais nous avons abouti plus tard & des r&mltats beaucoup plus satis- 
f&ants. Nous consid&ons la fonction 

I  . , . ,  l . . .  

(4) 

En faisant usage des formules sommatoires que dbmontre 11. E. Lindelijf 
dans son beau livre Le c&uZ des rtkidus, on trouve ni&ment que F(x) (on 
parle, il va sans dire, de la branche principale) a pour seul point singulier 
le point x = 1, et que la fonction 

F lx) &h) - “*J(logk) [exp{ci--I..} - 11 

est r&guliAre pour x= 1. On est conduit naturellement & appliquer le 
the’or&me de Cauchy & la fonction f(x) - F(x), et l’on trouve 
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oh lc dksigne un nombre quelconque supbrieur h r/46* L’approximation, pour 
des valeurs assez grandes de n, est t&s bonne : on trouve, en effet, 

p (61) = 1 121505, p (62) = I300 156, p (63) = 1505 499 ; 

Q (61) = 1121539, & (62) = 1300 121, Q (63) = 1505 536, 

La valeur approximative est, pour les valeurs suffisamment grandes de n, 
alternativement en exci?s et en dbfaut. 

5. On peut pousser ces calculs beaucoup plus loin, On forme des fonc- 
tions, analogues it F(z), qui prhentent, pour les valeurs 

X = - 1, pi, +i, i, -i, e)“i, I., , 

des singularitks d’un type t&s analogue A celles que phente f(x). On 
soustrnit alors de f ( ) x une somme d’un nombre fini convenable de ces fonc- 
tions. On trouve ainsi, par exemple, 

oh k dhigne un nombre quelconque plus grand que a~& 
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ASYMPTOTIC FORMULiFi FOR THE DISTRIBUTION 

OF INTEGERS OF VARIOUS TYPES* 

(Proceedings of the London iWathematical Society, 2, XVI, 1917, 13 2432) 

1. Statement of the problem. 

1% We denote by g a number of the form 

(1%) 2”2 zJa3 5”5 .  l . pap, 

where 2, 3, 5, . . . , p are primes and 

(Ml) a,>aj,>,al,>, . . . >,cc,; 

and by Q (3) the number of such numbers which do not exceed x: and our 
problem is that of determining the order of Q (LC). We prove that 

(142) 

that is to say that to every positive E corresponds an X, = x0 (E), such that 

(1*121) 

for X > 65,. The function Q (z) is thus of higher order than any power of log x, 
but of lower order than any power of x. 

The interest of the problem is threefold. In the first place the result 
itself, and the method by which it is obtained, are curious and interesting in 
themselves. Secondly, the method of proof is one which, as we shew at the 

end of the paper, may be applied to a whole class of problems in the analytic 
theory of numbers: it enables us, for example, to find asymptotic formulae 
for the number of partitions of n into positive integers, or into different 
positive integers, or into primes. .- Finally, the class of numbers q includes as 

a sub-class the “highly composite” numbers recently studied by Mr Ramanujan 
in an elaborate memoir in these Proceedings$ The problem of determining, 

with any precision, the number H(x) of highly composite numbers not 

exceeding x appears to be one of extreme difklty. Mr Ramanujan has 
proved, by elementary methods, that the order of H(x) is at any rate greater 

* This paper was originally communicated under the title rrA problem in the Analytic 

Theory of Numbers.” 

t Ramanujan, “ Highly Composite Numbers,” Proc. London Math. SW., Ser. 9, Vol, XIV 

1915, pp 347-409, 

1917, 4 (with S. Rarnanujan) Proceeding8 of the London Mathe- 
muGcal Society, (2) 16, 112-32. 277 



than that of log x* : but it is still uncertain whether or no the order of H(x) 
is greater than that of any power of log x. In order to apply transcendental 
methods to this problem, it would be necessary to study the properties of the 
function 

where h is a highly composite number, and we have not been able to make 
any progress in this direction. It is therefore very desirable to study the 
distribution of wider classes of numbers which include the highly composite 
numbers and possess some at any rate of their characteristic properties. The 
simplest and most natural such class is that of the numbers Q; and here 
progress is comparatively easy, since the function 

possesses a product expression analogous to Euler’s product expression for 

5( ) s , viz. 

where I, = 2.3.5 . . . pn is the product of the first rz primes. 

We have not been able to apply to this problem the methods, depending 
on the theory of functions of a complex variable, by which the Prime Number 
Theorem was proved. The function @ (s) has the line c = 0t as a line of 
essential singularities, and we are not able to obtain suficiently accurate 
information concerning the nature of these singularities. Bnt it is easy 
enough to determine the behaviour of @ (s) as a fun&on of the real variable s ; 
and it proves sufficient for our purpose to determine an asymptotic formula 
for @ (s) when s + 0, and then to apply a ‘I Tauberian ” theorem similar to 
those proved by Messrs Hardy and Littlewood in a series of papers published 
in these Proceedings and elsewhere:. 

This CL T,zuberian” theorem is in itself of considerable interest as being 
(so far as we are aware) the first such theorem which deals with functions or 
sequences tending to infinity more rapidly than any power of the variable. 

+ As great as that of 
log Lx J( log log JQ . 

(log log log P>+ 

l 

.  

see p. 385 of his memoir. 

t We write as usual 8= 0 +it. 

1 See, in pa.rticular, Hardy and Littlewood, Cl Tauberian theorems concerning power 

series and Erichlet’s series whose coefficients are positive,” Pwc. London M&L SOC., 

Ser. 2, Vol. XIII, 1914, pp+ 174-191 ; and Wome theorems concerning Dirichlet’s series,” 
Xessenpr of M&m2atics, Vol. XLIII, 1914, pp. 134-147. 
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2. Elementary results. 

29. Let US consider, before proceeding further, what information con- 
cerning the order of & ( x can be obtained by purely elementary methods. ) 

Let 

(2U) ln=2.3.5 ,..p,=,S@n~, 

where 9 (x) is Tschebyschef’s functiun 

9 (x) = 2 logp. 
P4X 

The class of numbers q is plainly identical with the class of numbers of the 
form 

(212) llbl l,bz 1 48 
l *a n I 

where bl>, 0, b, > 4)) l . . ) bn 2 0. 

Now every b can be expressed in one and only one way in the form 

(Z-13) b; = Ci 
1 

m 2” + Ci m-1 2”-’ + l l l + Ci 

9 3 

0~ 

where every c is equal GO zero or to unity. We have therefore 

(2.14) 

T.n 

??I 

Q n(z 

Z Ct,.i2j 

-e 
j-0 

i 

1 

= 5 fi &, j 54 = 5 @, 
i=l j=o dzf j=o 

say, where 

(2*141) rj = tfl, j I~% j . . . In% j, 

Let r denote, generally, a number of the form 

(Z-1 5) r = Jl%12Ca 7: %a 
l ”  n 1 

where every c is zeru or unity : and R (z) the number of such numbers which 
do not exceed x. If q < x, we have 

To < G 7-12< x, ?q<X, . ..I 

The number of possible values of rO, in the formula (Z+l4), cannot therefore 
exceed R (8) ; the number of possible values of rl cannot exceed B (x*) ; and 
so on, The total number of values of q can therefore not exceed 

(Z-16) S (x) = R (x) R (xi) R (x’) . . . R (x2-m), 

where = is the largest number such that 

(2*161) x2-= 2 2, x >, z2”, 

Thus 

(2917) Q (4 s 8 (4 

2.2. We denote byfand g the largest numbers such that 

(2*211) ?f<X, 

(Zm212) 11 1 <x;. 12"' g\ 
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It is known* (and may be proved by elementary methods) that constants 
~4 and B exist, such that 

(2221) 9 (2) 2 Lb (x 2 2), 

and 

(2.222) 

We have therefore 

(2*23) 

pnaBnlogn (n&1>. 

&f< X 

f logf = 0 (To;E), 

log f = 0 (log log x) ; 

and s 9 (pv) G log $9 E p, = 0 (log x), 
I 1 

E lg Y 0 Y = 0 (log x), g2 logy = 0 (log x), 
1 

(2-24) g=o&g,. 

But it is easy to obtain an upper bound for R (x) in terms off and g, The 
number of numbers Z, , I,, . . . , not exceeding x, is not greater than f; the 
number of products, not exceeding x, of pairs of such numbers, is a fortiori 
not greater than if (f - 1) ; and so on. Thus 

+ l **, 

where the summation need be extended to g terms only, since 

11 12”’ &Jg+, > x. 

gi forth-i, we have 

f  f  R(x)41+f+~+...+~<(l+f)B=eg~og(L-i-f)* 
l l 

Thus 

(2*25) R (x) = e&glwf) = ,O fh’(log MlwN, 

by (2%) and (2.24). Finally, since 

log $/x log log &c < 8 log x log log x, 

it follows from (296) a,nd (2.17) that 

(2*26) Q (x) =eup 0 
[ i( 

1 I 
1 +Q+3+‘..+5 I) &log x log log x)/l 

= ,o Ih’(log x log log “11, 

2.3. A lower bound for & (5) may be found as follows. If g is defined as 
in 2-2, we have 

11 1 2 . . . 1, <x < I,& I.. lglg+l. 

f  See Landau, Handbuch, pp, 79, 83, 214. 
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It follows from the analysis of 2.2 that 

and 11 1 2 l * *  

Thus x < &7”10w~ ; 

which is only possible if g is greater than a constant positive multiple of 

Now the numbers I,, I,, ., . , I, can be combined in 8 different ways, and 
each such combination gives a number q not, greater than GL Thus 

(2w31) 

where K is a positive constant. From (2%) and (2*31) it follows that there 
are positive constants K and L such that 

(Z-32) < log Q (x) < L 2/(log x log log x). 

The inequalities (2-32) g ive a fairly accurate idea as to the order of 
magnitude of & (x). But they are much less precise than the inequalities 
(1*121), T o o bt ain these requires the use of less elementary methods. 

3. The behuviour of @ (s) when s-0 by positive values. 

3.1. From the fact, already used in 29, that the class of numbers Q is 

identical with the class of numbers of the form (N2), it, follows at once that 

(194) 

Both series and product are absolutely convergent for u > 0, and 

(3.11) log@(s)=+(s) +&+(~s)s-$+(~s)+ . ..j 

where 

(3ml11) 

We have also 

(3’12) 

+( > 
l-2-8 

s =-e-+?-k&+2-“a-.~+ 9.. 

1 l \ 58’-1- -J + 0.. 
c - 
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3#2. LEMMA.-If x > 1, s > 0, then 

(3-21) 

Write x8 = eU : then we have to prove that 

(3-22) 
1 1 P 1 -- 

for all positive values of u ; or (writing w for +u) that 

(3.23) 

for all positive values of w. But it is easy to prove that the function 

is a steadily decreasing function of w, and that its limit when w -0 is & ; 
and this establishes the truth of the lemma, 

3*3. We have therefore 

(3.31) #O s = & - !Pl (4 = &2 - 6 (4 -I- 0 (11, 

where 

(3m311) 

From the second of these inequalities, and (2*221), it follows that 

A 
ca e-Asx 

- 

2 logx 
dx 

and so that 

(3m32) 4 (s) > Aj2*ee; dx + 0 (1). 

Qn the other hand there is a positive constant B, such that 

Thus 
%(x)<Bx (x@)*. 

and so 

(3.33) 

+ Landau, Handbuch, lot. cit. 
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3a4. hIMA.---lf H is any positive mm&r, then 

Given any positive number c, we can choose f: and LX, so that 

0 < j, (s) < wIds HcHudu = 0 {Js log (l/s)) = o’(l), 
2s 

I 

E 
O<*$ (s) < 2 HrH”du< 2e, 

0 

j, (s) =jtxHcHudu + o (I), 

0 < j, (s) < Ia lkH”du < E ; 
x , 

and so 

< 5~ + o (1) < 6e, 

for all suf3Eiciently small values of s, 

3-5, From (3-32), (3.33)) and the lemma just proved, it follows that 

(351) 

From this formula we can deduce an asymptotic formula for log @ (s). We 
choose IV so that 

(3m52) 

and we write 

say. 

In the first place 

(3’541) @I (s) = 
1+0(l) $1 - 

slog (l/s) 1 ?P’ 
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IIn the place 

+ (ns) = 0 
i 

l 
ns log (l/ns) 1 ) 

and log (l/m) > + log (l/s), 

if N < n < l/& It follows that a constant K exists such that 

(3.542) a* (8) < K 
c 

1 KE 

s log (l/s) Ncn n2 - < s log (l/S) ’ 

Thirdly, 2/s < ns < 1 in CD3 (s), and a constant L exists such that 

Thus 

L 
+ @) < 2/s log (l/s) + 

( :3m543) 
1; us 1 2L -- 

~3(s)~Jslog(l,s)~Yt~ 2/s’ 

for all sufficiently small values of s. 

Finally, in @, (s) lve /lave IZS > 1, and a constant J4 exists such that 

$3 (ns) < iW2-Y 

Thus 

(3.544) @4 (s) < M c 2-‘“s < SM c 2-n” < & = 0 (1). 
l/s<?& n I/S<?2 

- 

From (3*53), (3=541)-(3 544), and ($52) it follows that 

(3.55) log QB (4 = 1 
s log (l/s) 

[;1+001 (g +,,tpj 

where 

Thus 

(3-56) 

(3-57) @ (4 =exp {I+ 0 (I)] 6s~o;;l, ) 
[  

l 

S- 1 
4* A Tmbwian theorem 

4% The passage from (39) to (1.12) depends upon a theorem of the 
Cc Tauberian ” type, 

THEOREM A. Suppuse that 
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(4) A >o, a > 0; 

(5) &,e-+ is convergent for s > 0 ; 

(6) ,f(S)=&,e-A~s=exp 
[ 
{l+o(l)}A~-~ 

when s--f 0. Then 

A, = a, + a, + l .  l + a, = exp [{l + 0 (1)l BXnal(l+aJ (log X,)-B/@+a)], 

where _B = &l(lta) a-a/P+4 (1 + ~)l+[Plllta)J 1 

We are given that 

(491) (l-s)As.(log~)-P < logf(s) < (1 +s> AS-~(logf)-8, 

for every positive 6 and all sufficiently small values of s; and we have to 
shew that 

(4.12) 
(1 - E) Bx,a!(l+a) (log X,)-~i(l+a) < log A, 

< (1 + s) Bh,Ql+a) (log An)-@l(IsQ), 

for every positive E and all sufficiently large values of 12. 

In the argument which follows we shall be dealing with three variables, 
6, s, and ‘n (or m), the two latter variables being connected by an equation or 
by inequalities, and with an auxiliary parameter 6 We shall use the letter 7, 
without a suffix, to denote generally a function of 6, s, and n, (or m)*, which 
is not the same in different formula, but in all cases tends to zero when 8 
and s tend to zero and n (or m) to infinity; so that, given any positive E, we 
hue 

~+7~<“, 
for o<s<s,, o<s<s,, n>n,. 

We shall use the symbol l;lc to denote a function of &Y only which tends to 
zero with g, so that 

O-+Jl-W 
if c is small enough. It is to be understood that the choice of a f: to satisfy 
certain conditions is in all cases prior to that of 6, S, and ‘22 (or m). Finally, 
we use the letters 25, K, . tiC to denote positive numbers independent of these 

variables and of c, 

The second of the inequalities (4*12) is very easily proved. For 

(4931) An e-+ < U, e-Q + aa 62’ + . . . + cc,e-Q 

<f(s) < exp (t+6)AS--a log- 
i 

1 -@ 

( 11 s 
, 

(4.132) 43 < exp XI 

where 
1 -I3 

($9321) X=(l+S)AS- log- 
( ) 

+ Ls. 
s 

* 7 may, of course, in some cases be a function of some of these variables only. 
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We can choose a value of s, corresponding to every large value of m, such 
that 

(4.14) (I- 6) AUK-~-Q log1 
( > s 

-’ <A, < (1 + S) Aus-‘-~ (log ;)-‘0 

From these inequalities we deduce, by an elementary process of approximation, 

SD+a) (4.151) 

(4*152) 
1 
i=~logx,<log~< I+a 1 IL +%gh,, 

(4954) x < (1 + rl) Bh,“l(=+a) (log X,)+/(l+“). 

We have therefore 

(496) log A, < (1 + E) BT@~+~) (log h,)-o/(l+a), 

for every positive E and all sufficiently large values of n”. 

4.2. We have 

(4%) f  (8) = &q.p-hns = CA, (e--Q - &ws) 

hn+1 
=s:A, e-sxdx=i 

1 1 
An I 

ao &4 (x) e-sxdx, 
0 

where & (x) is the discontinuous function defined by 

csqx)=& (haa= bl+l)t, 
so that, by (496), 

(4*22) log Jr4 (Lc) < (1 + f) Bxalcl+a) (logx)-~l(l+a, 

for every positive E and all sufficiently large values of x. We have therefore 

(4*23) exp (I - 8) A s-a 

cexp i 
1 --q 

(l+S)Ara log- ( > s I 
for every positive 6 and all sufficiently smslfl values of S. 

f  We use the second inequality (4.12) in the proof of the first, It would be sufficient 
for our purpose to begin by proving a result cruder than (4%9, with any constant K on 
the right-hand side instead of (1 + E) B, But it is equally easy to obtain the more precise 
inequality. Compare the argument in the second of the two papers by Hardy and Little- 
wood quoted on p. 114 [pa 246 of this volume] (pp. 143 et q.). 

t Compare Hardy and Riesz, (‘ The General Theory of Dirichlet’s Series,” Cumbridge 
Tmcts in &xthematics, No. 18, 1915, p. 24. 
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We define x,, a steadily increasing and continuous function of the con- 
tinuous variable z, by the equation 

xz = b, + (x - n> (LSl 4,) (n~x~?zfl). 

We can then choose tiz, so that 

(4*24) 1 = l+cr h,l/W) (log &Jfl/(lfa). 
s UB 

We shall now shew that the limits of the integral in (423) may be replaced 

by (l- 5) A, and (I+ C) hi, where c is an arbitrary positive number less 

than unity. 

We write. 

(4.25) 

where H is a constant, in any case greater than 1, and large enough to sntisfy 
certain further conditions which will appear in a moment; and we proceed to 
shew that J1, Ja, J4, and J6 are negligible in comparison with the exponentials 
which occur in (4*23), and so in comparison with J3. 

4.3. The integrals J1 and Js are easily disposed of. In the first place we 

have 

(431) 

by (4.22) +. It will be found, by a straightforward calculation, that this 
expression is less than 

(4*32) (1 + 7) A (1 + a) H-a!(l+a) ra , 

and is therefore certainly negligible if H is sufficiently large. 

Thus J1 is negligible. To prove that J5 is negligible we prove first that 

sx > 4Bx+~“) (log x)-flI(‘+n), 

if x > Hh, and H is large enought, It folbws that 

a0 
<S e-6S”Z:dx = 9 ) 

0 

and is therefore negligible. 

* With 6 in the place of E. 

t We suppress the details of the calculation, which is quite straightforward. 
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4~4. The integrals Jz and Jd may be discussed in practically the same 
way, and we may confine ourselves to the latter. 

We have 

(4*41) 

where 

(4*411) q = (1 + 6) &I?++~) (log ,)-@/(I+@ - sx, 

The maximum of the function $ occurs for x = x0, where 

(4#42) A = (1 + 7) 2 
S 

X,IItl+al (log xp+4. 

From this equation, and (4*24), it plainly results that 

(4.43) (1-rl)~m<Xo<(l+r7)hm, 

and that x0 falls (when 6 and s are small enough) between (1 - r) A,~ snd 

(1 + 5) h?%* 

Let us write 

in J4. Then 

x=x&E 

q (x) = + (x0) + 4 (1 + 8) BE2 g {Z,“/(l+a) (logx,)-@lrl+a,], 
I2 

where x0 < x1 < x and GG fortiori 

(1--c)h,<x,< HA,. 

It follows that 

(4.44) g {x$t1+4 (log xJ-BlilSa) ] < - KX,4+4 -2 (log &J-P/tl+‘r)* 
la 

On the other hand, an easy calculation shews that 

(4-45) (1-q) As- logi 
(  > 

+ < + (x0) < (1 + 17) AP (lo&)-@ l 

S 

Thus 

(4-46) 

Since f: is independent of 6 and s, this inequality shews that J4 is negligible ; 
and a similar argument may be applied to J2, 
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4.5, We may therefore replace the inequalities (4m23) by 

(4m51) 

1 257 

Since &Z (x) is a steadily increasing function of x, it follows that 

(44521) 

exP 

(4.522) 

exP 

Or (4’531) 

(eTah - e-gs*m) ~4 ((1 - c) A,) < exp (1 + 6) A S- (logy +w} > 

(4-532) 

pm - e- 
1 -p 

csAm) &4 {(I + 5)X,} > exp ((1 - 8) AS- (log s) 
I 

+X,sb. 
J 

If we substitute for s, in terms of x,, in the right-hand sides of (4531) and 
(4m532), we obtain expressions of the form 

exp {(l + q) B&++“) (log &J-91(1M~). 

On the other hand &Am - e-Ssll, 

is of the form exp {9&#1*) (log &J+j(l*j ). 

We have thus 

(4.541) 
I 

A j( I- 3) h,J < exp {(I + 775 + 7) Bx$(~+) (log X?n)-~!~l*J}, I 
(4.542) 

A {(I + r) A,,) > exp { (1 - 715 - 7) Bhmul(l+“j (log &J-Bl(l+~). 

Now let Y be any number such that 

(4.55) (1 - 0 Lb G L 6 (I+ 0 b 

Since A&,-, + I, it is clear that uZZ numbers n from a certain point onwards 
will fall among the numbers Y. It follows from (4.541) and (4.542) that 

and therefore that, given E, we can choose first c and then n, so that 

(4.57) exp {(l - e) Bh,“lcl*) (log A&-~l(lsa)} < A (X,) 

< exp {(l + E) Bhnul(l+“) (log h,)-~~~l*)), 

for 122~. This completes the proof of the theorem. 
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4*6. There is of course a corresponding “Abelian” theorem, which we 

content ourselves with enunciating. This theorem is naturally not limited 

by the restriction that the coefficients a, are positive. 

(3) A >o, O<a<l; 

(4) A, = a, + a2 + . . . + a, = exp [{I + 0 (I)1 ALa (log q-q 

when n- a0 . Then the series 2 a,e-Q is convergelz t for s > 0, and 

f(s) = Cane-Q = exp (1 + o (l)} Bs-+-+) (lug y”-)] , 

where 

when s-0. 

Th e proof of th is theorem, which is naturally easier than that of the 
correlative Tauberian theorem, should present no difficulty to anyone who 
has followed the analysis which precedes. 

4.7. The simplest and most interesting cases of Theorems A and B are 
those in which 

x, = 72, p = 0. 

It is then convenient to write it’ fur e? We thus obtain 

THEOREM C. If A ~0, Otcrc 1, and 

lug A, = log (q + a2 + . . . + a,) - Ana, 

then the series &,xn is convergmzt for 1 LC 1 c 1, and 

log f (z) = log (&x,,z~) - B (I - x)-1(+, 

where B = (1 - a) @-CL) A11(1-,, 

whelz 1 by real values. 

If the coeficients are positive the converse inference is ulso correct. That is 
to say, ;$1 

A > 0, a > 0, 

md 

then 

where 

log f (x) - A (I - x)-, 

log A, - B na/(l*), 

B = (1 + a) pl(1*) ~l/w4* 

5. Application to our problem, and to other problems in the 
Theo?-y of Numbers. 

5-l. We proved in 3 that 

(3.56) 
7T2 

log @ (‘) - 6s log (l/s) ’ 
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In Theorem A take 

xm= log 12 , A=$, a=l, /3=1. 

Then all the conditions of the theorem are satisfied. And A, is Q (n), the 
number of numbers Q not exceeding n, We have therefore 

(5.11) 

where 

(592) 

5.2. The method which we have followed in solving this problem is one 
capable of many other interesting applications. 

Suppose, for example, that R, (R) is the number of whys in which n can 
be represented as the sum of= number of rth powers of positive integers? h 
We shall prove that -- - 

_---A+-- 

(5.21) log R, (n) - (r + 1) 

In particular, if P (n) = R, (n) is the number of partitions of n, then 

(5*22) log .P (n) - 7T 
2n Jc > 3’ 

We need only sketch bhe proof, which is in principle similar to the main 
proof of this paper. We have 

and SO 

(5’23) f (4 = 5 [R, (n) - R, (n - I)1 es”” = $ [&$+ 
1 - 

It is obvious that R, (n) increases with n and that all the coefficients in 
f(s) are positive. Again, 

(5*24) 

where 

(5.241 + (s) = ii2 e-V 
2 

* Thus 28=33+13=3. 23+4. 1 3=2.23+12.l3=23+20.13=28, 13: 

and R3 (28) = 5. 

logf (s)=~log(~~)=~(e-8”+~~~2sv~+...) 
2 - 

The order of the powers is ;~upposed to be indifferent, so that (e.g.) 33+ l3 and 13+ S3 ~0 

not reckoned as separate representations. 

t & (0) is to be interpreted as zero. 



But 

(5.25) 4(S)-r(E + l)s-‘/: 

when s-0 ; and we can deduce, by an argument similar to that of 3~5, that 

(5*26) logf(s) - r (; + 1) 5(3 + 1) s-Ii’* 

We now obtain (5*21) by an application of Theorem A, taking 

)Ln=n, a=-, z P=O, A=$+1)5(i+lj. 

In a similar manner we can shew that, if 8 (n) is the number of partitions 
of n, into diftwent positive integers, so that 

IZS (n) emns = (1-t edg) (1+ Czs) (1+ e+) + l . . 

1 
= 

then 
(1 - P) (1 - e-3s) (1 - e+) . . . ' 

(S-27) logS(?2)Vr 
Jc > 

f ; 

that if Tr (‘n) is the number of representations of n as the sum of rth powers 
of primes, then 

(5.28) 

log Tr (n> - (r + 1) {F (; + 2) c (; + l)}r”7+1’ PI~P+~) (logn)-“I(T+lj ; 

and, in particular, that if T (n) = T1 (n) is the number of partitions of n into 
primes, then 

(5%1) log T (n) - Jj 
2T&%) l 

Finally, we can shew that if r and s are positive integers, a > 0, and 
O&sl, and 

(5a291) 

then 

Fd# (n) x”= 
{(l+ ax) (1-t axz) (l+ ax3) . ..I’ 
{(l - bx) (1 - bx2) (1 - bti) .a.~“’ 

where 

(5.2921) 

In particular, if a = 1, b = 1, and r=s, we have 

(5*293) ~~(n)x~=(1-2x+21-2x9+...)-: 

(5.294) 1% + (n> - T 2/(m). 

[Added KU& 2&h, 1917.-Since this paper was written M, G, Valiron 
(‘I Sur la croissance du module maximum des s&es enti&res,” Bulletin de la 
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sOci&e’ mathdmatiqw de France, Vol. XLIV, 1916, pp. 45-64) has published a 
number of very interesting theorems concerning power-series which are more 
or less directly related to ours. M. Valiron considers power-series only, and 
his point of view is different from ours, in some respects mure restricted and 
in others more general. 

He proves in particular that the necessary and su$icierd conditions that 

where M (r) is the m&mum modulz~ off(x) = ~Za,+n for 1 s I= r, are that 

f or n = np (p = 1, 2, 3, . ..). where nP+&aP+l and +-to as p-,00. 

M. Valiron refers to previous, but less general or less precise, results 
given by Bore1 (Lepotis sur Ees s&es d termes po&fs, 1.902, Ch. V) and by 
Wiman (“ Uber dem Zusammenhang zwischen dem Maximal-betrage einer 
analytischen Funktion und dem grijssten Gliede der zugehGrigen Taylor’schen 
Reihe,” Acta Mathematics, Vol. XXXVII, 1914, pp. 305-326). We may add a 
reference to Le Roy, “ Valeurs asymptotiques de certaines s&&s procbdant 
suivant les puissances entSres et positives d’une variable rbelle,” BdZetin des 
scienJces mnthdmatiques, Ser. 2, Vol. XXIV, 1900, pp. 245-268. 

We have more recently obtained results concerning P (n), the number of 
pwtitions of n, far more precise than (5*22). ] 
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0N THE COEFFICIENTS IN THE EXPANSIONS 
OF CERTAIN MODULAR FUNCTIONS 

(Proceedings oJf the RoyaZ Society, A, WV, 2919, 144-155) 

1. A very large proportion of the tnost interesting arithmetical functions 
-of the functions, for example, which occur in the theory of partitions, the 
theory of the divisors of numbers, or the theory of the representation of 
numbers by sums of squares- occur as the coefficients in the expansions of 
elliptic modular functions in powers of the variable Q = e? All of these 
fu.nctions have a restricted region of existence, the unit circle ( $11 = 1 being 
a “ natural boundary ” or line of essential singularities. The most imy>ortant 
of them, such as the functions* 

. 
(1.1) (~~/r)l~A = ~~((1 -9”) (I - 4”) .,.j24, 

l 

(12) %~(0)=1+2q+2q4+2q9+..., 

l (13) 

are regular inside the unit circle ; and many, such as the functions (PI) and 
(1*2), have the additional property of havingL no zeros inside the circle, so that 
their reciprocals are also regula3 

In a series of recent paperst we have applied a new method to the study 
of these arithmetical functions. Our aim has been to express them as series 
which exhibit explicitly their order of magnitude, and the genesis of their 
irregular variations as n increases. R7e find, for example, for p (n), the number 

* We follow, in general, the notation of Tannery and Molk’s l?+Mments de la the’orie 
des jonctions eZl@tiques. Tannery and Molk, howover, write 166 in place of the more 

usual A. 
f (1) G. H, Hardy and S, Ramanujan, “Une forrnule asymptotique pour le nombre 

des partitions de n,” Comptes Rendus, January 2, 1917; (2) G. H, Hardy and S. 

Ramanujan, “Asymptotic Formulae in Combinatory Analysis,” Proc. London Mu& 
XOC,, Ser. 2, Vol. XVII, 1918, pp, 75-115; (3) EL Ramanujan, “On Certain Trigono- 

metrical Sums and their Applications in the Theory of Numbers,” Truns. CCCW&. 

Phil. XOC., Vol. XXII, 1918, pp. 259-276; (4) G. H. Hardy, “On the Expression of a 

Number as the Sum of any Number of Squares, and in Particular of Eve or Seven,” 

Proc. lVational Acad. of Sciences, Vol, IV, 1918, pp. 189-193: [and G. H. Hardy, “On 
the expression of a number as the sum of any number of squares, and in particular of 

five,” Trans. Amsrimn Math. Sot., Vol. XXI, 1920, pp. 255-2841. 

1918, 2 (with S. Ramanujrtn) Proceedings of the RoyaE Society, A, 95, 
144-55. 



of unrestricted partitions of 12, and for ra (n>, the number of representations 
of n as the sum of an even number s of squares, the series 

where 

and our methods enable us to write down similar formulae for a very large 
variety of other arithmetical functions. 

The study of series such as (1.5) and (1%) raises a number of interesting 
problems, some of which appear to be exceedingly difficult. The first purpose 
for which they are intended is that of obtaining approximations to the 
functions with which they are associated. Sometimes they give also an exact 

representation of the functions, and sometimes they do not. Thus the sum 
of the series (ln6) is equal to r8 (-n) if s is 4, 6, or 8, but not in any other case. 
The series (l-5) enables us, bv stopping after an appropriate number of terms, 
to find approximations to p (91) of quite s tling accuracy; thus six terms of * 
the series give p (200) = 3972999029388, a number of 13 figures, with an error 
of OaOO4, But we have never been able to prove that the sum of the series is 
p (n) exactly, nor even that it is convergent. 

There is one class of series, of the same general character as (1.5) or (P6), 
which lends itself to comparatively simple treatment. These series arise 
when thegenerating modular function f(q) or 4 (T) satisfies an equation 

L*VJ ; \ i-0 \- _ 

where 12 is a positive integer, and behaves, inside the unit circle, like a 
rational function ; that is to say, possesses no singularities but poles. The 
simplest examples of such fr-xnctions are the reciprocals of the functions (1.3) 
and (P4). Th e coefficients in their expansions are integral, but possess other- 
wise no particular arithmetical interest. The results, however, are very 
remarkable from the point of view of approximation ; and it is, in any case, 
well worth while, in view of the many arithmetical applications of this type 
of series, to study in detail any example in which the results can be obtained 
by comparatively simple analysis. 

We begin by proving a general theorem (Theorem I) concerning the 
expression of a modular function with poles a,g a series of partial fractions. 
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312 On certain Mudular Functions 

This series is (as appears in Theorem 2) a “ PoincarA’s series ” : what our 
theorem asserts is, in effect, that the sum of a certain PoincaA’s series is the 
only function which satisfies certain conditions. It would, no doubt, be 

possible to obtain this result as a corollary fruti propositions in the general 
theory of autoxnorphic functions ; but we thought it best to give an inde- 

pendent proof, which is interesting in itself and demands no knowledge of 
this theory. 

2. TEEORE:M 1. SU~OS~ that 
b l 

(2 1) f(q) =f bm = 4 (7) 
is WgulaP for q= 0, has no singularities save poles within the unit circle, and 
satisfies the functional equation 

1 
(2 2) cp (7) = (a + b7)“$ (ST) = (a + bT)?y (T), 

n being a positive integer and a, b, c, d any integers such that ad - bc = 1. Then 
. 

(2 3) f  (4) = =, 

where R is a residue of f  (Nkl - 4 

at a pole off(x), zy 1 Q ) < 1; whlile $7 [ q 1 > 1 the su/m uf the series on the right- 

haqkd side of (2-3) is zero, 

The proof requires certain geometrical preliminaries. 

3. The half-plane I(T) > 0, which corresponds to the inside of the unit 
circle in the plane of q, is divided up, by the substitutions of the modular 
group, into a series of triangles whose sides are arcs of circles and whose 
angles are $T, $T, and 0”. One of these, which is called the fundamental 

P@.QF. (P) t, h as its vertices at the points p, p2, and ioo , where p = etd, and 
its sides are parts of the unit circle 17 I= I and the lines R (T) = + ha 

Suppose that Fm is the “Farey’s series ” of order 132, that is to say the 
aggregate of the rational fractions between 0 and 1, whose denominators are 
not greater than m, arranged in order of magnitude:, and that h’/lc’ and h/k, 

where 0 < h//k' < h/k < 1, are two adjacent terms in the series, We shall 
consider what regions in the r-plane correspond to P in the T-plane, when 

. (3 1) 
h-kr 

(3*2) T =hw;. 

Both of these substitutions belong to the modular group, since hk’ - h’k = 1. 

The points i~o, QI -8, in the Z’-plane correspond to h/k, (h + Zh’)/(~c + Zk’), 

* It is for many purposes necewxry to divide each triangle into two, whose allglee are 
9 V, +, and 0 ; but this further subdivision, is not required for our present purpose. For 
the detailed theory of the modular group, see Klein-Fricke, Vorkesungen iiber die Thmrie 

der E?Zi’ti~~h i!fodulfunktionen, 189&l 892. 

t See Fig. 1. 
$ The first and last terms are O/1 and I/L A brief account of the properties of Far+ 

scriea is given ill $43 of our payer (2),, 



(h - Zh’)/(lc - 21~‘) in the T-plane. Thus the lines R (T) = 9, R (!i!‘) = - 8 corre- 
spond to semicircles described on the segments 

h h-2h’ 
p m 

respectively as diameters, Similarly the upper half of the unit circle corre- 
sponds to a semicircle on the segment 

Fig. 1. 

The polygon P corresponds to the region bounded by these three semicircles. 
In particular, the right-hand edge of P corresponds to a circular arc stretching 
from h/k (where it cuts the real axis at right angles) to the point 

I 
(3 3) 

htld + hlc + 4 (hlc’ + h’k) -+- 8; d3 _-- - _- .- 
k” + kk’ + lcf2 

corresponding to T = p. 

Similarly we find that the substitution (3.2) correlates to P a triangle 
bounded by semicircles on the segments 

In particular, the left-hand edge of P corresponds to a circular arc from h’/k’ 
to the point (3m3). These two arcs, meeting at the point (3*3), form a con- 
tinuous path o, connecting h/k and h//k’, every point of which corresponds, in 
virtue of one or other of the substitutions (39) and (3*2), to a point on one 
of the rectilinear boundaries of P. 

* Fig. 2 illustrates the case in which h/k- -3, K/k’=+. These fractions are adjacent in 
Ffi and F6, but not in FT. 
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Performing a similar construction for every pair of adjacent fractions of 

F rn? we obtain a continuous path from 7 = 0 to 7 = 1. This path, and its 
reflexion in the imaginary axis, give a continuous path from T = - I to 7 = I, 
which we shall denote by a,. To -Iz, corresponds a path in the q-plane, 
&,&b,x~ call Hm ; Hm is a closed path, formed entirely by arcs of circles 
which cut the unit circle at right angles. 

The 

Fig. 2. 

region shaded horizontally corresponds to P for the substitution (3-I ), that shaded 
vertically for the substitution (3%). The thickest lines shew the path O; the line of 

tnedium thickness shews the semicircle which corresponds (for either substitution) to 

the unit semicircle in the plane of Y’. The large incomplete semicircle passes through 
r z 1. 

Since 

the path w from h’/lc’ to h./k is all-ays passing from left to right, and its 
length is less than twice that of the semicircle on (U/k’, h/k), i.e., than rrr/lck’. 
The total length of II, is less than 2~; and, since 

the length of H, is less than 27~. Finally, we observe that the maximum 
distance of & from the real axis is less than half the maximum distance 
between two adjacent terms of &, and so less than 1/2m*. Hence & tends 
uniformly to the real axis, and H, to the unit circle, when mea l 

4. The function + ( ) 7 can have but a finite number of poles in P; we 
suppose, for simplicity, that none of them lie ox1 the boundary. There is then 
a constant K such that If(q) ] < K on the boundary of P. 

* See Lemma 4% of our paper (2). 
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We now consider the integral 

l (4 1) 1 
I 
f-k4 dx 

-  -  

ihi z-q ’ 

where 1 q I< 1 and the contour of integration is Hm*. By Cauchy’s Theorem, 
the integral is equal to 

where R is a residue of f (x)/(4 - x) at a pole of f(x) inside E&J-. To prove 
our theorem, then, 
zero when m-t w , 

we have merely to shew that the integral (49) tends to 

Let ol’ and o1 be the left- and right-hand parts of o, and cl’, cl and r the 
corresponding arcs of H,. The length of O, is, as we have seen, less than 
&+k’, and that of 53 than $+‘/?&A Further, we have, on cl, 

Thus the cont’ribution of & tu the integral is numerically less than 
C/(klc’n+l), where C is independent of 112; and the whole integral (49) is 
numerically less than 

where the summation extends to all pairs of adjacent terms of Fm. 

M7hen v is fixed and m > U, the number of terms of Fm whose denominators 
are less than Z, is a function of v only, say N(V). If h/k is one of these, and 
V/k’ is adjacent to it, Ic + lc’ > ml, and so k’ > m - u, Thus the terms of (42) 
in which either k or k’ is less than v contribute less than 8CN (u)/(nz - v). 
The remaining terms contribute less than 

45 1 4c - --=- 
vn lcr v” l 

Hence the sum (4-3) is less than 
8CN (v) + FC --“-- -- - 

97X-V vn ’ 

and it is plain that, by choice of first v and then rrh, this may be made as small 
as we please. Thus (4.1) tends to zero and the theorem is proved. It should 
be observed that CR must, for the present at any rate, be interpr&ed as 
meaning the limit of the sum of terms corresponding to poles inside Hm ; we 
have not established the absolute convergence < of the series. 

* Strictly speaking, f(x) ia not defined at the points where Hm meets the unit circle, 

and we should integrate round a path just inside Hm and proceed to the limit. The point 

is trivinl, as f(x), in virtue of the functional equation, tends to zero when we approach 

a cusp of HL from inaide. 

t We suppose 112 large enough to ensure that x2”- q liea inside H,, . 

1 Se0 our paper (Z), 20~. cit. 
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We supposed that no pole of #I (T) lies on the boundary of I? This restric- 
tion, however, is in no way essential; if it is not satisfied, we have only to 

select our “ fundamental polygon ” somewhat differently. The theorem is 
consequently true independently of any such restriction. 

So far we have supposed ] q I< 1. It is plain that, if 1 g I> 1, the same 
reasoning proves that 

l 

(4 3) XR=O. 

5. Suppose in particular that # (7) has one pole only, and that a simple 
pole at T = a, with residue A. The complete system of poles is then given by 

. (5 1) T = al- = (ad-bc=l). 

If a and b are fixed, and (c, d) is one pair of solutions of ud - &= I, the com- 
plete system of solutions is (c + KU, d -I- ma), where m is an integer. To each 
pair (a, b) correspond an infinity of poles in the plane of 7; but these poles 
correspond to two different poles only in the plane of q, viz., 

l (5 2) 
the positive and negative signs corresponding to even and odd values of YIX 
respectively. It is to be observed, moreover, that different pairs (cc, b) may 

_ give rise to the mm pole q. 

The residue of c# (7) for 7 = a is, in virtue of the functional equation (P2), 

A 

(a + bu)n+s ; 

and the residue off (q) for g = q is 
;  

A 
(U + 6~)““’ 

Thus the sum of the terms of our series which correspond to the poles 
I 

(52) is 
TiA q q 27&l q2 PI- 

(a + btx)n+a q-q q+q =(u+ba)n+2m* ) 

We thus obtain : 

THEOREM 2. If +(T) 1 2u.s one pole only in P, uiz., a simple pole at T = 61, 
with residue A, and ) q I< 1, then 

. (5 3) f(q)=2riAX ’ --f- 
(a + ba)n+Z q2 - qa ’ 

Where 
c + da 

q=exp a-+ga ti; ( > 
c, d being any pair of solutions of ad - bc = 1, ana the su7~h9d0~ ddifig 

over all pairs a, b, which give rise to distinct values of q. If 1 q 1 > 1, the sum 
of the series on the right-hand side of (%3) is zero. 
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If #I (T) has several poles in P,f(q), of course, will be the sum of a number 
of series such as (5.3). Incidentally, we may observe that it now appears that 
the series in question are absolutely convergent. 

6. As an example, we select the function 

say, where GC = q? It is evident that p, is always an integer; the values of 
the first 13 coefficients are 

p. = 1, pl = 504, p, = 270648, p, = 144912096, 

p, = 77599626552, p, = 41553943041744, p, = 22251789971649504, 

p7=11915647845248387520, ps=6380729991419236488504, 

Pg =3416827666558895485479576, 

plo=1829682703808504464920468048, 

pll=979779820147442370107345764512, 

plS=524663917940510191509934144603104; 

so thab pin is a number of 33 figures. 

By means of’ the formulae* 

93 = 2% (e1 - eJ2 (1 + k2) (1 - QP) (1 - 2h?), 

we find that 

The value of YI is 6. The poles of f(q) correspond to the values of T which 

make K = k2 equal to - 1, 2, or 9. It is easily verifiedt that these values are 

given by the general formula 

80 that 

. 
(6 a 

‘+ The value of Q is a,+. In order to determ”lne A we observe that 

Z6 4 4 
+ (1 _ ,4>2 + l m m  l 

* All the formulae which we quote are givexl in Tannery and Molk’s Tables ; see in 

particular Tables XXXVI (8), LXX1 (3), XCVI, CX (3). 
t A full account of the problem of finding r when K ia given will be found in Tannery 

and Molk, Zoc. cit., Vol. III, ch. 7 (“ On donne A+ ou g2, g3 ; trouver T 011 ml, w3 I’>. 

1 It will be observed that in thia case a ia on the boundary of P; see the concluding 

remarks of $4, As it happens, r= i lies on that edge of P (the circular edge) which was 

not used in the construction of Hm, HO that our analysis is applicable as it stands, 
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The series in curly brackets is +,he function called by Ramanujan* @1,6 andt 

1oo8@~,~ = &” - PR, 

Here R = 0, so that 

1008Q116 = &” = 1 -f- 480@,,,; = I+ 480 lq 27q4 
i-q+ 1-q+- l 

Hence we find that A = iId, 2&A = - 2/C, 

where 
l 

(6 3) 

Another expression for C is 

. 
(6 4) 

We have still to consider more closely the values of a, and b, over which 
the summation is effected. Let us fix E, and suppose that (a, b) is a pair of 
positive solutions of the equation a2 + b2 = h. This pair gives rise to a system 
of eight solutions, viz., 

(t a, + b), (+, b, f a). 

But it is obvious that, if we change the signs of both QI; and b, we do not 
affect the aggregate of values of a. Thus we need only consider the four pairs 

If a or b is zero, or if a = b, these four pairs reduce to two. 

Itl is easily verified that, if (a, b) leads to the pair of poles 

T 
--- 

a2 + b2 ’ 

then (a, - 6) and (6, a) each lead to g = f, 4, where S is the conjugate of q. 
Thus, in general (a, b) and the solutions derived front it lead to four distitlct 
poles, viz., k q and k & These four reduce to two in two cases, when q is 
real, so that q = q, and when q is purely imaginary, so that q = - a. It is 

Q S. Ramanujan, V3n Certain Arithmetical Functions,” Tram, &zndj. PM, &c., Vol. 
XXII, pp. 159-184 (p. 163). 

+ Ramannjan, Zoc. cit., p. 164. 
$ Ramanujan, lot. cit., pe 163. 
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easy to see that the first case can occur only when k = 1, and the second 
when k=2’. 

If E=l we take a4, b=O, c=Q, d=l; and q=g=eBr, If k:=Z we 
take a = I, b = 1, c = 0, d = I; and q = - 4 = ie-+. The corresponding terms 
in our series are 

1 1 
1 - qaeffl’ Z4(1 +pe*)’ 

If I;: is greater than 2, and is the sum of two coprime squares a2 and b2, it 
gives rise to terms 

1 1 1 1 ---- 
(a + 6i)” 1 - (q/q)” + (a 1 - (p/g)” 

There is, of course, a similar pair of terms corresponding ‘to every other 
distinct representation of k as a sum of coprime squares. Thus finally we 
obtain the following result : 

THEOREM 3. If 

f(q) 
T6 -= 

= 216@g3 
1 

and ] q I< 1, then 

. (6 5) 

and S is the conjugate of g, The summation upplies to every pair of c~priltne 

positive numbers a and b, such that k = aa + b2 2 5, such pairs, however, only 
being counted as distinct if they correspond to independen.t representations of 
k as a sum of squares. If ] q 1 > 1, then the sum of thle series on th,e right-hand 
side of (65) is zero. 

* When a and b are given, we cax1 always choose c and d so that 1 ac + bd I< + (as+ ba). 
If q is real, we have ad - bc- I and ac +bd-= 0 simultaneously : whence 

(a2+ b3) (c2+d2)= 1. 

If  q is purely imaginary, we have 

whence 

ad-bc=l, 21ctc+bd1=a2+b2, 

(C2+d2)3=(Iuc$bdI--2--2)2+1. 

This is possible only if 8 +d”= 1 and 1 ac + bd I= 1, whence a2+b2= 2. 
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7. It follows that 

say. Here x is the sum of two coprime squares, so that 

h = 2a2 5a5 13”ls ua17 .  .  l ,  

where a~ is 0 or 1 and 5, 13, 17, l are the primes of the form 4k+ 1 ; and 
the first few values of CA (n) are 

cl (n) I 1, c2 (~3) = (- I)“, c5 (n) = 2 cos (@r + 8 arc tan Z), 

cl0 (n> = 2 cos (+T - 8 arc tan 2>, cla (n) = 2 cos (98~ + 8 arc tan 5). 

. 
(7 1) are 

, and 12, 

The approximations to the coefficients given by the formula 
exceedingly remarkable. Dividing by 8 C, and taking n = 0, 1, 2, 3, 6 
we find the following results : 

(0) 0.944 (1) 505-361 (2) 270616.406 

+ 0.059 - P365 -+ 31585 

- O-003 . + O-004 + @009 

p* = l*OOO p= 504*0UO pa = 270648.000 

(3) 144912827*002 (6) 2225178996259245Oa237 

- 730m900 + 905705t688 
- O*lOl + 2*081 
- @OOl - 0,006 

p3 = 144912096*000 p6 = 22251789971649504-000 

(12) 524663917940510190119197271938395~329 

+1390736872662028~140 

+ 268@418 

+ 0*1.30 

- O-014 

- Oh003 
pla=524663917940510191509934144603104-000 

An alternative expression for C is 

0 = 962en8”lJ {( 1 - emrT) (I - e-8rr) . . .}I~, 

by means of which C may be calculated with great accrlracy? To five places 
we have 2/C = 0*94373, which is very nearly equal to 352/373 = 0*94370. 

* Gauss, %dx, Vol. III, pp, 418--419, gives the values of various powers of e-r to a 
large number of figures. 
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It is easy to see directly that pn lies between the coefficients of x” in the 
expansions of 

1 1 - 7m5x 
(1 - 535x) (1 + 317) ’ (1 - 535*5c) (1 + 242) ’ 

and eu that 

(535)n+l- (- 3L)““l 352 (535.5)” + 21(- 24)” 
566 Gp& 373 

I 

The function 

has very remarkable properties. 
mum modulus is less than a constant multiple of e21r W 

It is an integral function of x, whose maxi- 
It is equal to pn, an 

integer, when x = TC, a positive integer ; and to zero when x = - n. But we 
reserve the disc ussion of these peculiarities for some other occasion. 
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ASYMPTOTIC FORMULE IN COMBINATORY 
ANALYSIS* 

(Proceedings of the London iifathemutical fiociety, 2, XVII, ‘1918, 75-115) 

1. INTR~DWCT~ON AND SUMMARY OF I~ESULTS. 

1% The present paper is the outcome of an attempt to apply to the 
principal problems of the theory of partitions the methods, depending upon 
the theory of analytic functions, which have proved so fruitful in the theory 
of the distribution of primes and allied brancheq of the analytic theory of 
numbers, 

The most interesting functions of the theory of partitions appear as’the 
coefficients in the power-series which represent certain elliptic modular 
functions. Thus p (n), the number of unrestricted partitions of m, is the 
coefficient of xn in the expansion of the function 

(loll) f(x) = 1 + 51, (II) xn= 
t  

1 
(l-x)(1-x2)(1-ti)..* l 

If we write 

(1-12) x = q2 = e2=i+, 

where the imaginary part of 7 is positive, we see that f(z) 
the reciprocal of the modular function called by Tannery 
that, in fact, 

(193) 

The theory of partitions has, from the time of Euler onwards, been 
developed from an almost exclusively algebraical point of view. It consists 
of an assemblage of formal identities- many of them, it need hardly be said, 
of an exceedingly ingenious and beautiful character. Of asyq~otic form& 
one may fairly say, there are nones. So true is this, in fact, that we have 

* A short abstract of the contents of part of this paper appeared under the title L6 Une 

formule asymptotique pour le nombre des partitions de n,” in the Gonzptes Rendus, January 

and, 1917. 

t P, A. MacMahon, Combinakvy Analysis, Vol. II, 1916, p, 3. 

1 J. Tannery and J. Molk, Folzctions elli’tipes, Vol. II, 1896, pp. 31 et se9 We shall 

follow the nobtion of this work whenever we have to quote formulaa from the theory of 

elliptic functions. 

s We should mention one exception to this statement, to which our attention was called 

by Major MacMahon. The number of partitions of n into parts none of w/&h exceed r is 

the coefficient pOr (n) in the series 

1 
l+~pr(n)x~=(l_,j(l-d)...(l-xr)* 

This function has been studied in much detail, for various special values of r, by Cayley, 

1918, 5 (with s. Ramanujan) 
7?mtical society, (2) 17, 75-115. 
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been unable to discover in the literature of the su 
to the question of the order of magnitude of p (n). 

bject any allusion whatever 

l 12 ;  The function p (12) may, of course, be expressed in the form of an 
integral 

(1%) P( ) 
1 

n =- I 
f( 1 X 

277-i. r 
dX ?I+1 ’ x 

by means of Cnuchy’s theorem, the path r enclosing the origin and lying 
entirely inside the unit circle. The idea which dominates this paper is that 
of obtaining asymptotic form& for p (n) by a detailed study of the integral 
(P21). This idea is an extremely obvious one ; it is the idea which has 
dominated nine-tenths of modern research in the analytic theory of numbers: 
and it may seem very strange that it should never have been applied to this 
particular problem before. Of this there are no doubt two explanations. The 
fist is that the theory of partitiotls hns received its most important develop- 
ments, since its foundation by Euler, at the hands of a series of mathematicians 
whose interests have lain primarily in algebra. The second and more funda- 

in the mental reason is to be found 
the generating function f (x) 

extreme complexity of 
point of the unit circle. near a 

the behaviour of 

It is instructive to contrast this problem with the corresponding problems 
which arise .for the arithmetical functions r (n), 9 (n), $ (n), p(n), d (n), . . . 
which have their genesis in Riemann’s Zeta-function and the functions allied 

Sylvester, and Glaisher : we may refer in particular to J. J. Sylvester, Wn a discovery in 
the theory of partitions,” Quarterly J ournal, Vol. I, 1857, pp. B&--85, and “On the parti- 
tion of numbers,” ibid., pp. 14l- 152 (Sylvester’s II%&, Vol. II, pp. 86-89 and 90-99) ; 
J. W. L. Glaisher, Wn the number of partitions of a number into a given number of 
parts,” Qumterly Journul, V& XL, 1909, pp. 57--143 ; ~CForm~l~ for partitions into given 
elementu, derived from Sglvester’a Theorem,” ibid., pp. 275-348; “Formulae for the 
number of partitions of a number into the elements 1, 2, 3, , .,, n up to n=9,” ibid., 
Vol. XLI, 1910, pp. 94-112: and further references will be found in MacMahon, Zoc. cil., 
pp. 59-71, and E. Netto, Lehrbuch der Combinattwik, 1902, pp. 146-158. Thus, for 
example, the coefficient of 5~ in 

1 
(l-X)(1 -x2)(1-d) 

is PQ(n)=~(n+3)1-~~+Q(-l)n+~cos2~; 

as is emily found by separating the function into partial fractions. This function may 
also be expressed in the forms 

& (n + 3)2 + (* cos +>” - (3 sin $frn)2, 

1 +[&n (n+6>]3 (1% (n+3)2l* 

where [n] and (n} denote the greatest integer contained in n and the integer nearest to n. 
These formulae do, of course, furnish incidentally asymptotic formula for the functions in 
question. But they.are, from this point of view, of a very trivial character : the interest 
which they posse;sf3 is algebraical. 
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to it. In the latter problems we are dealing with functions defined by 
Dirichlet’s series. The study of such functions presents difficulties far more 
fundamental than any which confront us in the theory of the modular 
!functions. These difficulties, however, relate to the distribution 6f the zeros 
of the functions and their general behaviour at infinity : no difficulties what- 
ever are occasioned by the crude singularities of the functions in the finite 
part of the plane. The single finite singularity of C(S), for example, t&e .~olz 

ne precisely the order of the error 
which it involves is in many cases a problem which still defies the utmost 
resources of analysis. But to write down the dominant terms involves, as 
a rule, no difficulty more formidable than that of deforming a path of integra- 
tion over a pole of the subject of integration and calculating the corresponding 
residue. 

In the theory of partitions, on the other hand, we are dealing with 
functions which do not exist at all outside the unit circle, Every point of 
the circle is an essential singularity of the function, and no part of the contour 
of integration can be deformed in such a manner as to make its contribution 
obviously negligible. Every element of the contour requires special study ; 
and there is no obvious method of writing down a “ dominant term.” 

The difficulties of the problem appear then, at first sight, to be very serious, 
We possess, however, in the formulae of the theory of the linear transformation 
of the elliptic functions, an extremely powerful analytical weapon by means 
of which we can study the behaviour off(x) near any assigned point of the 
unit circle? It is to an appropriate use of these formulae that the accuracy 
of our final results, an accuracy which will, lve think, be found to be quite 
startling, is due. 

1*3. It is very important, in dealing with such a problem as this, to 
distinguish clearly the various stages to which we can progress by arguments 
of a progressively ” deeper ” and less elementary character. The earlier results 
are naturally (so far as the particular problem is concerned) superseded by 
the later. l3ut the more elementary methods are likely to be applicable to 
ot,her problems in which the more subtle analysis is impracticable. 

We have attacked this particular problem by a considerable number of 
different methods, and cannot profess to have reached any very precise con- 
clusions as to the possibilities of each. A detailed comparison of the results 

* See G. H. Hardy and,J. E, Littlewood, %xne problems of Diophantine approxima- 
tion (II : The trigonometrical series aaaociated with the elliptic Theta-functions),‘” Actu 
Mathematics, Vol. XXXVIT, 1914, pp. 193-238, for applications of the form& to. different 
but not unrelated problems. 
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to which they lead would moreover expand this paper to a quite unreasonable 
length, But we have thought it worth while to include a short account of 
two of them. The first is quite elementary; it depends only on Euler’s 
identity 

(1*31) 
1 X4 

(1 -x) (1 - x2) (1 - ti) . . . = 1+~+(l-x)2(1-x2)2-~~~m 

-an identity capable of wide generalisation --and on elementary algebraical 
reasoning. By these means we shew, in section 2, that 

(F32) eAdn. < p (7%) < eBdn, 

where A and B are positive constants, for all sufficiently large values of n+ 

It follows that 

(P33) AJn<logp(n) < Bdn; 
and the next qu es tion which arises is the question whether a con&a& C exists 
such that 

(P34) logp (n) - C &I. 

We prove that this is so in section 3. Our proof is still, in a sense, Cc ele- 
men tary.” It does not appeal to the theory of analytic functions, depending 
only on a general arithrnetie theorem concerning infinite series; but this 

theorem is of the difficult and delicate type which Mews Hardy and Little- 

wood h.ave called “ Tauberian.” The actual theorem req uired was pro 
us in a paper recently printed in these Proceedings*. It . shews that 

(1.35) 

in other words that 

(1*36) 

c 2 *. ,I- 
\/6 ’ 

ved by 

where e is small when n is large. This method is one of very wide application. 

It may be used, for example, to prove that, if p@j (n) denotes the number of 
partitions of vx into perfect s-th powers, then 

It is certainly possible to obtain, by means of arguments of this general 
character, information about p (7h) more precise thati that furnished by the 
formula (1*36). And it is equally possible to prove (l-36) by reasoning of a 
more elementary, though more special, character: we have a proof, for example, 
based on the identity 

+ G. H. Hardy and S. Ramanujan, “Asymptotic formulae for the distribution of 

integer8 of various types,” Proc, London Math. i%c., Ser. 2, vol. XVI, 1917, pp. 11243% 
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where 6 (v) is the sum of the divisors of Y, and a process of induction. But 
we are at present unable to obtain, by any method which does not depend 
upon Cauchy’s theorem, a result as precise as that which we state in the next 
paragraph, a result, that is to say, which is ” vraiment asymptotique.” 

1*4. Our next step was to replace (P36) by the much more precise 
formula 

The proof of this formula appears to necessitate the use of much more 
powerful machinery, Cauchy’s integral (121) and the functional relation 

This formula is merely a statement in a different notation of the relation 
between h (7) and h (T), where 

T 
c + dT 

=CC$-b7) 
u=d=O, b=l, c=-1; 

viz h (7) = d(t) h (T)? 

It is interesting to observe the correspondence between (1+41) and the 
results of numerical computation. Numerical data furnished to us by Major 
MacMahon gave the following results: we denote the right-hand side of 
(l-41) by = (n). 

n P (4 ‘iJ (4 rnlP 

10 42 48-104 1*145 

20 627 692.385 1 *x04 

50 204226 217590*499 X*065 

80 15796476 I 16606781 n 567 I*061 

It will be observed that the progress of m/p towards its limit unity is not 
very rapid, and that P - p is always positive and appears to tend rapidly to 
infinity. 

* Tannery and Molk, Zoc. cit., p- 265 (Table XLV, 5). 
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1.5. In order to obtain more satisfactory results it is necessary to con- 
struct some aukiliary function F(X) which is regular at all points of the unit 
circle save s = I, and has there a singularity of a type as near as possible to 
that of the singularity of f(x). W e may then hope to obtain a much more 
precise approximation by applying Cauchy’s theorem to f - F instead of tocf: 
For although every point of the circle is a singular point off, x = 1 is, to put 
it’ roughly, much the heaviest singularity. When x-1 by real values, f (cc) 
tends to infinity like an exponential 

; 

when X = y#Pnif?7 t 

p and q being co-prime integers, and r-1, If 
exponential 

while, if X = re2eni, 

1 tends to infinity like an 

where 0 is irrational, If(z) j can become infinite at most like an exponential 
of the type 

The function required is 

(l-51) F(x) 

where 

(l-52) 

(1*53) C = 2+6 = rrd(B>, A, = J(n - &)a 

This functiun may be transformed into an integral by means of a general 
formula given by Lindelijft ; and it is then easy to prove that the Ic principal 
branch ” of F(z) is regular all over the plane except at x = 1 i; and that 

* The statements concerning the “rational” points are corollaries of the formulae of 

the transformation theory, and proofs of them are contained in the body of the paper, 
The proposition concerning 5rratiouaI” points may be proved by arguments similar to 

those used by Hardy and Littlewood in their memoir ,already quoted. It is not needed for 

our present purpose. As a matter of fact it is generably true that f(z) + O when B is 

irrational, and very nearly as rapidly as J(I -r). It is in reality owing to this that our 

final method is so successful. 

t E, Lindeliif, Le calcd u?es re'sidus et se5 u+ppZications d h thbrie des folzctions 

(Gauthier-Villars, Collection Bore& 1905), p. 111. 

1 We speak, f o course, of the principal branch of the function, viz. that represented by 

the series (lfil) when x is small. The other branches are singular at the origin. 
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is regular for x= 1. I f  we compare (1~42) and (1*54), and observe that f (x;‘) 
tends to unity with extreme rapidity when x tends to 1 along any regular 
path which does not touch the circle of convergence, we can see at once the 
very close similarity between the behaviour of f and F inside the unit circle 
and in the neighbourhood of x- 1. 

It should be observed that the term - I in (l-52) and (1.54) is-so far as 
our present assertions are concerned- otiose : all that we have said remains 
true if it is omitted ; the resemblance between the singularities off and F 
becomes indeed even closer. The term is inserted merely in order to facilitate 
some of our preliminary analysis, and will prove to be without influence on 

’ the final result, 

Appl$ng Cauchy’s theorem to f - F, we obtain 

(l-55) PC ) 32 = -_.- - 

where D is any number greater than 

1*6, The formula (l-55) is an asymptotic formula of a type far more precise 
tlhan that of (1.41). The error term is, however, of an exponentia1 type, and 
may be expected ultimately to increase with very great rapidity. It was 
therefore with considerable surprise that we found what exceedingly good 
results the formula gives for fairly lsrge values of 12. For n = 61, 62, 63 it 
gives 

1121538*972, 1300121-359, 1505535*606, 

while the correct values are 

1121505, 1300156, 1505499. 

The errors 33*972, - 34+641, 36%06 

are relatively very small, and alternate in sign. 

The next step is naturally to direct our attention to the singular point of 
f(x) next in importance after that at x = 1, viz., that at x = - 1; and to 
subtract from f ( ) x a second auxiliary function, related to this point as F(x) 
is to z = 1. No new difficulty of principle is involved, and we find that 

(1’61) + 0 py, 
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where D is now any number greater than QC. It now becomes obvious why 
onr earlier approximation gave errors alternately of excess and of defect* 

It is obvious that this process may be repeated indefinitely. The 

singularities next in importance are those at x = e#rri and x = P; the next 
those at x=i and x- - 4 ; and so on. The next two terms in the approximate 
formula are found to be 

an d 

AS we proceed further, the complexity of the calculations increases. The 
auxiliary function associated with the point x = e2pTpilq involves a certain 
24q-th root of unity, connected with the linear transformation which must 
be used in order to elucidate the behaviour of f(x) near the point; and the I 
explicit expression of this root in terms of ~3 and 4, though known, is some- 
what complex. But it is plain that, by tlaking a sufficient number of terms, 
we can find a formula in which the error is 

where, v is a fixed but arbitrarily large integer. 

1.7. A final question remains. We have still the resource of making 
v a function of 92, that is to say of making the number of terms in our 
approximate formula itself a filnction of rz. In this way we may reasonably 
hope, at any rate, to find a formula in which the error is of order less than 
that of any exponential of the type P; of the order of a power of n,, for 
example, or even bounded. 

When, however, we proceeded to test this hypothesis by means of the 
numerical data most kindly provided for us by Major MacMahon, we found 
a correspondence between the real and the approximate values of such 
astonishing accura,cy as to lead us to hope for even more. Taking 72 = 100, 
we found that the first six terms of our formula gave 

190568944*783 
+ 348.872 

- 2598 
+ ~685 
+ a318 
- ,064 

190569293*996, 

while p (100) = 190569292 ; 
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so that the error after six terms is only 904. We then proceeded to calculate 
p (200), and found 

3, 972, 998, 993, 185*896 
+ 36, 282m978 

- 87#555 
+ 5m147 
+ I*424 
+ 0*071 
+ o*ooo* 
+ 0.043 

-972, 
-~- - 

3, 999, 029, 388*004, 

and Major MacMahon’s subsequent calculations shetved that JI (ZOO) is, in fact, 

3, 972, 999, 029, 388, 

These results suggest very forcibly that it is possible to obtain a formula for 
p (n), which not only exhibits its order of magnitude and structure, but may 
be used to calculate its exact value for any value of n. That this is in fact so 
is shewn by the following theorem. 

Statement of the mait tl~eow72. 

THEOREM. suppose that 

where C and X~ are dejned by the equations (P53), for all positive integml 
valwes of q ; that p is a positive integer less than and prime to q ; that QJ~,~ is 
a 24q-th root of unity, defined when p is odd by the formula 

(lT21) 

and when q is odd by the formula 

(P722). 

wp,,=(~)“xP~-Ia(p-l)+I?a(q-~) W-p.fPWjrriJ 

where (a/b) is the symbol of Legendre and Jacobi-f, and p’ is any positive 
integer tiuch that 1 + pp’ is divisible by q ; that 

(1.73) A, (n) = IZ mP, qenmPrilq; 
(PI 

and that a is any positive constant, and v the integral pa.rt of u Ja. 

* This tern varnishes identically. 

t See Tannery and Molk, lot. cit., pp. X04-106, for a con@& set of rules for the cal- 

culation of the value of (a/b), which is, of coum, always I or - 1. Wheu both p and p 
are odd it is indifferent which formula is adopted. 

/ 
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Then 

(1.74) p (4 = fi A,+, + 0 (n-i), 
1 

so that p (n) is, for all sujiciently large dues of n, the i?zteger nearest to 

It should be observed that all the numbers A, are real. A table of A, 
from q = 1 to q = 18 is given at the end of the paper (Table II). 

The proof of this theorem is given in section 5; section 4 being devoted 
to a number of preliminary lemmas. The proof is naturally somewhat 
intricate; and we trust that we have arranged it in such a form as to be 
readily intelligible. In section 6 we draw attention to one or two questious 
which our theorem, in spite of its apparent completeness, still leaves open. 
In section 7 we indicate some other problems in combinatory analysis and 
the analytic theory of ,numbers to which our method may be applied; and 
we conclude by giving sume functional and numerical tables: for the latter 
we are indebted to Major MacMahon and Mr H. B. C Darling. To Major 
MacMahon in particular we owe many.thanks for the amount of trouble he 
has taken over very tedious calculations. It is certain that, without the 
encouragement given by the results of these calculations, we should never 
have attempted to prove theoretical results at all comparable in precision 
with those which we have enunciated. 

2. ELEMENTARY PROOF THAT &Jn< p (n)<eBJn FOR SUFFICIENTLY 

LARGE VALUES OF n, 

2% In this section we give the elementary prpqf of the inequalities 
(1432). We prove, in fact, rather more, viz., that positive constants H and K 
exist such that 

pm) 

for n 2 1’. We shall use in our proof only Euler’s formula (P31) and a 
debased form of Stirling’s theorem, easily demonstrable by quite elementary 
methods : the proposition that 

n ! P/r@* 

lies between two positive constants for all positive integral vaiues of n. 

* Somewhat inferior inequalities, of the type 

2’ Ldfll <p (n) <nB 1dn3, 

may be proved by entz’rely eIementary reasoning ; by reasoning, that is to say, which 

depends only on the arithmetical definition of p(n) and on elementary finite algebra, and 

does not presuppose the notion of a limit or the definitions of the logarithmic or eupo- 

neatial functions. 
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2.2, The proof of the first of the two inequalities is slightly the simpler. 
It is obvious that if 

1 
Q r  @) xn = (1 -  x) (1 -  $2) l l l (1 c xr )  

so that p, (n) is the number of partitions of r~ into parts not exceeding r, then 

(Z-21) pT (n) = p,.4 (n> + p,+ (n - T) -f-p,-, (n - 279 + l l l l 

We shall use this equation to prove, by induction, that 

(2.22) p, (n) 2 rnr-1, 
(r !)” 

It is obvious that (2.22) is true for F = 1. Assuming it to be true for r = s, 

and using (2#21), we obtain 

p,+,(n)>& {TP-I + (42 -s- I),-1 + (n -2s - 2)$-l+ . ..} 
. 

2s 
( ) s! 2 1 ns - (n - s - 1)” + (n - s - 1)” - (12 - 2s - 2)$ 

s(s+l) s (s 5 1) 
+ I  l .  

1 
ns (s+ l)nS 

=(s+l) (S!)2={(s+1)!)2* 

This proves (2%). N ow p (n) is obviously not less than pr (n), whatever the 

value of r. Take r = C&z] : then 
rPnl H 

p t4 ap[hl (n) a2 - 
Cd 1 

n {[&a]!)” ’ 12 
- &lE, 

by a simple application of the degenerate form of Stirling’s theorem men- 
tioned above. 

2.3. The proof of the second inequality depends upon Euler’s identity. . 
If we write 

we have 
% wxn= (1 -x)2(l J)2 - 

.  l l 

(1 +a)2 

(2.31) qr (n) = qr+ (n) -I- 2q,+ (n - r) + 3q,-, (~1 - 2r) + . l 1, 

and 

(2.32) p (n) = q1 (n - 1) + qz (n - 4) + q3 (12 - 9) + . . . . 

We shall first prove by induction that 

(2.33) qr (n> < (n + v- 
-. 

(2 r - 1) ! (r !)” l 

This is obviously true for r,= 1. Assuming it to be true for r = s, and using 
(2.31), we obtain 

1 
q&1(4 < (2s-l)! (s!)2 {(n + s2)2s-1 + 2 (n + s2 - 8 - w1 

+ 3 (n + S2 - 2s - 2)25--l + .  l . } *  
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Now m (na - 1) urn-2 b2 < (u + by” - 2~” -I- (a - b)“, 
if rye is a positive integer, and a, b, and cr: - b are positive, while if a - b < 0, 
and wx is odd, the term (a - b)” may be omitted. In this inequality write 

m=%+l, a=~-+-~~--k~-k (k=O, 1,2, l ..), b=s+l, 

and sum with respect to k. We find that 

(2~+~)2~(~+1)~{(12+~~)~~-~+2(n+s~-s~l)~~-~+~~~}5(~+~~+~+~)~~+~; 

and so 

qs+l(nk (2s+l)2s(sf 1)2(2s 
< {n + (s + l)*)“+l 

-1)!(s!)2k (2s+l)!((s+1)!}s* 

Hence (2.33) is true generally. 

It follows from (2.32) that 
p32r-1 

p(n)=q1(7a-1)+q2(ng4) + l -+ (&Jr-l)! (qi’ 
But, using the degenerate form of Stirling’s theorem once more, we find 
without difkulty that 

1 2srK 

(2 r-l)!(r!)2c 4r! ’ 

where K is a constant. Hence 

This is the second of the inequalities (291). 

3. APPLICATION OF A TAUBERIAN THEOREM TOTHE DETERMINATION 

OFTHECOXSTANT c. 

3-l. The value of tOhe constant 

C = lim log P (n) 
dn ’ 

is most naturally determined by the use of the following theorem. 

A 
1% 9 (4 - Ix - 

when x-1, then 
log s n =log(a,+a,+...+a,)~2J(An) 

when n+ 00 . 

This theorem is a special case* of Theorem C in our paper already 

referred to. 

Now suppose that 
1 

s(x)=(1-x)f(s)=):(1,(n)-P(n-l)}x~=(I_x2)(~-~~)(1-x~) l 

l .  .  

* Lot. cit., p. 1% (with a = I), 
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Then %=p(+p(n-l) 

is plainly positive. And 

(3*11) 
1 

logg (S) =$ogi--= 
z1 ti’ 1 a 1 7r2 --N- 

2 - xp 1 Yl-Lc” 
e 

l-xl 7=-l 

when x+ 1 +. Hence 

(392) log P (n) =u*+a,+... +upC~n, 

where C= 2~/J6=rI/(%), ag in (1*53). 

3.2. There is no doubt that it is possible, by “Tauberian ” arguments, to 
prove a good deal more abdut p (n) than is asserted by (3-12). The functional 
equation satisfied by f (z) shews, for example, that 

a relation far more precise than (3*11). From this relation, and the fact that 
the coefficients in g (x) are positive, it is certainly possible to deduce more 
than (392). But it hardly seems likely that arguients of this character will 
lead us to a proof of (1.41). It would be exceedingly interesting to know 
exactly how far they will carry us, since the method is comparatively ele- 
mentary, and haa a much wider range of application than the more powerful 
methods employed later in this paper. We must, however, reserve the dis- 
cussion of this question for some future occasion. 

4. LEMMAS PRELIMINARYTO THE PROOF OFTHE MAIN THEOREM, 

4.1. We proceed now to the proof of our main theorem, The proof is 
somewhut intricate, and depends on a number of subsidiary theorems which 
we shall state as lemmas. 

Lemmas concerning Farey’s series. 

421. The Furey’s series of order m is the aggregate of irreducible rational 

fractions 
p/q W?xq<m), 

* This is a special case of much more general theorems : see K. Knopp, Wrenzwerte 
van Reihen bei der Anntiherung an die Konvergenzgrenze,” htauguraZ-DimwtutimP Berlin, 
1907, pp. 25 et seq. ; K. Knopp, &‘Uber Lambertsche Reihen,” JournaE@4fu~h., Vol. CXLII, 

1913, pp, 283- 315; cf. H. Hardy, LCTheorems connected with Abel’s Theorem on the 
continuity of power series,” hoc. hadm~ if&ath. &c., Ser. 2, Vol. IV, 1906, pp. 247-265 
(pp. 252, 253); Cl. H. Hardy, ‘%ome theorems concerning infinite Iseries,” &th. Ann., 
Vol. LXIV, 1907, pp. 77-94; G. I-I. Hardy, “Note on Lambert’s series,” Proc. London 
Math. Sm., Ser. 2, Vol. XIII, 1913, pp. 192-198. 

A direct proof is very easy: for 

vx~-‘(l~x)<I~xv<Y(l~x), 

1 1 xv+l 
-c 

XW 

l-s yl%Yw=r_;l;yp 
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arranged in ascending order of magnitude. Thus 

LEMMA 4%. If Y/q, p’/q’ are two successive teq*ms of a Furey’s series, thelz 

(4.211) p’q - fl.lq8 = 1. 

This is, of course, a well-known theorem, first observed by Farey and 
first proved by Cauchy *. The following exceedingly simple proof is due to 
Hurwitzt. 

The result is plainly true when m = 1. Let us suppose it true for m = k; 
and let pip, p//q’ be two consecutive terms in the series of order k. 

Suppose now that p”/q” is a term of the series of order k: + 1 which falls 
between p/q and p//q’. Let 

p’lq - pqff = h > 0, p’p” - p”q’ = /d > 0. 

Solving these equations for p”, q”, and observing that p’q -pq’ = 1, we obtain 

p” = /&p + Ap’, q” = #Aq + xq’. 

Consider now the aggregate of fractions 

(PP -f- ~PY~c14 +- w 
where x and r~) are positive integers without common factor. All of these 
fractions lie between p/q and p//q’; and all are in their lowest terms, since 

a factor common to numerator and denominator would divide 

x = q kP + WI - P kl+ w 
and 111= Pf bq + w - !i cw -thP’). 
Each of them first makes its appearance in the Farey’s series of order 
clQ+kq’, and the first of them to make its appearance must be that for 
which A = 1, ,U = 1. Hence 

p” =p+p’, q” = q -t- q#, 
p/f q - pqlf = p’q” -p”q’ = 1, 

The lemma is consequently proved by induction. 

LEMMA 4*22. Suppose that p/q is a term of the Farey’s series of order. m, 
and p”/q”, p’/q’ the adjacelzt terms on the left and the Tight : and let & dewte 
the i&em& 

* J. Frey, Wn a curious property of vulgar fractiona,” PJLiZ. Msg., Ser. 1, Vol. XLVII, 
1816, pp. 385, 386; A. IL Csuchy, ~9kmonatration d’un th&w&nle curieux HUF les nom- 

bres,” Exercips de mattimatiques, TM I, 1826, pp. 114-I 16. Cauchy’s proof was fir& 
published in the B&et& de Zclt X&&e’ Philomatipu~ in 1816. 

t A. Hurwita, Ii Ueber die angenB;herte Darstellung der Zahlon durch rationale Eruche,” 

Mak Ann., Vol. XLIV, 1894, pp. 417-436. 
$ When p/g ia O/l or l/l, only the part of thie interval inside CO, 1) ia to be taken ; 

thusj0,1 is 0, l/(m+l) andjIll is t-l/(m+l), 1. 
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Then (i) the intervals &4 exactly fill up the continuum (0, l), and (ii) the length 
of each of the parts into which & is divided by p/q + is greater than 1/2mq 
and less than llmq. 

(i) Since 
1 1 

-+ l P’q-Pq’ Pr P 
q(q+qI) q’(q’+q)=$= -QPI=pp 

the intervals just fill up the continuum. 

(ii) Since neither q nor q’ exceeds m, and one at least must be less than nz, 
we have 

1 1 

q(4) ’ 2nzq ’ 

Also q + q’ > nz, since otherwise (p +p’)/(q + q’) would be a term in the series 
between p/q and p’/q’. Hence 

1 1 

q (Q + 4’) < T ’ 

Standard dissectiolz of a circle. 

4-23. The following mode of dissection of a circle, based upon Lemma 
4.22, is of fundamental importance for our analysis. 

Suppose that the circle is defined by 

X = Beztie (0 < 0 < 1). 

Construct the Farey’s series of order m, and the corresponding intervals &, q. 
When these intervals are considered as intervals of variation of 8, and the 
two extreme intervals, which correspond to abutting arcs on the circle, are 
regarded as constituting a single interval &, the circle is divided into a 
number of arcs 

where q ranges from 1 to no and 23 through the numbers not exceeding and 

prime to g-t* We call this dissection of the circle the dissection En&. 

Lemmas f ram the theory of the linear transforma 
modular jknctions. 

tion of the elliptic 

4% LEMMA 4*31. Suppose that q is a positive integer; that p is a positive 
integer not exceeding and prime to q; that p’ is a positive integer such that 
I + pp’ is divisible by q; that op q , is defined by the formula (1.721) or (1~722); 

th>at 

X ( 2rz 2prri 
=exp --+- 

> ( 

2~ 213% 

Q Q 
? x’=exp --+---- 

QZ Q > 
1 

+ See the preceding footnote [footnote $ of p. 2891. 

+ p = 0 occurring with q = t only. 
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where the real part of z is positive; and that 

1 

291 

Then 

This lemma is merely a restatemen 
formulae in the transformation theory. 

t in a d&rent notation of well-known 

Suppose, for example, that p is odd. If we take 

1 +PP’ a=p, b=-q, c=- d =- 
9 

1 
p’ 

3 

so that ad - bc = 1; and write 
f-&l = qa = eznir, r&r = Q2 = e2tiT, 

so thst 2 + ia 
7=9 4’ 

T ,P’I 6 
P P3 

then we can easily verify that 

T 
c + dr =- 
a+br- 

Also, in the not#ation of Tannery and Molk, we have 

and the formula for the linear transformation of h (7) is 

{$(a-l)-,i,[u(b-c)+bd(a’d-l)])ri 2/(a;-tbr)h(~), 1 
where d(a + by) has its real part positive *. A little elementary algebra will 
shew the equivalence of this result and ours. 

The other formula for wP Q s may be verified similarly, but; in this case we 
must take 

u 1 +PP’ =- p, b=q, c=--, d=p’. 

We have included in the Appendix (Table ;) a short table of some values 

Of %F or rather of (log oP, J/&. 

hMMA 4.32. The function f(x) sati#es the equation 

(4-321) 

where 

(44322) 
f 

t 

47T2 2 hi 
xP9 Q 

= xe-w!f, xrp, q = exp - 
q2 1% WP,J 

+p 
l 4 i 

79 
6qa log (l/x& ’ (xa’ ‘)’ 

* Tannery and Molk, Zoc, cit., pp. 113, 267. 
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This is an immediate corollary from Lemma 4*3X, since 

T  
-= 
12qz 

If ore observe 

we see that, if s tends to ez@iq along a radius vector, or indeed any regular 

7T2 

6@log (l/~~,~) ’ x’ = exp 

27r 2p’k 
-a- - -  

qg + q = X’P, Q ’ 

path which does not touch the circle of convergence, the difference 

tends to zero with great rapidity. It is on this fact that our analysis is based. 

Lemmas concerning the auxiliary fun&n. & (2). 

4-41, The auxiliary function Pa (x) is defined by the equation 

Fa (x) = ci qa (n) xn, 
1 

where qa (n) =g cash J1”- - I, 
n 

X,= 4(7a - &), a > 0. 

LEMMA 4*41. Suppose that a GUI! is wiade along the segment (I, 00 ) in the 
plane of x, Then, Fa (x) is regular at all points inside the region thzcs defined. 

This lemma is an immediate corollary of a general theorem proved by 
Lindelijf on pp* 109 et seq. of his CaZcuZ des r&dus*. 

The function 

satisfies the conditions imposed upon it by Lindelijf, if the number which he 
calls a is greater than &; and 

(4*411) 

l 

Eh (x)  =I”za&z + (2) dz, 

a-h 

if X = r&Q, 0 < t9 c 2w, ti = exp {z (log r + if?)). 

442. LEMMA 4*42. Suppose th,at D is the region defined by the in- 
equalities 

- 7r < - 8, < 8 < 0, < 7r, r. < r, 0 < 9-0 < 1, 

* Lindelijf gives references to Mellin and Le Roy, who had previously established the 
theorem in less general forms. 



and that log (I/x) h as its principal value, so tlmt log (l/x) is one-valued, and 
its square root two-valued, Iin D. Further, let 

that value of the square mot beiy chose)2 which is positive when. 0 < x < 1. 
Then 

ia regular inside D*. 

We observe first that, when 8 has a fixed value between 0 and 27f, the 
integral on the right-hand side of (4.411) is uniformly convergent for 
&<~<a,. Hence we may take a = +$ in (4411). We thus obtain 

where the 2/($ and 2/(- it) which o~eur in *a (& + it) and qa (& - it) are to 
be interpreted as &mi& and e-tniJt respectively. We write this in the form 

= x, (x) -I- 0, (x) -I- 0, (x), 

say, where 

Now, since 

the functions 0 are regular throughout the angle of Lemma 4942, And 

X,(x) = ixa’+ 
i 

aD xi6 qa (& -I- it) dt. 
0 

1 I 
xit = e-h!, 1 x-it 1 = eel!, 

The form of this integral may be calculated by supposing x and ,U positive, 
when we obtain 

Hence 

ww xu (4 = I/b log W)} xA [exp I4 loga;llz)/ - l] = %a (x>, 

and the proof of the lemma is completed. 

* Both F,(z) and xa (x) are two-valued in D. The value of F@ (x) contemplated is 
naturally that represented by the power-series. 
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Lemmas 4-41 and 4.42 shew that x = 1 is the sole finite singularity of 
the principal branch of Fa (x). 

4m43, LEMMA 4e43. S~ppe that P, &, and A ore positive constants, 
8, being less than T. Then 

) Fa (4 I< K = K (P, 4, A), 

f or ocr& e1~e~2T-e1, O<a<A. 

We use K generally to denote a positive number independent of tr: and 
of a. We may employ he formula (4m411). It is plain that 

where 7 is the imaginary part of z. Hence 

4944. LEMMA 4-44. Let. c be a circle whose centre is x = 1, and whose 
radius 8 is less than unity. Then 

1 Fa (4 - Xa Cc) I < Kaa~ 

if x lies in c and 0 < a < A, K = K (6, A) being as before independent of x and 
of a. 

If we refer back to (4-421) and (4*422), we see that it is sufficient to prove 
that 

10, (x) 1 < Ka2, 1 a2 (x) ] < Ka2 ; 

and we may plainly confine ourselves to the first of these inequalities. We 
have 

Rejecting the extraneous factor, which is plainly without importance, and 
integrating by parts, we obtain 

@ (x) = Ia @ (t) ‘Osh a;jit) - ’ dt, 
0 

where @ (t) = - 

ixit log x ST&t e - +i + St 

e-&ri+2at- 1 + (e-*&+2rt_1)g’ 

< KeW It follows that 

1 tD (t) I< Ke-lrt ; 
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< Ki,” e-@ (coshg-cosg) dw 

6. PROOF OFTHEMAINTHEOREM. 

5I. We write 

where C = T J+, xp,q = xe-2pnilq ; and 

(5*12) @ (4 =f (4 - 253 Fp, q (4 
QP 

where the summation applies to all values of p not exceeding q and prime 
to q, and to all values of q such that 

(5-13) 1 <q c v = [a &I, 

u being positive and independent of n. If then 

(5.14) Ii;7 q (4 = ~~p,q~n~n> # 
we have 

(5.15) 

where r is a circle whose centre is the origin and whose radius R is less 
than unity. We take 

(5.16) J&l-@ 
7%’ 

where p also is positive and independent of n. 

Our object is to shew that the integral on the right-hand side of (5-15) 
is of the form 0 @I*); the constant implied in the 0 will of course be a 
function of a and /% It is to be understood throughout that O’s are used in 
this sense ; 0 (1), for instance, stands for a function oj X, n, p, Q, Q, and @ (or 
of some only of these variables) which is less in absolute value than a number 
K = K (u, p) independent of x, n, p, and q. 

We divide UP the circle F’, by means of the dissection E, of 4.23, into 
arcs fPIq each associated with a point IWtiiq ; and we denote by yP,q the arc 
of r complementary to &. This being so, we have 

= SJ p,q - 2 jp,9) 
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say. We 
we shall 
fuuc tions 

6-21. 

shall prove that each of these sums is of the form 0 (n-1) ; and 
begin with the second sum, which only involves the auxiliary 

E7 . 

Proof that cj, I q = 0 (d). 

We have, by Cauchy’s theorem, 

where c& consists of the contour LMNM'L' shewn in the figure. Here 
L and L’ are the ends of & q, LM and WI;’ are radii vectores, and MNlK’ is 
part of a circle I& whose Radius R, is greater than 1. P is the point evtila; 
and we suppose that R, is small enough to ensure that all points of LM and 
XL’ are at a distance frown P less than -i. The other circle c shewn in the 
figure has P as its centre and radius +, We denote LM by -P,q, M’L’ by 
plP, q, and AfNM’ by yP,q : and we write 

5*22. Suppose first that x lies on yP,q and outside c.. Then, in virtue of 
(5.11) and Lemma 4m43, we have 

(5221) Fp,q (4 = 0 w- 

If on the other hand x lies on Y~,~, but inside c, we have, by (591) and 
Lemma 4.44, 
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But, if we recur to the definition of xn (a) in Lemma 4.42, and observe that 

a2 

exp 4 log (1/x) 
a2 log (l/Y) 

= exp 4 [{log (l/?-)y + 82-J < 1 

if I I ;  3 reie and r > 1, we see that 

(5.223) xp,q (4 = 0 Wd 

on the part of vP,* in question. Hence (5.221) holds for all vP,qm It follows 
that 

jl,, q = 0 (R-” d9), 

(5.224) 2 j, I q = 0 (RI-” 2 qt) = 0 (ng R,-“) *. 

This sum tends to zero more rapidli than any power of n, and is therefore 
completely trivial. 

The contrihtions of lQ& and cj$,q. 

5m231. We must now consider the sums which arise from the integrals 
along mPIQ and & ; and it is evident that we need consider in detail only 
the first of these two lines. We write 

sav, 

In the first place we have, from (5*222), 
l 

U&W = 

Oq I  (  

-4 R, dr 
-Z 

> 

0 (4 

-&)$-1), 

.  
R rnfl 

since 

(5.2312) 

Thus 
(5.2313) 

rB 
( ) 

--n 
R 9-n = 1 -- = 0 (1) . n 

Xj$,, = 0 {n-l Q <zfdnJ q+) = 0 (n-3). 

5*232. In the second place we have 

It is plain that, if we substitute y for xe -aprrilq, then write x again for y, and 

finally substitute for XC/~ its explicit expression as an elementary function, 
given in Lemma 4*42,, we obtain 

(5.2321) 1 I 

jl’ Q P? =O(&)~{E(x)-l],/(log~jx-n-~~dm=O(Jq) J9 : 

* Here, and in many passages in our subsequent argument, it is to be remembered 

that the number of values of p, corresponding to a given q, is less than q, and that the 

number of values of Q is of order LJ1z. Thus we have generally 

zO(Q8)=0( z p+l) = 0 (da+l)* 
q-=Wn) 
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say, where 

(5*23211) E(x) = exp 
i 

rr2 
1 6y” log (l/x) ’ 

and the Path of integration is now a line related to x = 1 as P~,~ is t)o 
X = ew+ : the line defined by x = M, where R< r < R,, and 8 is fixed and 
(by Lemma 4.22) lies between 1/2qv and l/q~. 

Integrating J by parts, we find 

(5.2322) 

( n -2$) J= - [{E(x) -1) &g~~ x-fi+h]I: 

-8 J {E(x)-l} 

+g2 /E(x) (log;)-tx-n-(Bdx= J1+ J,+&, 

say. 

5m233. In estimating JI, &, and J3, we must bear the following facts in 
mind. 

(1) Since j x 1 2 R, it follows from (5*2312) that 1 x I+ = 0 (1) throughout 
the range of integration. 

(2) Since 1 - R = a/n and l/Zqv < 8 < l/yv, where v = [cx 2/n], we have 

when Y = R, and 

log(;)=0 (:,I>) 
1 

- = 0 (q d?2), 
log U/x) 

throughout the range of integration. 

(3) Since I E (4 I = exp 
7T2 log (l/r) 

6q” [/log (l/r)}” + tl”] ’ 

E (lz’) is less than 1 in absolute value when r > 1. And, on the part of the 
path for which r < 1, it is of the form 

1 
exPO a ( > Y no 

= exp 0 (1) = 0 (1). 

It is accordinglv of the form 0 (1) throughout the range of integration. u 

5934. Thus we have, first 

(5.2341) 

J1 = 0 (1) 0 (1) 0 (RI-“) + 0 (1) 0 (q-’ c-t) 0 (1) = 0 (q-)x+), 

secondly 

(5.2342) Jz = 0 (1) 0 (qhf) 
. 
[z-&i = 0 (q*,n-p), 
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and thirdly 

(5m2343) J3 = 0 (q-2) 0 (I) 0 (q&a*) 1;’ r+& = 0 (q-*n-‘). 

From (5*2341), (5*2342), (5*2343), and (59322), we obtain 

J= 0 (g-b -q + 0 (&2-f); 

and, from (5*2321), jt/p,q = 0 (n-Q) -I- 0 (yn-f). 

Summing, we obtain 

(5*2344) Xjt’p,q= 0 (n-9 C q) + 0 (d 2 q2) 
!I< WIJ~~ q < 0 (h) 

= 0 (n-)) + 0 (12-f) = 0 (n-q. 

5,235, From (5#2311), (5*2313), and (5.23441, we obtain 

(5.2351) r: jzp,q = 0 (n-f) ; 

and in exactly the same way we can prove 

(512352) z& = 0 (n-f). 

And from (5m212), (5*224), (5-2351), and (5*2352), we obtain, finally, 

(5m2353) c j,, q  = 0 (12-i). 

Proof that EJp q = 0 (n-*>. 

5-31. We turn now to the discussion’of 

= J1p,q -I- J2p,p + J3,,p, 

say, where PP, Q(X) = 01>,!l 

xp,a (4 = XP,Q (4 -t PP,Q (4 = PP, Q w E (XP# !A 

E (x) being defined as in (5*23211). 

D~wu&I~ of I$ J2p, q and C Jsp qrn , 

6.32, The discussion of these two sums is, after the analysis which 
precedes, a simple matter. The arc & is less than a constant multiple of 
I/q 2/n; and xvn. = O(1) on Ep,q. Also 

by (5,222) ; and 
lc,P,&) -xP,&) I= 0 (Y 3, 

(5.321) $/qb+J = 0 (q-,0, 

since / xp,q I= R = 1 - (B/n>, ] am xp, q 1 < l/qv. 
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Hence J$ I Q = 0 (q - 8, - *), 

and Jap 3 q = 0 (q-%-‘1, 

(5,323) ZJ 3 p 1 q = 0 (n-g 2 1) = 0 (xi-)). 
4 < 0 (W 

Discussion of Z JI,, B l 

5m33, From (4.321) and (5m2221), we have 

(5.331) 

if/z/<l,and dp,q = exp - 

Now 
47r2 log (1/R) 

’ x’p*q’ = exp [- if {[log (l/B)]2 + q 1 ’ 

tvhere B is the amplitude of x~,~, Also 

q” ([log (1/R)]2+ B”) = 0 {&+&)} =0(5) 

while log (l/Ii) is greater than a constant multiple of X/n. !l’here is therefore 

a positive number 6, less than unity and independent of /n and of q, such that 

I4,qk~; 

and we may write fit K&4) = 0 ( 14, q I )a 

We have therefore 

E(~~,,)~(~‘~,q)=o(lxrp,qI-~,o~~~~,q/)=~(/~~,q~~Q)=O(1); 

and so, by (5m321), 

f (4 - xp,q (4 = 0 wq> 0 1+--q 1) 0 (1) = 0 w9* 
t 

And hence, as the length of fp,* is of the form 0 (l/q Jn), we obtain 

J1 P,Q = 0 (q-l n-g>, 

(5.332) CJ 1 p q= O(n-2 C , l)= 0 @-a). 
q-a (ha) 

5-34. From (5*311), (5m322), (5*323), and (5W332), w obtain 

(6*341) ZJ p,q = 0 (n-f). 
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Completion of the prooJ: 

5*4. From (5*15), (5*17), (5m2353), and (5*341), we obtain 

(541) P( ) 12 -y Yhpqn=O(n-+ 
433 " 

Eut 

where 

Al: that remains, in urder to complete the proof of the theorem, is to shew 

that 
cash (Cx,/q) - 1 

mal; be replaced by 
”  

~&%zlq l 

? 

and in order to prove this it is only necessary to shew fhat 

On differentiating we find that the sum is of the form 

q<zdN) @{o ($) + 0 (-k)} = 0 {in<& 9-j = 0 wa>* 
Thus the theorem is proved. 

6. ADDITIONAL REMARKS ON THE THEOREM. 

6-l. The theorem which we have proved gives information about JI (n) 
lvhich is in some ways extraordinarily exact, We are for this reason the more 
anxious to point out explicitly two respects in which the results of our 
analysis are incomplete. 

6#21. We have proved that 

p (n) = LQs + 0 (n-i), 

where the summation extends over the values of 4 specified in the theorem, 
for every fixed value of a; that is to say that, when a is given, a number 
K = K (01) can be found such that 

1 p (n) - sA,+, 1~ Kn-t 

for every value of n/. It follows that 

(6.211) P (n> = (CA*&?L 

where {x} denotes the integer nearest to x, for ~2 an,, where n, = 110 (0~) is 
a certain function of cy, 

The question remains whether we can, by an appropriate choice of a, 
secure the truth of (6.211) for all values of n, and not merely for all sufficiently 
large values. Our opinion is that this is possible, and that it could be proved 
to be possible without any fundamental change in our analysis. Such a proof 
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would however involve a very careful revision of our argument. It would be 

necessary to replace all formulae involving O’s by inequalities, containing only 
numbers expressed explicitly as functions of the various parameters employed. 
This process would certainly add very considerably to the length and the 
complexity of our argument. It is, as it stands, sufficient to prove what is, 

from our point of view, of the greatest interest; and we have not thought it 
worth while to elaborate it further. 

6*22. The second point of incompleteness of our results is of much greater 
interest and importance. We have not proved either that the series 

%A + Q q 
I 

is convergent, or that, if it is convergent, it represents p (n). Nor dcies it seem 
likely that our method is one intrinsically capable of proving these results, 
if they are true -a point on which we are not prepared to express any definite 
opinion. 

It should be observed in this connection that we have not even discovered 
anything definite concerning the order of magnitude of A, for large values 
of 4. We can prove nothing better than the absolutely trivial equation 
A*= 0 (Q), On the other hand we cannot assert that A, is, for an infinity of 
values of 4, effectively of an order as great as q, or indeed even that it does 
not tend to zero (though of course this is most unlikely). 

6.3. Our formula directs us, if we wish to obtain the exact value of up (71) 
for a large value of n, to take a number of terms of order l/n. The numerical 
data suggest that a considerably smaller number of terms will be equally 

effective ; and it is easy to see that this conjecture is correct. 

Let US write @=4rrI/@)=4C, p- $ 9 [ 1 
and let us suppose that a < 2. Then 

2 A,+,= 
I.c+1 

$0 (q*) 0 (-$ 0 (ecdnlq) = O(Gl Jpecinlq) 

0 l (J 
Y 

= - 
rh F 

Jx ec Jnb dlx: , 

since dqe cNQ decreases steadily throughout the range of summation*. 

Writing 2/n/y for z, we obtain 

* The minimum occurs when q is about equal to 2C& 
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It follows that it is enough, when n is sufficiently large, to take 

Pd 32 [ 1 log 12 

terms of the series. It is probably also necessctry to take a number of terms 
of order dn/(log 92) ; but it is not possible to prove this rigorously without 
a more exact knowledge of the properties of A, than we possess. 

6.4. We add a word on certain simple approximate formulae for log p (n) 
found empirically by Major MacMahon and by ourselves. Major MacMahon 
found that if 

(6.41) . log,,p (n) = l(n + a> - %b, 

then u% is approximately equal to 2 within the limits of his table of values 
of p (n) (Table IV). This suggested to us that we should endeavour to find 
more accurate form& of the same type. The most striking that we have 
found is 

(6-42) logmp (4 = $“- {Il(n + 10) - a,> ; 

the mode of variation of a, is shewn in Table III. 

In this connection it is interesting to observe that the function 

13-“9 (n) 

(which ultimately tends to infinity with exponential rapidity) is equal to 9’73 
for n = 30000000000. 

7. FURTHER APPLICATIONS OF THE METHOD, 

7.1. We shall conclude with a few -remarks concerning actual or possible 
applications of our method to uther problems in Combinatory Analysis or the 
Analytic Theory of Numbers. 

The class of problems in which the method gives the most striking results 
may be defined as follows. Suppose that Q (n) is the coefficient of AF in the 
expansion of F(s), where F (11;) is a function of the form 

(7.11) 

f(x) being the function considered in this paper, the a’s, b’s, a’s, and 6’s being 
positive integers, and the number of factors in numerator and denominator 
being finite ; and suppose that 1 F(x) 1 t en d s exponentially to infinity when x 

tends in an appropriate manner to some or all of the points esp”i/g. Then our 
method may be applied in its full power to the asymptotic study of Q (n), and 
yields results very similar to those which we have found concerning p (n). 

* Since f(-X) , uYx2>~3 
=f(x>fl 

the arguments with a negative sign may be eliminated if this ia desired. 
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304 Asymptotic Forwulce in Colnbinatory Analysis 

Thus, if 

F (4 = ff, f(x)=(I+I)(1+x2)(1+x3) “‘=(l-G)(l ;)(l-a’) , I - 
.  .  l 

so that 4 (n) is the number of partitions of n into odd parts, or into unequal 
parts *: we find that 

l q b) = a djl d Jo [ir 2/(3 (a + +$)}I 

The error after [OL &J] terms is of the form 0 (1). We are not in a position to 
assert that the exuct value of 4 (fir) can always be obtained from the formula 
(though this is probable) ; but the error is certainly I;dunded. 

If f (x2) f (4f (4 
P(xQm= -If-$jp-=(1+x)(l+x3)(1+~~) l rnej 

so that Q (n) is the number of partitions of 12 into parts which are both odd 
and unequal, then 

The error is again bounded (and probably tends to zero), ‘i 

If Jqx) cf w2 1 z-c 
f(x2) 1-2x+2ti-2x”+...’ 

q (n) has no very simple arithmetical interpretation ; but the series is none 
the less, as the direct reciprocal of a simple %-function, of particular interest. 
In this case we find 

1 d earln j/3 d e+rEJjb 
4 (4 = G  &?y --& + G  cos (Qnr  -  Q  71-J & 

- -  

& + ’ ”  l 

The error here is (as in the partition problem) of order 0 (n-t), and the exact 
value can always be found from the formula. 

7#2. The method may also be applied to products uf the form (741) which 
have (to put the matter roughly) no exponential infinities?! In such cases the 

4 
approximation is of a much less exact character. On the other hand the 
problems of this character are of even greater arithmetical interest. 

The standard problem of this category is that of the representation of a 
number as the sum of s squares, s being any positive integer odd or event. 
We must reserve the application of our method to this problem for another 
occasion; but we can indicate the character of our main result as follows. 

* Cf. MacMahon, Zoc, cit., 1~ II. We give at the elld of the payer -a table (Table V) of 
the values of q (n) up to n = 100, This table way calculated by Mr Darling. 

t As is well known, the arithmetical difficulties of the problem are much greater when 
s is odd. 
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If rs (72) is the number of representations of n as the sum of s squares, 
we have 

F (x) = xrg @) xn = (1 + 2X + 2& + , , l )g = ${~ff$.-- = ‘IB!$p. 
-x 

We find that 

(7m21) 
d 

7’s (4 = &) 

where cq is a function of q and of n of the same general type as the function 
A, of this paper. The series 

is absolutely convergent for sufficiently large v&es of s, and the summation 
in (7.21) may be regarded indifferently as extended over all values of q or 

only over a range I< q < tl &. It should be observed that the series (7.22) 
is quite different in form from any of the infinite series which are already 
known to occur in connection with this problem. 

7.3. There is also a wide range of problems to which our methods are 
partly applicable. Suppose, for example, that 

F Cxl = xp2 Cot’) xsb = p 
-X 

so that p2 (n) is the number of partitions of n into squares. Then F (LC) is not an 
elliptic modular function; it possesses no general transformation theory: and 
the full force of our method cannot be applied. We can still, however, apply 
some of our preliminary methods, Thus the “Tauberian” argument shews that 

logp”(n)-2-~3&{~(;)}Q.+. 

And although there is no general transformation theory, there is a formula which 
enables us to specify the nature of the singularity at it’ = 1. This formula is 

f+)=” J(s) exp {$5(-q 

x ii (1 - 2e- 2T J W) cos 2r &l/Z) + e+ 4 W~J}. 
1 

By the use of this formula, in conjunction with Cauchy’s theorem, it; is 
certainly possible to obtain much more precise information about p2 (n), and 

The corresponding formula for p8 (n), the number of partitions of PZ, into 
perfect s-th powers, is . 

p”(n.) w (2T) --H8f1) 

where 
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The series (7421) may be written in the form 

d8 

TFJ 
&-l r, OS .2&-q pw+l, 

P*Q Q 
where oP, q is always one of the five numbers 0, eg&, e-t&, -@, - Key. When 
s is even it begins 

It has been proved by Ramanujan that the series gives an emct repre- 
sentation of r# (n) when s = 4, 6, 8 ; and by Hardy that this is also true when 
S= 3, 5, 7. See Ramanujan, I( On certain trigonometrical sums and their 
applications in the Theory of Numbers “; Hardy, “On the expression of a 
number as the sum of any number of squares, and in particular of five or 
seven f 

P 
1 
1 
1 
2 
1 
3 
1 
2 
3 
4 
1 
5 
1 
2 
3 
4 
5 
6 
1 
3 
5 
7 
1 
2 
4 
5 
7 
8 
1 
3 

‘7 
9 
1 
2 

Q h3 wp, ql=i 
1 0 
2 0 
3 l/l8 
‘4 - l/l8 

118 
ii -218 

l/5 
1! 0 
>9 0 

- jf l/5 
6 5118 

- 11 s/l8 
7 5114 
ts 1114 
31 - l/14 

I? l/14 
- ?1 l/M 
- ii 5/14 

7116 

5’) l/l6 
?? - l/l6 

- 
ii T/l6 

14127 
?P 4127 

- ?1 4127 
I9 4127 

- 93 4127 
- 16 14/27 

315 
?I 0 
t? 0 

- 1;’ 315 
15122 

39 S/22 

TABLE I mP q. I 
P 
3 
4 
5 
6 
7 
8 
9 

10 
1 
5 
7 

I1 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
3 
5 
9 

11 
13 

1 
2 
4 
7 

Q 1% WP,d”fi 
11 3122 
tl 3/22 

- I? 5122 
3t 5122 

- T1 3122 
- 1? 3122 
- ?I 5122 
- ii2 15/22 

55172 
99 - 1172 
t3 l/72 

- ii3 55172 
11113 

t1 4113 
33 l/13 
99 -l/13 
‘)I 0 

- ?3 4113 
31 4113 
19 0 
11 l/13 
3? -l/13 

- $f 4113 
ii - 11113 

13/14 
If 3114 
31 3114 
tt - 3114 
I? -3114 

- 1”5 13114 

w 
It 7118 
13 19/m 

- !9 7118 

P 
8 

11 
13 
14 

1 
3 
5 
7 
9 

11 
13 
15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
X6 

1 
5 
7 

11 
13 
17 

Q 

7118 
-19p 
- 7118 
- l/90 
- 29132 
- 27132 
- 5132 
- 3132 

3132 
5132 
27132 
29132 

- 14117 
8117 
5117 
0 
r/n 
5117 
l/17 

- s/17 
8117 

-l/17 
- 5117 
- 1117 

0 
-5117 
- 8117 

14115 
- 20127 

Z/27 
- 2127 

2127 
- 2127 

20127 
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A4 = 2 CO8 &arr - +>. 

4 =2co0(+2v- $) + 2 CO8 Qnn. 

4 = 2 cos (&m - &m)* 

A7 = 2 cos (Qnlr - i$T) + 2 COS (+?i$T - &W) + 2 CO8 (+m +&p). 

AS = 2 COB (&nr - 25 T) + 2 COB ($nr - &“). 

A9 = 2 cos (@aa - &@) + 2 COB (@T - #p) + 2 cos (@an +&T). 

Am= 2 CO8 ($nr - @) + 2 COB +. 

It may be observed that 

4 =O(nz 1, 2 (mod 9, 

Aro=O(n= 1, 2 (mod w, 

A:, =o (nd, 3, 4 (mod 7)), 

dll=o (n+ 2, 3, 6, 7 (mod II)), 

(mod 17 

AIs= (72~ 2, 3, 5, 7, 9, 10 (mod 13)), Al,=0 (n= 1, 3, 4 (mod rJ)>, 

Ale=0 (n=O (mod Z)), A17=0 (nrl, 3, 4, 6, 7, 9, 13, 14 I> ; 
while A 1, Aa, A 3, 84, A,, AS, A g , Ala, A16, and Al8 never vanish. 

TABLE III : Iog,,p (~2) = J# {&n + 10) - a,}. 

11 %a 
1 3.317 

3 3*176 

10 3’011. 

30 2.951 

100 3m036 

300 3.237 

1000 3.537 

3000 3.838 

moooO 

300000 

1000000 

3cmom 

loooooor) 

3oooom 

a0 

% 
4m148 

4.364 

4,448 

4-267 

3.554 

2.072 

- X*188 

- 6.796 
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308 

1 ..* 1 
2 
3::: 

2 
3 

4 . . . 5 
5 l .  .  7 

6 l * *  11 

7 *.a 15 
8 *.a 22 
9 30 

10::: 42 
II,.. 56 
12... 77 
13... 101 
14. .* 135 
15... 176 
16. . . 231 
K.. 297 
18... 385 
19. rn. 490 
2a.. 627 
2L.. 792 
22... 1002 
23... 1255 
24,.. 1575 
25,.. 1958 
26.*. 2436 
27.u 3010 
28, ,a 3718 
29.u 4565 
30... 5604 
31... 6842 
3s.. 8349 
33.., 10143 
34*.. 12310 
35... 14883 
36... 17977 
37... 21637 
38... 26015 
39.,. 31185 
40.. . 37338 
4L.. 44583 
42... 53174 
43*.. 63261 
44... 75175 
45*.. 89134 
46,. .105558 
47...124754 
48-147273 
49..*173535 
5O.a.204226 

TABLE IV*: p (~2). 

51... 239943 
52.u 281589 
53... 3299:3 1 
54... 386155 
55... 451276 
56.o 526823 
57... 614154 
58.u 715220 
59,.. 831820 
6@,.. 966467 
6L.. 1121505 
62.u 1300156 
63,., 1505499 
64... 174I630 
6X.. 2012558 
66... 2323520 
67.u 2679689 
68... 3087735 
69.u 3554345 
70,. . 4087968 
71... 469iZO5 
72.e. 5392783 
73... 6185689 
74... 7089500 
75.*. 8118264 
76.u 928909 1 
77... 10619863 
7L 12132164 
79.. . 13848650 
m,.. 15796476 
8L.m 18004327 
82, l * 20506255 
83. l .  23338469 

8L. 26543660 
85... 30167357 
86... 34262962 
$7... 38887673 
88.., 44108109 
89. l . 49995925 
90- 56634173 
91... 64112359 
92... 72533807 
93.u 82010177 
94. .* 92669720 
95.,.104651419 
96...118114304 
97.. l 1332:30930 

98u.150198136 
99. l .169229375 

100.. .190369292 

lOl.** 214481126 
102. l . 241265379 
103... 271248950 
104... 304801365 
105... 342325709 
106.u 384276336 
107... 431149389 
‘108.u 483502844 
109... 541946240 
HO... 60’7163746 
ill... 679903203 
112... 761002156 
113.,. 851376628 
114... 952050665 
ll5... 1064144451 
116.., 1188908248 
117.*. 132771UO76 
118... 1482074143 
x19... 1653668665 
120... 1844349560 
121... 2056148052 
122... 2291320912 
123... 2552338241 
124... 2841940500 
125... 3163127352 
126.,, 3519222692 
127, . . 3913864295 
128.,. 435 1078600 
129.., 4835271870 
130#.. 5371315400 
l-31... 5964539504 
132.v 6620830889 
133,*. 7346629512 
134... 8149040695 
135. . . 9035836076 
136., JO015581680 
137...11097645016 
138...12292341831. 
139. .a 13610949895 
140...15065878135 
14LJ6670689208 
142.. .18440293320 
l43...20390913S757 
144.. .22340654445 
145. l .24908858009 

146.m.27517052599 
147.,.3038867X978 
14L33549419497 
149.. .37027355200 
150. ..40853235313 

EL.. 45060624582 
152.e. 49686288421 
153*.. 54770336324 
x54... 60356673280 
155.,. 66493182097 
156.m. 73232243759 
157... 80630964769 
158... 88751778802 
159*.. 97662728555 
160... 107438159466 
161... 118159068427 
162... 129913904637 
163.e. 142798995930 
164.u 156919475295 
165... 172389800255 
166... 18933482S579 
167... 207890420102 
X68,.. 228204732751 
169.o 250438925115 
r70... 274768617130 
l71..* 301384802048 
172... 330495499613 
P73... 362326859895 
174... 397125074750 
175... 435157697830 
176.u 4i6713857290 
177,. . 522115831195 
178s.. 571701605655 
179.m 625846753120 
180s.. 684957390936 
18L.. 749474411781 
182... 819876908323 
lE33... 896684817527 
184. l . 980462880430 
185...107182377-$337 
I86...117143d692373 
l87...12800110422Gi8 
188...1398341745571 
189. . . 1527273599625 
190. A667727404093 
191..,1820701100652 
192. J987276856363 
193,,.2168627lOM69 
194...2366022741845 
195. ..2580840212973 
196...2814570987591 
197 . . .3068829878530 
198,. l 3345365983698 
199...3646072438125 
200,. .3972999029388 

* The numbers in this table were calculated by Major MqcMahon, by means of the 
recurrence formulae obtained by equating coefficients in the identity 

(1-x-x2+ti+x7-x~~-x16+ ..JZp(n) xn=l. 
0 

We have verified the table by direct calculation up to n= 158. Our calculation of p (ZOO) 
from the asymptotic formula then iseemed to render further verification unnecessary, 

338 



TABLE V* : g (~2). 

n %a 

1. 1 

2::: 1 
3 2 .*. 
4 2 . . . 
5 3 . . . 
6 4 . . . 
7 5 l . *  

8 6 1.. 
9 8 

10::: 10 
Il... 12 
12.,. 15 
13... 18 
14... 22 
15... 27 
IB... 32 
17... 38 
IS... 46 
lg... 54 
20... 64 
Zl... 76 
22... 89 
23. l ,104 

24. .A22 
25. A42 

12 % n CT& 
26... 165 FL. 4097 
27... 192 52.. . 4582 
SK. 222 53*.. 5120 
29... 256 54- 5718 
30... 296 55.., 6:378 
31... 340 56,.. 7108 
32... 390 57:. . 7917 
33. . . 448 58.v 8808 
34... 512 5x.. 9792 
35... 585 60. l .10880 

36... 668 61...12076 
37... 7.60 62.. A3394 
38... 864 63...14848 
39... 982 64...16444 
40...1113 65...18200 
41..,1260 66. ..20132 
42...1426 67. l .22250 
43.. .1610 68...24576 
44...1816 69.. .27130 
4L.2048 70. l .29927 
46...2304 7L.32992 
47n.2590 72.. .I36352 
48. ..2910 73.. .40026 
49...3264 74.. .44046 
50.. .3658 75.. .48446 

n % 

76... 53250 
77... 58499 
78.m 64234 
79,. . 70488 
SO.., 77312 
Sl... 84756 
82... 92864 
83.. JO1698 
84...111322 
85...121$92 
86-133184 
87,. .145578 
88.. .159046 
89...173682 
913.. .189586 
91.. .206848 
92. ..225585 
93.. .245920 
94.. .267968 
95.e.291874 
96.. -317788 
97. ..345856 
98...376256 
99...409174 

100, . .444793 

* We are indebted to Mr Darling for this t&h. 
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UN THE REPRESENTATION OF A NUMBER AS THE SUM OF ANY 

NUMBER OF SQUARES, AND IN PARTICULAR OF 
FIVE OR SEVEN 

BY G. H, HARDY 

TRINTTY COLltEGE, cAMB2IDGE, ENGLAND 

Communicated by E. H. Moore, May 21, 1918 

1. The formulae concerning the representation of a number as the sum of 
5 or 7 squares belong to one of the most unfamiliar and dticult chapters in 
the Theory of Numbers, and only one proof of them h&s been given. The 
proof depends on the general arithmetic theory of quadratic forms, initiated 
by Eisenstein and perfected by Smith and Minkowski. This theory, of 
which a systematic account will be found in the fourth volume of Bachmann’s 
ZahZe&eorie gives a complete Solution of the problem of any number s of 
squares not exceeding 8. Beyond s = 8 it fails. 

When s is even there is an alternative method, This method, which de- 
pends on the theory of the elliptic modular functions, is much simpler in idea 
than the method of Smith and Minkowski; and it has another very important 
merit, that it can be used-within the limits of human capacity for calcula- 
tion-for afly even value of s. Thus Jacobi solved the problem for 2, 4, 6 and 
8. In these cases the number of representations can be expressed in terms of 
the divisors of n. Suppose, e.g., that s = 8; and let us write, generally, 

1 -+ 2 f, (n)f =(1+2q+2q4+ .  l l )‘={&(o,T)]s=9’, 

1 

where q = e’? Then 

and r8 (a) is 16 2 a3 if n is odd and 8 z Si - 8 z Sf if fl is even, 6 denoting 

1918, 10 Proceedings of the National Am&my of Sciences, 4, 189-93. 



190 MATHEMATICS:. G. H. HARDY 

b, a divisor of n, & a even, and 61 an odd divisor. ,When s exceeds 8 the formulae 
are less simple, and involve arithmetical functions of a 
n&~e. Liouville gave formulae concerning the cases s = 10 and s = 12, e. 
and Glaisherl *has worked out systematically all cases up to s = 18. More 
recently important papers on the subject, to which I shall refer later, have 
been published by Ramanujan2 and Mordell? In the latter paper the whole 
subject is exhibited as a corollary of the general theory of modular in- 
variants. 

The primary object of my own researches has been fo deduce the formulae 

f or s =Sands= 7 from the theory of elliptic kftinctions, and so to place the 
cases in -which s is odd and even, so far as may be, on the same footing. The 
methods which I use have further important applications, but this is the one 
which I wish to emphasize at the moment. The formulae which I take as my 
goal are the formulae 

given by Bachmann (pp. 621, 655). H ere n as an odd number not divisible 
by any square (so that there is no distinction between primitive and imprimi- 
tive representations); m runs through all odd numbers prime to lz; B is 80, 
160, 112, or 160, according as 12 is congruent to 1, 3, 5 or 7 (mod. 8); and C 
is 448, 560,448 or 592 in similar circumstances. These formulae are the cen- 
tral formulae of the theory: they involve infinite series, but these series are 
readily summed in finite terms by the methods of Dirichlet and Cauchy. 
With them should be associated-the formula 

where A is 24, 16, 24,. or 0: but this formula, as we shall see, stands in some 
ways on a different footing. 

2. My new proof of the formulae (1) and (2) was arrived at incidentally in the 
course of researches undertaken withadifferent end, that of finding asymptotic 

formulae (valid for all values of s) for r,(n) and other arithmetical functions 
which present themselves as coefficients in the expansions of diptic modu- 
lar functions. In a paper4 shortly to appear in the Proceedings of the London 
Mathematical Society, Mr. Ramanujan and I have developed an exceedingly 
powerful method for the solution of problems of this character, and applied 
it to the study of p(n), the number of (unrestricted) partitions of n. This 
method, when applied to our present problem, introduces the function 
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where 

and the summation applies to K = 1, 2, 3, . 
1 and all positive-values 

of h less than, of opposite parity to, and prime to k (h = 0 being associated 
with k = 1 alone). The coefficient of q* in O,(q) is 

(5) 

and our method leads to the concltision aat 

at any rate for every value of s exceeding 4. 
When s is even, F(q) is an elementary function; and (&, R)~ is easily exprai- 

a 
ble in a form which does not involve the ‘Legendre-Jacobi symbol’ ; . 

0 
The function X&z) is then susceptible of a variety of elementary transforma- 
tions and it was shown by Ramanujan, in the second of his two papers quoted. 
above, that X,(n) is identicul &h Y&Z) when s = A, 6 or 8. In what follows 
I confine myself to the case in which s is odd, merely remarking that my method 
(which is entirely unlike that used by Ramanujan) leads directly to an alterna- 
tive proof of his results. 

3. When s is odd, F(q) is not an elementary function. But it is not diffi- 
cult to prove that 

every term on the right hand side having an argument numerically less than 
~ST. Further, si k: = Si$ &,h; and the first factor can always be expressed in 
a simple form. &pose, to fix our ideas, that s = 5. Then & = (- 1)“k2. 
Substituting from this equation and from (7) into (4), and effect’ng some ob- 
vious simplications, we obtain 

where now Ic assumes all values of opposite parity to and prime 
formula may be simplified further by multiplying each side bY 

to k. This 
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f+i+$+ .  .  l =?r”* 

8 

We then find 

the summation now extending to k = 0, 1,2, . . . and all lz of opposite parity 
to k. This is our fundamental fbrmula, when s = 5. Two steps remain: 
first, to prove the identity of 85(q) and #; secondly, to deduce the formulae of 
Smith and Minkowski. 

4. The first step presents no very serious difficulty, for it involves nothing 
beyond an adaptation of the ideas used by Mordell in his paper quoted in 01. 
We prove first that 86 behaves like 6” in respect to the linear modu- 
lar transformations 7 = T + 2, 7 = -l/T; so that e&Y6 is an invariant of 
the modular sub-group called by Klein-Fricke and Mordell Pa. Secondly, by 
studying the transformation 7 = (a - 1)/T, we prove that 8&P is bounded 
in the ‘fundamental polygon’ associated with Pa. It then follows that the quo- 
tient is a constant which is easily seen to be unity. In all this the only 
difficulty arises fro& the use of certain reciprocity-formulae satisfied by Gauss’s 
sums. 

We now transform (9) by effecting the summations with respect to h, 
using certain contour integrals of a type common in the work of Lindelijf 
and other writers. We thus obtain 

(10) 

a fundamental identity which contains the whole theory of the representation 
of numbers by sums of 5 squares. The symbols j and p alone require expla- 
nation; j runs through the complete set of least positive residues of 0, 12, 
22 1 - * - ? (k - 1)2 to modulus k, each taken as often as it occurs; and & 
is the multiple of k deducted in order to arrive at such a residue. And the 
remainder of the work is purely arithmetic al. Picking out the coefficient 
of qn, Ove obtain a series for r&z) which is found, after some reduction, to be 
equivalent to the series given by Bachmann. 

4. The formulae which correspond to (10) for s = 7 and s = 3 are 
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g3 =1+8 z 
(- 1))u-i) * 

1,3,5,. l l 

k z 2 (mk+j)ff’+’ (12) 
j In=0 

1 
+ x ~2 2 (-l)m~~(mk+j)fq*‘~ l 

2,4,6,... j  m==O t 

The interpretation of j and p is as before, except that, when k is even, j is a 
residue of one of the numbers #, +K + 12, . . l , *k + (k - 1)2. These 
identities embody the theory for 7 or 3 squares. It should be noted however, 
that the application of my method becomes very much more dficult when 
s = 3, as the double series used are then not absolutelyconvergent;and in fact 
the only proof of (12) which I possess consists in an identification of the results 
which it gives with those already known. 

I 
odd 

concl ude by a 

t we 
word concerning 
n trodden ground. are on u 

the cases in 
We have 

which s> 8. Here, when s is 
the asymptotic formula (6); 

and we can evaluate X,(n) as when s = 5 or 7, thus obtaining a series of new 
results. But it is no longer to be expected that our results should be exact, 
and I have verified that, when s = 9, they are not exact, evw when PZ = 1. 

1 Glaisher, J. W. L., Pm. Lodon Math, Sm., (Ser. Z), 5, 1907, (479490). 
2 Ramanujan, S., Trans. Camb. Phil. Sot., 22, 1916, (159-184) ; Ibid., (in come of 

publication). 
3 Mordell, L. J., Quwt. J. Math., 48, 1917, (93-104). 
4 Hardy, G. H., and Ramanujan, S., Proc. London Math. SOL, (Set. Z), 17, 1918, (in 

course of publi$ation). 

CORRECTION 

p. 192. Formula (9) is incorrect; see the footnote at the end of 0 3.22 of the next 
paper (1920, 10). 
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ON THE REPRESENTATION OF A NUMBER AS THE SUM OF ANY 

NUMBER OF SQUARES, AND IN PARTICULAR OF FIVE* 

BY 

Cr. H. HARDY 

1. INTRODUCTION 

1. 1. In a short note published recently in the P r o c e e d i n g s o f t h e 
National Academy of Sciences L I sketched the outlines of a 
new solution of one of the most interesting and difficult problems. in the 
Theory of Numbers, that of determining the number of representations of a 
given integer as the sum of five or seven squares. The method which I use 
is one of great power and generality, and has been applied by Mr. J. E. Little- 
wood, Mr. S. Ramanujan, and myself to the solution of a number of different 
problems; and it is probable that, in our previous writings on the subject,* 
we have explained sufficiently the general ideas on which it rests. I may 
therefore confine myself, for the most part, to filling in the details of my 
previous work. I should observe, however, that the method by which I 
now sum the “ singular series “, which plays a dominant role in the analysis, 

* Presented to the Society, February, 1920. 
1 G. H. Hardy, On the expe8sion of a number as the wrn of any number of 8quwe8, and in 

particular of fwe or wen, froceedinga of the National Academy of 
S c i e n c e s , vol, 4 (1918), pp. 189-193. 

f  G. H. Hardy and S. Ramanujan: (1) Uneformuk asymptotiqw pour le nom&e des partitions 
den, Comptes Rendus, 2 &IL 1917; (2) Asymptotic formulae in Combinator~ Analysis, 
Proceedings of the London Mathematical Society, ser. 2, vol. 17 
(1918), pp* 75-115; (3) On the we@ients in the expansions of certain modular junctions, P r 0 1 
ceedings of the Royal Society, (A),vol.95 (1918),pp. 144-155: 

S. Ramanujan, On certain ttigiwwmetrical sums and their appltiions in the theory of num- 
bera, Transactions of the Cambridge Philosophical Society, 
vol. 22 (1918), pp. 259-276: 

G. H, Hardy and J. E. Littlewood: (1) A ww solution of Waring’s Problem, Q u a r t e r 1 y  
Journal of Mathematics, vol. 48 (1919), pp, 272-293: (2) Note on Messrs. Shah 
and Wilson’s paper entitled On an empirical formula connected with Goldbach’s Theorem, P r o - 
ceedings of the Cambridge Philosophical Society, vol. 19 (1919), 
pp. 245-254: (3) Some problems of ’ Partitio Numerorum’, (I) A new solution of Waring’s Prob- 
lem, Giittinger Nachrichten, 1920: (4) Some problems of ’ Partitio Numerorum’, (II) 
Proof that every Earge number is the sum of at most 91 biquadrates, M a t h e m at i s c he 2 e it - 
schrift, 1920. 

The ,two last papers will be published shortIy. 

1920, 10 Transactioras of the Am&can .M&ema;t&l So&y, 21, 
266-84. 345 
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is quite different from that which I sketched in my former note. The new 

method has important applications to a whole series of problems in Com- 
binatory Analysis, concerning the representation of numbers by sums of 
squares, cubes, kth powers, or primes. It is in the present problem that it 
finds its simplest and most elegant application, and it is most instructive to 
work this application out in detail, 
-<“‘It is well ,known that the solution of the problem is a good deal simpler 
when s, the number Of squares in question, does not exceed 8 s If s is 2, 4 1 

I 
\ 6, or 8, the number of representations may be expressed in finite form by 

-- a,? 
Tmeans 

1. 

of the real divisors of n; if s is 3,5, or 7, by means of quadratic residues 
and non-residues. If a > 8, other and more recondite arithmetical functions 

I are involved. In this paper I confine myself to the cases in which s ZZ 8. 

\ Among these, those in which a is odd have always been regarded as notably 
-“the m&e difficult, and one of my principal objects has been to place them 

all upon the same footing. But I generally suppose s = 5 or s = 8, cases 
typical of the odd and even cases respectively. 

In Section 2 I construct the singuhr series 

where 

A 1 1, 
I ktk = 

&, k denoting the Gaussian sum3 
k 

x 
ef2iihdlk 

9 
j 1 1 

and the summation extending over all positive values of h less than and prime 
to k. The series may be written in the form 

21”tl VlL 
+m> +-@cos (#nn - im) 

2 
+ ~8(COS~nk+CoS(~np-SK)} +o+ l * *  J 1 

the zero terms corresponding to k = 2 and k = 6. 
In Section 3 I show that, when s = 8 or s = 5, the sum of the singular 

series is in fact re (n) , the number of representations of n as a sum of s squares. 
The meth& used are equally applicable in the cases of 3, 4, 6, or 7 squares; 

8 In my former note I denoted a. typical ” rational point ” on the unit circle by ehsilk, 
and a typical Gaussian sum by 

In this paper I generally use the forms involving a 2. Each notation has special advantages 
for particular purposes. 
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but the case of two squares is abnormal4 Throughout this section I am very 
deeply indebted to a paper by Mr. Mordell, published recently in the Q u a r - 
terly Journal of Mathematics? My proof of the identity of the 
functions which I call 8% and O8 is in fact based directly on his work. It is 
true that Mordell considers only the case in which $ is even; but his argu- 
ment is applicable in principle to either case, and was applied by him to the 
even case only merely because, at the time when his paper was written, he 
had no method for the construction, when s is odd, of the essential ” principal 
invariant ” denoted by him by x. It is the construction of this invariant by 
a uniform method in all cases, through the medium of the “singular series “, 
that is my own principal contribution to the subject. 

----Tin Section 4 I show how the singular series may be transformed into a 
product, and give general rules for the calculation of the terms of the product. 
All the results of this section are independent of the hypothesis s 5 8. In 
Section 5 I sum the series when 8 = 8, and obtain Jacobi’s well-known results. 
In Section 6 I consider the case 8 = 5, supposing however that n has no squared 
factor, so that there is no distinction between primitive and imprimitive 
representations; and I obtain results equivalent to those enunciated first by 
Eisenstein and proved later by Smith and Minkowski. In Section 7 I con- 
sider the general case, and show that the method leads to the more complete 

I conclude, in Section 8, by some remarks as to the appli- results of Smith. 
cation of the method when a > 8. I do not pursue this subject further because 
such applications belong more naturally, either to Mr. Littlewood’s and my 
own researches in connection with Waring’s problem, or to Mr. Mordell’s in 
connection with the general theory of modular invariants. 

It will be noticed that the explicit formulas for the powers of the funda- 
mental theta-function, such as the familiar formula 

a8 = ( 1 + 2q + 2q4 + l l l )8 = 1 + 16 2? gq + ++ + $ + l . .> , 

or the new formulas 

do not appear at all in my present analysis. 

4 See Mr. Ramanujan’s paper quoted in footnote 2. 
6 L. J. Mordell, On the representations of numbers as a sum. of 2r squares, Q u a r t e r 1 y 

Journal of Mathematics, vol. 48 (1917), pp. 93-104. See also a later paper by 
the same author, On the representations of a number as a sum of an odd number of squares, 

Transactions of the Cambridge Philosophical Society, vol. 22 
(1919), no. 17, pp. 361-372. 

6 This is formula (10) of my former note, where the meaning of j and p is explained. See 
also p, 360 of Mr. Mordell’s second paper cited above. 
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In the sequel I give references only to isolated results directly required for 
the objects of my analysis. It is more convenient to collect here some notes 
concerning the older memoirs dealing with the problem. 

Jacobi’s classical results concerning 2, 4, 6, or 8 squares are quoted by 
Smith on p. 307 of his Report on the Theory of Number8 (Cdeded Papers, 
vol. 1). They are contained implicitly in $5 40-42 of the Fundamenta Nova 

(pp. 103-115). 
Liouville gave formulas relating to the cases of 10 and 12 squares in a 

number of short notes in the second series of the J o u r n a 1 d e s m at h 6 - 
m a t i q U e s : see in particular vol. 5, p. 143; vol. 6, p. 233; vol. 9, p. 296; 
vol. 10, p. 1, These notes appeared between 1860 and 1865. 

Later Glaisher, inaseriesof paperspublishedin the Quarterly Journal, 
worked out systematically all cases in which s is even and between 2 and 18 
inclusive. He has given a short summary of his results in a paper On the 
numbers of representations of a number as a sum of 2r squares, where 2r does not 
exceed 18, published in the Proceedings of the London Math+ 
matical Society, ser. 2, vol. 5 (1907), pp. 479-490. This paper con- 
tains full references to his more detailed work. 

The results for 5 squares (for numbers which have no square divisors) 
were stated without proof by Eisenstein on p. 368 of vol. 35 (1847) of 
Crelle’s Journal. They were completed by Smith, who stated the 
general results at the end of his memoir On the orders and genera of quadratic 
forms containing more than three indeterminates (Pro ce e din g s o f t he 
R o y a 1 S o ci e t y $ vol. 13 (1864), pp. 199-203, and vol. 16 (1867), pp. 197- 
208; ColLected Papers, vol. 1, pp. 412-417, 510-523). No detailed proofs, 
however, appeared before the publication of the prize memoirs of Smith 
(Me’moire SW lu repr6~entation des nombres PUT des Sommes de cinq carr&, 
Memoires present& par divers savants B I’AcadGmie, 
vol. 29, no. 1 (1887), ppm l-72; Collecded Papers, vol. 2, pp. 623-680) and 
Minkowski (Me’moire GUT la the’orie des forme quadratiques 2G coefiients en- 
t&es, ibid., no. 2, pp. l-178; Gesammelte mathematische Abhandlungen, 

vol. 1, pp. 3-144). 
The methods for the summation of the series 

‘3 f 
i 
Y 

which is fundamental in the five square problem, and other series of similar 
type, are due to l&i&& (Recherches SW divers upplicutions de l’analyse 
infinit&male h la the’oke des nombres, Crelle’s Journal, vol. 19 (1839), 
pp. 324-369, and vol. 21 (1840), pp. 1-12, 134-155; We&e, vol. 1, pp. 411-497) 
and to Cauchy (Me’moire SW la thkrie des nombres, M 6 m o i r e s d e 
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19201 REPRESENTATION OF A NUMBER AS THE SUM OF SQUARE$ 259 

l’Acad6mie des Sqiences, vol. 17 (1840), pp. 249-768; especially 
Note 12, pp. 665-699). 

A systematic account of the whole theory is given by Bachmann in vol. 4 
of his ZuhZentheorie. Bachmann works out the case 8 = 7 also in detail. 

2. FORMAL CONSTRUCTION OF THE SINGULAR SERIES 
 ̂ . _- ._._  ̂_ _-_-.,_ __r_. ..- .A. *m--J> . . - 

2. 1. I write, as in my former note 

(i.ll)f(q) = l+&(n)4”= (1+2q+2q4+ l *)s 
1 

= (&(O, 7>)6 = P, 

where q = ewdr and 3 ( 7) > 0; and I consider the behavior of this function 
when q tends radially to a “ rational point ” ezAr’lk upon the unit circle. We 

or that k is greater than unity and h positive, 
less than k, &d prime to k l 

If (2.11) 
q I 4eanilk, 

so that 0 5 q < 1, q +l, we have 

Now 

when q + 1 l It follows that 

(2.12) s- -\r 
S h. k 

7r k 
where 

k 
(2.121) sh, k = c e 

2pirrle 
1 

and 
j=l 

(2.13) 

it being understood that, when Sg, k = 0 (as is the case if, and only if, k is of 
the form 4m + 2) , this equation is to be understood as meaning 

(2.131) 
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2.2. The principle of the method is to write down a power-series 

(2.21) fh, k(q) = cch, k, nq”, 

which, ( a) is as simple and natural as possible and ( b ) behaves as much like 
f ( q ) as possible when q + 8Ar’lk; and to endeavor to approximate to the 
coefficients inf (q) by means of the sums 

(2.22) 

It is plain that, in forming these sums, we may ignore values of k of the 
form 4m+2. 

The appropriate auxiliary function (2.21) is 

(2.23) 
aa 

he k(q) = ~(3’s) 
where 

(2.231) 1 
It is in fact well known that 

-+a 
F8(x) 

is regular at x = 1 *a We are thus led to take 

(2.24) 

and 

(2.251) A 1 I 1 f Ak = k-8 c (&, k)l ~-2**~~~, 
A 

the summation extending over all positive values of h less than and prime to k. 
I call the series 

(2.26) 

the singular series. The process by which it has been constructed is of a purely 
formal character. It remains (1) to investigate more rigorously its bearing 
on the solution of our problem and (2) to find its sum. 

3. PROOF THAT THE SUM OF THE SINGULAR SERIES, WHEN 8 = 8 OR 8 = 5, IS 

THE NUMBER OF REPRESENTATIONS OF n 

3.1. Proofthat ps(n) = T&). 

3.11. When s is 3, 4, 5, 6, 7, or 8 (but not 2 or any number greater 

7 See, for example, E. Lindeliif, Le calcul des re’sidus, p, 139. 
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than 8) the sum of the singular series gives exactly the number of representa- 
tions of n. In this section I prove this when s = I8 and when s = 5. These 
cases are perfectly typical, but formally a little simpler than the others. 

Suppose first that s = 8. Then 

(3.111) @(g) = 1 + Efh, k(Q) = 1 +~~(~)*Fs(Pe-z~~~~‘). 

Now 
s i,k = qk k4, 

where qk: is 1, 0, or 16 according as k’is odd, oddly even, or evenly even. 
Also, if x = e-g, we have 

F*(x) = c n3xn = x nWny = $(; cosech2 $y) = 6 x (y + iniTi)(, 

where rt runs through all integral values. Hence 

and 

6k 
F8 ( qe--Bhriik ) 1 f c 

1 
It {2(nk -p h) - kri4’ 

(3.112) 

the summation extending over the values of h, k, and n already specified. 
If k > 1 J nk + h assumes all values prime to k; if k = I, all values. Thus 

(3.113) 08(q) = 1 + C(2h Iilck,)“; 

wherenow k = 1, 2, 3, l and A assumes all values such that ( h, k ), the 
highest common factor of h and k, is unity. But this equation may be written 

(3a114) e*(q) = 1 + Fhx, JJh ’ kT)4+ c 16 

k=l, 3, l ..; f = - k=4, 8, . . . . (h, k)=l (2h - kr)4 

1+ x 

1 = 
(ti, kl=l(2h - krj4 

+ x 
1 

&=I, 3, . . . . ,=a, 4, . . . . (h, k)=l (h - kr)4 

1 
=1++-k7)1s 

where now k = 1, 2, 3, -0 and h assumes alI values of oppoa& parity to 
and prime to k. 

Multiplying both sides of (3.114) by 

we obtain 

7r4 1 -=l+;+~+*-, 
96 

(3.1151) 
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or 

(3.1152) 

In (3.1151) k = 1, 2, 3, 0.0, and in (3.1152) k = 0, 1, 2, l .0; in each 
equation h assumes aEE values of opposite parity to k. 

3.12. We now write 

(3.121) 

and consider the effect on x ( 7) of the modular substitutions 

(3.1221) 7’ = 7 =t 2, (3.1222) 7’= -l/r. 

It is obvious in the first place, from (3.1151) or (3.1152), that 

(3.123) X(7 *2) = x(4* 

Again, we may write (3.1151) in the form 

where -h and k assume all values of opposite parity except that (as is indicated 
by the dash) the value k = 0 is omitted. Thus 

Changing h and k into - k and h, we obt.ain 

(3.124) x(- l/T) = 74x(T). 

Now { 83 ( 0, 7) I8 = f18 = $ ( 7) satisfies the equations 

and so it follows, from (3.123) and (3.124), that the function 

is invariant for the substitutions (3.122), and therefore for the modular sub- 
group which they generate, the group called by Klein-Fricke and Mordell r8. 

3.13. The next step in the proof is to show that 1;1( T) is bounded through- 
out the Cd fundamental polygon ” Ga associated with the group &. This 
region is defined by 

7 = x + iy, Ir) z 1, -1Ss~1, 

and has only the points T = & 1 in common with the real axis. It is there- 
fore sufficient to show that q ( 7) is bounded when 7 approaches one or other 
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of these points, say T = 1 l For this purpose, following Mordell, I consider 
the effect of the substitution 

1 
7 l-7 = 

T 

If we write T = X + iY, and suppose that 7 + 1 from inside Ga s then 
Y + ar and 1 Q 1 = lew”] is small. An’d 

(3.131) 

=f+;T4C’F(k:hT)L 
k 

= ; T4C c (k +‘hT)4’ 
k h 

where now k assumes all integral values and h all odd values. 
Write hT = a, tP = rj and sum with respect to k l We have 

1 2 
&+a)‘= 3 

- - # cosec2 a?r + 7r4 cosec4 a~; 

and this function, when expanded in powers of r1 begins with the term 

#T’ c2 = #7r” Q2”. 

Hence, when T = X + iY and Y is large, we have 

(3.132) 
But we have also 

e,(q) = 256T4Q2 + l *.a 

(3.133) 

and so 

{~3(0,~-~))I=T4{o~~0,T))8-256T4Q2+~~~~ 

(3.134) 

Thus 7 ( 7) is an invariant of & and bounded throughout Ga; and is therefore 
necessarily a constant, which is plainly unity. 

It follows that 
(3.135) 
and-so that 
(3.136) 

a8 = @8((j) 

6’8 (n> = r*(n). 
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3.2. Proof that p5 (n) = r5 (n) . 

3.21. When s = 5 the proof proceeds on the same lines, but is not quite 
so simple. We shall require certain well-known identities which I state as 

lemmas. 
LEMMA 3.21L8 If h and k are positive integers of opposite parity, then 

(3.2111) 
k 

j=l 

- 
e-.Pkxb]h. 

J 

and if h and k uw positive integers, and h odd, then 

(3.2112) 5 ( _ 1 ) j  ej’hrdlk = 

j=l 

Here 16 = eiTi. 

LEMMA 3.213. Suppose that 0 < Y < 1, and that CT and the red part of t are 
positive. Then 

. 

(3.2121) L$!f 2 (m + y )u-l e-2rrt(m+vl = $ v&, 
0 

where 
(t + nip = exp(alog (t + fri>l =exp(alog~t+ni~ +a& 

and - +?r<+<+. The formula dill bids for v = 0, if g > 1. 
This result is due to Lipschitzg We shall require two special cases. 
(i) Suppose that c = 3~ > 1, Y = 0, t = - &, x = P; so that 

g(7) >Oand 1x1 < 1. Thenweobtain 

(3.21221) I(2 n - ~>;I38 = exp{+dog 1(2n - r)il + *+i} 

(ii) Suppose that Y = 3 ( I + 0), 6 = X/K, where K and X are integers 
and -K<X<K,andt= -KA. Then 

(3.2123) 

where P(x) is an ascending power series in x. 
3.22. 

(3.221) 

Supposing now that a = 5, we have 

‘8 See, for example, G. Landsberg, Zur The&e der Gaussschen Sum 
Transformation der Thetafunktioxen, J o u r n a 1 f  ii r M a t h e m a t 
pp. 239-253. Both formula3 ar? included in formula (17b), p. 243, of 
The first is &o proved by Lindeliif, lot. cit., pp. 73-75. 

9 R. Lipschitz, Untersuchung der Eigenschaften einer Gattung vun 

Journal fiir Mathematik, vol, 105 (1889),pp. 127456. 

,men und der linearen 
i k,, vol. 111 (1893), 
Landsberg’s memoir. 

unendlichen Reihen, 
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19201 REPRESENTATION OF A NUMBER AS THE SUM OF SQUARES 

and 

265 

S ;,k = qk k2, 

where now qk is 1, 0, or - 4 according as k is odd, oddly even, or evenly 
even, Thus 

(3.222) 05(q) = l-t- F2 c $ sh, k F5 ( qCzhnilk > . 

Substituting from (3.2122), we obtain 

(3.224) 
S 

e5w = 1 -t C$mMh&q5,2J 

the ranges of summation in these equations being the same as in 
(3.113) respectively. The last equation can be expressed in a 
venient form by introducing the sum 

k-l 

(3.225) T h,k = ce3 ‘zhlrilk 
. 

0 

In fact (3 224) may be written 

Wq)=l+ c l 
s 

k=l, 3, . . . . (h, k)=l z {(ah -hk:)i]5~2 

(3.112 
more 

) and 
con- 

c” 

c 4 s - 
k=4, 3, . . . . (It, k)=f Ti ((2h -hkkr)i)512’ 

In the first sum k is odd; 2h = H is even and prime to k; and sh, k = TH k l 
In the second k = 2K, where K kuns through all even values; h is odd aLd 
prime to K; and sh, k = ZT, Ke Effecting these substitutions, and then 
replacing W (or K) by h (or k) ; we obtain 

( - l)h 
e,(q) = 1-t c- 

Th, k 

& {(h - k+j5J2 

where now k = 1, 2, 3, l a and h assumes all values of opposite parity and 
prime to k ? 

Multiplying by 
T2 1 1 
-=p+;+p+ ‘..P 
8 

and observing that, if X is odd, 

(- l)xh = (- l)h, 6((Xh - Xk+ij5f2 = X3#(h - k+j5[2, 

T Ah, hk = XT h, kp 

10 This is equation (8) of my former paper, 
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we obtain 

(3.226) 
9t2 7r2 (- llh 
g%(q) = s+c-- 

Th, k 

& {(h - kr)i]512’ 

where h now assumes all values of opposite parity to k .I1 
3.23. The discussion now follows the lines of 3.12 and 3.13. We write 

(3.231) 
1r2 
p”(q) = XbL 

and it is obvious at once that 
(3.232) xb *a = x(4* 

The discussion of the transformation # = - l/7 requires a little more care, 
owing to the presence of many-valued functions under the sign of summation, 
It is convenient to begin by including negative values of k. 

We write generally 
x8 = exp{s lug 1x1 + iama) 

where the particular value of amx to be selected has to be fixed’ by special 
convention. Thus in ((h - Jc7)ij512, where k > 0, amf(h - k7)i) lies 
(as has already been explained) between - +?T and in l We now agree 
that, if k is still positive, am ( - k) = ?r, so that -J- k = i AIE, while 
am { ( - h + kr ) i) lies between - 8~ and - +?T. d It will easily be verified 
that 
(3.233) m{( - h + k+)ij512 = &((h - kr)ij512. 

Further, we write by definition 

(31234) T-n, -k = &i, k l 

We know from (3.2111) that, when h and k are both positive, 

T 

and it is easy to verify that, with our conventions, we have generally 

(3.235) 

where E = 1 unless h > 0, k < 0, in which case E = - 1. 
3*24. We have, from (3.226), (3.233), and (3.234), 

T2 T2 (- 1)” 
=3+x( - +--5t2 +;G- ((h T;:)il”l’ 

l1 This equation takes tile place of (9) of my former papa, which is not printed correctly. 
The fist term on the right is omitted, and k * = 0 is included wrongly under the sign of sum- 
mation. 
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where now h and k are any integers other than zero and of opposite parity. 
Writing - l/7 for 7 in (3.241), using (3.235), and then replacing h and k by 
K and - H, we obtain 

(3.242) x: (-5) =~+f(~)-611+4~CI(o~=( {(K-*&.ll,2, 

where E is 1 unless Ix and K are both positive, and then - 1, and 

am{(K - H/?)i] 

lies between - $Tand$rifH<O,between-#nand-$rifH>O. 
It may be verified without difficulty that 

(3.243) 

where 0 < am ( - l/r) < ?r and the value of am{ (H - Kr)i) is fixed in 
accordance with our previous conventions. Consider, for example, the case 
H > 0, K < 0. In this case 

- gr < a = am((K - H/~)ij < - +?T, 

and 

O<P = am( - l/7) < 7r, 

- %?r < y = am{(H - KT)~} <&r. 

Thus p + y lies between - #n and $, and, as a! differs from p’+ y by a 
multiple of %, we must have a = 0 + y - 27r and 

s'2 ((H - Kr)ij5j2, 

in agreement with (3.243). The other possible cases may be treated similarly. 

Thus 

(3.244) x(-i) t ;+;(i)-s’2 

where - 3 ?r < am(+) < &n, 0 < am( - l/r) < ?r* And this equation 
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This is the same functional equation as is satisfied by a5 l Hence 

is an invariant for each of the substitutions (3.122), and so for r3. 
3.25. It remains to verify that q ( T) is bounded in G3. As in 3.13, it is 

only necessary to consider the neighborhood of T = 1. Putting 7 = I - I/T, 
as in 3.13, in (3.241), and then writing h = H - K, k = H, we obtain 

(3,251) 
-@ { ( -K+H/+i}5/2’ 

where H assumes all values save 0 and K ill odd values, and 

am{(- K+H/+j 
lies between - 3 r and 3 r, or between - Q at and - 3 z=, according as 
H>OorH<O. 

Now 
II-1 

(3.252) T H-H, H = c ( - 1 )j &-i”Kwr’E = UK, H, 
0 

say. It follows from (3.2112) that, if h and k are both positive, and h is odd, 
and 

y ( - 1 )i e-Ph*W, 
k 

(3.253) Uh, k = wh, k = c 
8 C3-&)zhNk 

1 
0 1 

then 
k 
- 6, h; h 

and it is easily verified that, if we adopt the same conventions as in 3.23 
concerning the meanings of 6 h 1 6 k 9 &, -k, and w-h, -k , we have 

12 We first restore the terms for which H = 0, and then observe that 

(-l)*=-(-l)g. 

we have to verify t-hat, with our con?entions, 

and 
-&(-I/+-#(-A)--8=1 

- &( - l/r)-3 = - (i/+-k 

these verifications present no difficulty. 
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generally 

(3.254) 

where E = lunlessh<O,k>O,inwhichcasee= -1. 
Using this equation in (3X11), we obtain 

It is now easy to verify, by arguments similar to those of 3.24, that 

{( - K + H/T)i15j2 = eTw5j2{(H - KT)ij512, 

where am T lies between 0 and r, while am ( ( H - KT ) i} obeys our previous 
conventions. We thus obtain 

the summation being now limited only by the fact that K is odd. In virtue 
of (3.233), this equation may be written 

3.26. The series in (3.256) may be expressed in the form 

c ( 1 - )H ~-(i-twwK 
K=l, 3, 5, .., {(H B KT)i)5’2m* 

Suppose that 
(J . -12 2 1 - hj (mod 2K) (-K<X;<K), 

and 6i = Aj/K . Then 

c’- 1) 

H e-(j-~)YhilK 

( - -  1) 

E e-H0jTt 

E ((H - KT)ij5j2 = 5 {(H - KT)ii512 

may, by (3X23), be expanded as a power series in Q = P, in which the 
lowest power of Q is 

Q K+hj . 

The smallest possible values of K + Xj are i ,8, l l l ; and K + Xi = $ involves 

or 
3 

‘“-j+aE -K+t(mod2K) 

‘2 
2 -j = (2p - l)K, 
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where p is an integer, i.e. an equation whose left-hand side is even and whose 
right-hand side is odd. Thus K + Xj 2 $; and the left-hand side of (3,256) 
is the product of T5j2 Q5j4 by an ascending power-series in Q. But 

9a(0,1-+) =$a2co, T) 
is the product of P2 Q114 by a power-series in Q. It now follows, just as in 
3.13, that v ( 7) is bounded, and so is a constant, which is plainly unity. 

We have thus established the identity of ed and 68, and so of p8 (n) and 
r,(n), when s = 8 and s = 5. The same method may be used for any 
value of 8 from 5 to 8 inclusive.13 In order to complete the solution of our 
problem, we have to sum the singular series (2.26). 

4. GENERAL RULES FOR THE SUMMATXON OF THE SINGULAR SERIES 

4.1. The due of &, k. 

The known results concerning the value of the Gaussian sum &, k are as 
follows.14 We assume that ( h, Jc ) = 1. 

If k and k’ are prime to one another 

(4.11) s h, kk’ = s hk’, k Shk, k’- 

We need therefore consider only the cases in which k = 2’ or K = p*, p being 

an odd prime. 
Ifk=2 

(4.121) S h,k = 0. 

If k = 2’ = 22P+1, and p > 0, 

(4.122) S A, k = 
2~4-1 $hri . 

If k = 2A = 22p, and p > 0, 

(4.123) s h, k = 2~ ( 1 + $) = 2’*+1 ~0s ihn eihai. 

If k = p, 

(4.131) 

where (h/p) is the well known symbol of Legendre and Jacobi. 
-- 

18 When s = 2 or s > 8, the conclusion is false. The cases s = 3 and s = 4 are exceptional, 
The conclusion is true, but new difficulties arise in the proof because the series used are not 
all absolutely convergent. 
more serious when s = 3 l 

These difficulties are easily surmounted when s = 4, but are 

14 For proofs of these assertions see the chapter on Gau& sums in the second volume of 
Bachmann’s ZahZenUzeorvie, A less complete account is given in Dirichlet-Dedekind, VorZesungen 
tiber Zahbntheorie, ed. 4, 1894, pp. 287 et seq, 
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If k = pA = p2fi+l, and p > 0, 

(4,132) sh, k = p’Sh,p. 

Finally, if k = pA = p2gr and p > 0, 

(4.133) s h, k = pp. 

These formulas enable us to write down the value of Sa, k for all co-prime 
pairs of values of h and k. 

The multiplication rule for Ak. 

4.2. The first step is to prove that 

(4.21) A kk’ = Ak Ak’ 

whenever k and k’ are prime to one another. 
In the formula which defines Ak, viz. 

k8 Ak = c (s,, k)’ e-2nhriik, 

h assumes all positive values less than and prime to II: l Let us call this set 
of values, or any set congruent to this set to modulus k, a k-set. It is easy to 
see that if h runs through a k-set, and h’ through a k’-set, then 

h = hk’ + h’ k 

runs through a kk’-set. For the number of values of h is 

cmw = mw, 

and it is obvious that all are prime to kk’ and incongruent to modulus kk’. 
Thus 

(kk’)” Akk’ = c ( sh, kk’)’ e-2nhrilkk’ 
h 

by (4.11). But 

= c ( shkf, k)8 ( Shk , k’)8 e-2nhrilkk’, 

k k 

s hk’, k = Il 
e23’hk’rijk = C ,ZGk’)‘hri/k = sh 

, 
k , 

j=l j=l 

since jk’ runs through a complete system of residues to modulus k; and 
Siddy &, k’ = &‘, k’. Thus 

( kk’)* Akkf = c (&, k >” (Sh’, k’)” e-2nhtiikk’ 
h, h’ 

= (kk’)” & Ag; 
which proves (4.21). 
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It follows15 that 

(4.22) s = Al + A2 + A3 + l l l = 1 + A2 + A3 + l l l = nxp 

where 
(4.23) 

and p runs through all prime values. 

Calculution of Azx. 

4.3. Suppose first that p = 2. Then the value of Aflh is given by the 
following system of rules. 

4.31. A = 
0 2 l 

4.32. If X ia odd and greater than 1, 

(4.321) 
?&?I 1e8S 

(4.3221) 
and 
(4.3222) 
in which case 
(4.3223) 

& = 0, 

n = 0 (mod F-3) 

v -8s 2-cx-3) n - 8 = 0 (mod4), 

Ap = 2--($u-l> (X-1) @(P-8) ‘Ki . 

?f x = 3, (4.3221) is 8atisJied automatically. 
Let X = 2~+1(~ > 0). Then 

s A, + = 
p+l ethri = p-1 S 

h, 89 

by (4.122). We write 

h=&+h’ (~=0,1,+~~,2~-~-1; h’=1,3,5,7). 
Then 

= p+f-2) c ( sh, 3 )a e-2nhfxi/22p+1 c e-2n=i122~2, 
, 

h’ x 

which vanishes (in virtue of the summation with respect to x ) unless rz = 0 
(mod 2211--2) . 

rf ?t = 22pB2 Y, we have 

A2x = p-w (P+a c (Sh’, 8 >” e+h’ri. 
h’ 

The sum with respect to h’ is 

16 We assume that the series and product are absolutely convergent. This is obviously the 
caseifs>4,asS~,~=O(~),A~=O(k~-+),andl-as<-1. 
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which is 0 or 22sf2 e-3 (~-8)ni according as (4.3222) is not or is satisfied. This 

completes the proof of 4.32. 
4.33. Ij X is ezlen and greater than 1, 

(4.331) A+ = 0 

unless 
(4.3321) nc 0 (mod Zxm2), 
in which case 
(4.3322) A,x = ~m-~>O-U cos '(3 yr - a a*) 9 

where n = Zhs2 Y. If x = 2, the last formula holds in any case, 
If X = Zp, we have 

s h, 2X 
= 2h1 cos $hr eihai = 2p-l S h, 4j 

by (4.123). We write 

h = 4x + h’ (x = 0, 1, 0.0, F2 - 1; h’ = 1, 3). 
Then 

A9 = 2-8 (p+I) C ( Sh, p )a e+nhriPp 
h 

which vanishes (in virtue of the summation with respect to z ) unless n = 0 
(mod 22pB2 ) . But if n = 2*pB2 Y , we have 

Aqh = 22w-2-8 (p+l) c ( Sh’, 4 )” e-4vh’ri, 
la’ 

and the sum here is 

This completes the proof of 4.33. If X = 2, z disappears from the argument 

and h and h’ are identical. 

Cakxdation of A,x when Q is odd. 

4.4. The corresponding results when p is odd are as follows. 
4,41. If ~2 =#= 0 (mod p) then 

(4.411) A P 
=- 

(4.412) A P 
= 

0 f p-4(8-1) 
( s - I>, = 

(4.413) A p= - ( - lp--l) p-4” (8 = q, 

(4.414) A p = (- 1)--l) ; p-e-l> 
0 

(s _ 3); 

the congruences for s referring to modulus 4. But if n = 0 ( mod p ) th,en 

(4.415) A p = (p - l)p-4” (s = O), 
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(4.416) A = 0 ( 8 = 1,3), 

(4.417) A p= (-l;~‘p”(p-l)gi. (ss2). 

We have 

If s is even, this is 

and the sum is equal to - 1 or to p - 1, according as n is not or is a multiple 
of p. This leads at once to the results stated for even values of s. 

If on the other hand s is odd, we have 

which is equal to 0 if TZ is a multiple of p, and to 

3 b-1) (P--l)’ 

otherwise. We thus obtain the results stated for odd values of S. 
4.42. If X is odd and greater than 1, then 

(4.421) A,x = 0 

ifn + 0 (mod $-I); 
(4.422) A+ = p- N-1) 0-l) d4, ( y ) 

if n = p”1 vandu+O(modp); and 

(4.4231) Aph = (p - l)pA-1-~8x (a = o), 

(4.4232) A+ = 0 (s = L3), 

(4.4233) A,x = (- l)i(ype l)p+l+x (8 = e>, 

ifn = 0 (modp”). 
If X = 2~ + 1, p > 0, we have sh, g = pw ah, p J by (4.132). we write 

h=px+h’ (~=O,l,*~*,p~-~+; h’=1,2, l ~~,p-1). 

Then 
l w+1 ApA = p(c+l) c ( Sh, p)8 e-2nh*olp 

If TZ + 0 (mod p2” ) 9 the sum with respect to x vanishes, and we obtain (4.421). 
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If n = p2rc Y, we obtain 

A+ = p2’L-8(IL+1) c (&,‘, p)8 e-2vh’r<jp, 
tbt 

If Y + 0 (mod p), this is p- (p2)F ~4, ( y> J and we obtain (4.422). But if 
VS 0 (mod p) we have 

and we obtain the equations (4.423). 
4.43. If X is even and greater than 1, then 

(4.431) 
ijn + 0 (mod PA+); 
(4.432) 

Apx = 0 

Apx = - p++,“~ 

if n = PA--l y ana v + 0 (mod p); ana 
(4.433) 
;ifn = 0 (modp”). 

A,x = (p m 1 )px-l-n”x 

If X = 2~~ we have Sh, Px = p” , by (4.133). Hence 

which is zero if n + 0 (mod pzFB1) , and 

if n = p2pB1 y; and the sum here is equal to - 1 or p - 1 according as v is 
not or is divisible by p. 

5. SUMMATION OF THE SINGULAR SERIES WHEN a = 8 

5. 1. The formulas of Section 4 enable us to sum the singular series what- 
ever the value of s. I take as typical the cases s = 8 and a = 5. I suppose 
first that s = 8 and that 12 has no squared factor. We have to determine 
the factors xP of (4.22). 

In the first place, let p = 2. Then, as 72 is not divisible by 4, we have 
Ale= A 32= •~~ = 0, by (4.321) and (4.331); and also Aa = 0, by (4.321), 
since Y = 1 and Y - s is not a multiple of 4. If 12 is odd, Ad = 0, by (4.331); 
but if n is even, 4 

A 4 = 2-3 cos 4VT = - *, 

by (4.3322). Finally As = 0 in any case, by 4.31. Thus 

(5.11) x2 = 1 (n&d), x2 = $(neven). 
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Next, suppose p odd and ~+n.‘~ Then Ap2 = Ap3 = 
and (4.431), and A, = - p-*, by (4.411). Thus 

(5.12) 1 -4 
xp= -P (PW* 

Finally suppose p odd and ~1 rz. Then A,, = Apr = l 

and (4.431); Apl = ps7, by (4.432); and 

by (4.415). Thus 
A p = CP - 1)P-4, 

. . 

[July 

= 0, by (4.49) 

= 0, by (4.421) 

(5.13) xp = 1 + (p - l)p-4 - p-7 = (1 + p-“) (1. - jP). 

We have therefore 

s = x2 n (1 - p-") I1 I(1 +p-3)(1 - p-“)} 
P-b Pb 

= x2 n (1 - p-“) I-I (1 + p-9 = $2 n (1 + p-“), 
Pb Pb 

since 

H(1 -p-4) =&=$* 

If 12 is odd, 

(5.14) 
7r4n3 96 

m(n) =---4n: 
r(4) -T pin 

where 03 (n) is the sum of the cubes of 

(5.15) p&z) = 16n3(1 - 2-3) I-I (1 
Pb 

where a; (n) and a:’ (n) are the sums of 

1 + p-3) = l6~3(~~), 

the divisors of ~2. If ~2 is even, 

+ P-3) = 16{a;(n) - cif(n)}, 

the cubes of the even and odd divisors 
respectively. These are Jacobi’s well-knowTn results, proved at present, 
however, only when n is not divisible by any square. 

52 I  l Proceeding to the general case, suppose that 

(5.21) 
and consider first Ag . 

n = 2” Ma w’ af .  .  l (az0; a,a’, - >O) 

If x = 1, Ag = 0, by 4.31. If X is odd and greater than 1, A~x = 0, 

by (4.321), unless Y = n/ZAS3 = 0 (mod 4) , i.e. unless n = 0 ( mod 2AB1) , 
or unless X 5 CI! + 1 l If this condition is satisfied, and n = 2” N, so that 

N is odd, we have 
Ag = 2--3(A-1) e-2af1-A NVR~ 

1 

by (4.3223); and so 

(5.22) Azx = 2-3+-1) ( x < a + 1) , A 2x = - z--3(+1) (A = Q!+l)* 

On the other hand, if A is even, Ag = 0, by (4.331), unless n = 0 ( I;lod 2+2 ) , 

16 Following Landau, I write p f  72 for ‘ p is a divisor of n ’ and p f  n for ’ p is not a di- 
Gsor of 72 ’ . 
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i.e. unless X Z a + 2. If this condition is satisfied we have, by (4.3322), 

A 2x 
= 2--3V-11 cos (  2afl---h NT) l 

The cosine is 1 if X < a + 1, - 1 if X = Q -t 1, and 0 if X = a + 2. Thus 
the equations (5.22) still hold for even values of X. We have therefore 

(5.23) x2 = 1+0+2-3+2-“+ .I. +2-3@-11 w/J-3a, 

the zero term corresponding to X = 1. 
Next suppose that p is odd. If 23 is not an ~3, xP = 1 - ps4, as before. 

If P =wandX<a+l,n=O(modw”),and 

A,h = (w - 1)0-~*-~, 

by (4.415), (4.4231), or (4.433). If X = a + 1, 

by (4.422), (4.411), and (4.432). And if X > a + 1, 

A,x = 0, 
by (4.421) and (4.431). Thus 

(5.24) xw = 1+ (0 - 1)0+ (a - l)cJ’+ l l l + (0 - +-3a--1 -@a-4 

= (1 -u-“>( I  +K3+ur6+ l a’ +u-3a). 

From (5.23) and (5.24) it follows, as at the end of 5.1, that 

PsW = 1~~3~1+2-3+~..+2-“(“-1~-2-3”)~(1+~-3+***+kj-3”), 

w 

it being understood that the factor in curly brackets is to be replaced by 

unity when a = 0; and it is easily verified that the formulas (5.14) and (5.15) 
are still correct. 

6. SUMMATION OF THE SINGULAR SERIES WHEN 8 = 5 AKD n HA4S NO 

SQUARED FACTORS 

6.1, Suppose next that s = 5 and that n is not divisible by any square, 

and first that p = 2. Then Ale = Aa:! = 4 4 l = 0, by (4.321) and (4.331). 
And As = 0, by (4.321), unless n = 1 ( mod 4 ) , in which case, by (4.3223), 

ThusAs= -~ifn=1(modS),A8=~ifnz5(modW8),andotherwise 
As = 0. 

Next, 
A 4 = 2-312 cos(i n,n - i T), 

by (4.3322), so that A4 = - 2 if n = 1 (mod 4) and A4 = $ otherwise. 
Finally AZ = 0 in all cases, bv 4.31 o ” 
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Collecting these results m*e find that 

(6.11) fi=+(n=l), xz=$(n=2,3,6,7), xz=p(n=5), 

the congruences being to modulus 8. 
Ifpisoddandp f n,wehave 

A P A ps= A,* = l *+ = 0, 

by (4.412), (4.421), and (4.431). If p is odd and p [ n, we have 

A P -? 3 0 A -4 
pa=-p 9 A Pa= A += l * .  so, 

by (4.416), (4.432), (4.421), and (4.431). Thus 

(6.12) (P t n), 

If 7z + 1 (mod4), we have 

Also 

1 
1 -- 
P 

4 

where nz runs through al1 odd values prime to n. Hence finally 

(6.13) 

If n = 1 ( mod 8 ) the value of ~2 is 8 instead of 8; and if 12 = 5 ( mod 8 ) it 

is 3 . In these cases the numerical factor 160 must be replaced by 80 and by 
112 respectively. 

These are the results of Eisenstein, subsequently proved by Smith and 
Minkowski by means of the arithmetical theory of quadratic forms. The 
series (6.13) is easily summed in a finite form, by methods due to Dirichlet 
and to Cauchy. I have nothing to add to this part of the discussion. 

7. THE GENERAL CASE WHEN 8 = 5 

7.1. So far it has not been necessary to distinguish between one type of 
representation and another. At this stage the distinction between 1c primi- 
tive ” and cl imprimitive ” representations becomes of importance. 

A representation 
n = x; + XJ + x; + x; + xx 
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is said to be imprimitive if xl, x2, 53 j x4 1 x5 possess a common ,factor, and 
primitive in the contrary case. It is plain that imprimitive representations 
can exist only when n is divisible by a square. When s = 8 (and the remark 
applies equally when s is 2, 4, or 6) the distinction is, for our purposes, irrele- 
vant, even when PZ is divisible by a square: the formulas (5.14) and (5.15) 
are valid in any case. But when s = 5 the distinction is important. It will 
be remembered in fact, by anyone familiar with the work of Minkowski and 
Smith, that th.e right-hand side of (6.13) represents, in general, not the total 
number of representations but the number of primitive representations. Or u 
series (2.26), on the other hand, gives the total number of representations; 
and its relation to the Smith-Minkowski series must therefore generally be 
more intricate than in the simplest case treated in 6.1, 

The theorem which I shall prove is as follows: 
The sum of the series 

(7.11) 
c 

-n312 
7r2 

where m runa through all odd numbers prime to n, and 

C = 8O(n = 0, 1,4), C = 160(n = 2, 3, 6, 7), C = 112(n = 5), 

the congruences being to modulus 8 t is TV ( n ) , the number of primitive repre- 

sentations of n . 

We shall require the following 
LEMMA. If17 

(7.12) r(n) = 

where q2 runa through all squared divisors of n, then 

(7.13) t&(n) = f(n). 

To prove this, suppose first that 12 is divisible by p2, but by no other square. 
Then 

4cn> = r(n) -+(s) = r(n) - r(s) = r(n). 

Next, if n is divisible by p2, pr2, and (p~‘)~, where p’ # p, but by no other 
square, we have 

4(n) = r(n) 

= r(n) - 

17 In what follows I omit the suffix 5 in ~6 (n ) , etc. 
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A similar proof applies if p = p’; and it is plain that a repetition of the argu- 
ment leads to a general proof of the lemma. 

7.2. Suppose first that r2 is congruent to 2, 3, 6, or 7, so that 12 is not 
divisible by 4 and ~2 = k, by (6.11). If we write 

the value of xP requires reconsideration when p is an e3 and a > 1. Using 
the formulas of 4.4, we obtain the’ following results. 

lf a = Zb + 1 then 

A = 
W 0 f A w2= #- ( w4 -, A wa = 0, A ,4= 0 ( - l)u7, 

. . . 
9 A “a-1 = 0 9 A w2b= #- ( 1) u-3bl 

Y 

A ,!2Wl = 0 , A ,2b+2 = - u 
-3b-4 

1 A w2H8 = A ,2bi4 = ’ l m  = 0 .  

If a = Zb, the values of the A’s, up to A,,,, are as above, but 

cd 
-3~2 

? A ,2bi-2 = A ,2b+3= “* = 0 , 

where v = LP n . We thus find that 

(7.22) 
(1 - u-4) (1 - m-3&3) 

xw = 

if a’is odd, and 

(7.23) xw ==: (l - w14)(1 - ylbl]l:l + (3+-3b 
- c3--3 

if a is even. 
Suppose now that n = 2” tia W’ ar l l l = w2 d, where d has no suuared 

factor. Then the odd primes p fall into four classes characterized as 
(i) p=pJPf ?z. Inthiscase 

f;llows. 

(7.241) xp = 1+ 
n 

0 
; p2. 

(ii) p = ul, ~3~ + O, w&L In this case 

(7.242) x wt = 1 - or4 l 

(iii) p = w, +, QJZ t a* In this case a is even, say equal to 

(7.243) xw2 = (1 - wr4) 1 + wr3 + l l l + a;=+3 + W’3b 
1 

zb, and 

t 

by (7.23). 
(iv) p = 03, @3/U, &. In this case a is odd, say equal to 2b + 1 I 

and 
(7.244) x = wt (1 - UT*) (1 + UC3 -pa* + W;3b), 
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by (7.22). And we have 

(7.25) s = % xp=-; rI I I  XP I I  XWl I - I  Xw2 I I  xw3 l 

7.3. We now multiply out the product (7.25), treating the second factors 

of Xw2 and X”3 each as a sum of b + 1 separate terms. We thus obtain 

(7.311) 

X S i!12, if wig = aib2 is the highest power of 02 which divides n; p 5 ba, 
if ~2 = uib3+l is the highest power of ~~13 which divides n; and 8 is an addi- 
tional factor which is equal to 1 unless X = &, and then to 

If we denote the product which appears under the sign of summation in 
(7.31) by Q~, P J we have 

(7.32) 
4,rr2 

160 =- p(n) 3 n3J2S =;-n 3’2rIYpo C%,P = c P&W? 
P 

say. 
Suppose first that X does not, for any ~2, assume its maximum value bz, 

so that all the 8’s in Q, P are equal to unity; and write 

(7.34) 

so that 

*(n) = Fn3j2 C( i)k2, 

*(n) = ~n312nYpo, 
le 

the product extending over all odd primes which do not divide ;II. Then 

where 
q2 = n&y-I&p 

w2 w3 

is a typical square divisor of n, division by which does not eliminate com- 
pletely any prime factor of 12. 

This transformation would not, as it stands, be valid if X = b2 for some ~2, 
since there are then certain primes 02 which divide n and not n/d. &It 

with each of these primes 02 there is associated an additional factor 6 = ywl ( Y ) 

in QA, &b 1 and these factors provide exactly the corrective required. We have 
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therefore in any case px, P = I) ( n/q2) and 

T(n) = p(n) = 

the summation extending over all square divisors of nI And therefore, by 

um, ti (4 = ‘i; ( n ) , the result required. 
Our theorem is thus proved when n is congruent to 2, 3, 6, or 7 to modu- 

lus 8. In order to prove it when ~2 is congruent to 1 or 5, we have only to 
write Q or 5 instead of 4 throughout our argument. It is only when n is 
divisible by 4 that further discussion is required. 

7. 4. We have now 
n = 2” N = 2” ua /’ . . . (aZ2). 

The value of xP J when p is odd, is the same as before. The value of m may 
be calculated by means of the results of 4.3; and we find that 

(7.41) 
1 1 1 1 1 

~2 = I, -4-48-4x2- l m’ -4Fl+F8@, 
l .  .  .  

where a is odd and equal to Zp + 1 or even and equal to 2p. 
Let us denote by T* (n) the number of representations of n which are 

primitive SO fur as 2 is concerned, that is to say in which x1, x2, x3, x4, and x5 
are not all even. 

(7.42) 

and that 

(7.43) 

It is plain that 

r(n) 
n 

=r*(n)+r* a + .**+r* 48 0 12 

( > 
J 

n 
r*(n) = F -2 , co Q 

where now the summation applies to all odd square divisors of n . Further, 
as in 7.1, we can show that ;f 

(7.44 r*(n) = x4(;), 
where the summation applies to all odd square diwkors of n, then 

(7.45) 6(n) = r(n). 

Bearing these remarks in mind, we can complete the proof of the theorem 
as follows. Since p(n), PCM, l l l differ only in the factor ~2 -and the 
outside power of n, an, l . l , we have, by (7.41), 

- 8l3-1 1 

1 1 1 
-  

-  

-  .  l .  - 4 488-2 + . m=i . 
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But, by (7.42), we have 

r*(n) =r(n)-r ; =p(n)--p 
0 

(i) = 4.85($) = 4.8~~‘r(-.$); 

and therefore, by our previous results, 

r*(n) = 4.8@-lzF 

the summation applying to all square divisors of n/4@, or, what is the same 
thing, to all odd square divisors of n. Hence, by (7.45), 

fi(n) = 2?(n). 

This completes the proof of the theorem. It is easily verified that the 
results are in complete agreement with those of Smith? 

8. CONCLUDING REMARKS 

81 . . I have assumed, throughout this paper, that a Z 8; and it is well 
known that the analogous results when a > 8 are false. 

The analysis of the paper breaks down, when s > 8, in one section only, 
namely Section 3. We can still form the singular series, and sum it by methods 
differing only in detail from those of Sections 4-7. We obtain a simple 
function of the divisors of 12 when a is even, a series of the Smith-Minkowski 
type when a is odd; and this series can still be summed in terms of the quad- 
ratic residues and non-residues of n. We can still prove, moreover, that 
the sum of the singular series behaves, in respect to the fundamental trans- 
formations of the modular subgroup &, exactly like the appropriate power of 
the theta-function 8, and that the function corresponding to 7 ( 7) is an 
invariant of the group. What we cannot prove is that 7 ( 7) is bounded; 
and the conclusion which would follow from this, namely that 7 ( 7) is constant, 
is in fact false. 

We have still, however, all the materials for a complete solution of the 
problem. But it is necessary to replace the analysis of Section 3 by a more 
complex discussion in which we deal not with a single invariant but with a 
linear combination of invariants, among which that represented by the sum 
of the singular series is the first and most important. And our conclusion 
will be that the number of representations of n is the sum of a function of the 
types considered in this paper and of a number of other arithmetical functions 
defined in a more recondite manner. Some of these functions have already 
appeared in the work of Liouville, Glaisher, and Mordell. If I do not pursue 

I* See in particular pp. 673 et seq. of the second volume of his. Cotkcted Papers. 
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this subject further, it is because such developments seem to be a part of 
Mr. Mordell’s researches rather than of mine. 

There is another question which arises more naturally out of my own 
researches. The singular series or principal invariant yields in any case ah 
asymptotic formula for T& ( n ) , valid without restriction on s . But, with the 

entry of asymptotic formulas, the peculiar int.erest of squares as such departs,’ 
and the problem becomes merely a somewhat trivial case of the much larger 
problem usually described as Waring’s problem, and so of the investigations 
which Mr. Littlewood and I are publishing elsewhere. 
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INTRODUCTION TO PAPERS ON WARING’S 

PROBLEM 

Hardy’s papers on Waring’s problem were all written in collaboration with J. E. 
Littlewood. In a sense, they followed naturally from his earlier papers on the repre- 

sentation of a number as a sum of squares, but the new difficulties which had to be 

overcome were severe. 
The starting-point of the method is the same. For each integer k: >, 3 the generating 

function is defined as 
f(x) = 1+2 2 xnk, 

T&=1 

so that f( ) x 3 = 2 q&)xn, +X=0 
where r&z) is the number of representations of n as the sum of s absolute values 
of integral kth powers. For even i% this is, of course, the same as the number of 
representations by kth powers. Then by Cauchy’s Theorem the number r(n> is given 

r(n) 1 = r&) = 2i , s (f (x))“x-“-1 dx, 
I? 

where the integral is taken along the circle 1x1 = e-I/Y This circle, x = e-n-1+2mi0, is 

divided into ‘Farey arcs’ by first marking all rational points 8 = p/q with 

1 < q < ?a==, (PP 4) = 1, o<P=q. 

Two neighbouring ration& 8 = p/q, 8 = p’/q’ are separated by their mediant 

e = w-Pw4+41)~ SO that to each rational p/q there belongs a zone of influence, 
bounded by its two neighbouring mediants, These zones are the Farey arcs MPQ’ 

In the treatment of Waring’s Problem they fall into two classes, major am if q < nli’e, 
and minor arcs if nllk < q < d--T 

On each major arc Hardy and Littlewood introduced an approximating function 

where 
Fp *w 9 = Cr(slk)(q-lS~,~)g{log(e2”i”‘pX-l))-s’k, 

c = {Zr( I+ l/k)}8{ I1(s/k)}-1, 
q--I 

s 
P3,jz = 2 e2’rrihkpfqa 

h=o 

They were then able to show that on each major arc Mu q the function f B(x) can 

be approximated by F,,(x) with a sufficiently good error teim not to upset the final 
result. The difficulties ‘they had to overcome were formidable and their first paper 
on the subject (1920, 2) makes impressive reading even today. In one respect they 

were perhaps fortunate, H. Weyl’s celebrated paper (Math. Annalen, 77 (1916), 31% 

52) on exponential sums had just appeared and the methods developed in it made 
the work more manageable. 
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The second difficulty arose on the minor arcs, which do not occur at all in the case 
of squares. Whereas Weyl’s inequality was a convenience on the major arcs, it was 
and to a large extent still is a necessity on the minor arcs, because the error in the 
approximation to f”(x) by J$&$ becomes too large; indeed it is larger than the 

principal term. 
The third difficulty was to deal with the singular series. Having replaced fS(x) by 

Fp ,(x) v on all major arcs, Hardy and Littlewood obtained for s > EZk-1 the asymp- 
totic formula 

r(n) - cn-l+dkS ? 

where 

is the singular series. 

In their first paper (1920,2) they did no more than prove that the series is absolutely 
convergent and greater than a positive constant for k = 4, s = 33 and all n, though 
they suggested that there would be no serious difficulties in extending this result to 
general k: > 3 if s > k2 k--l . This programme was carried through in (1920, 5),* the 
first of their famous papers on ‘partitio numerorum’. 

In EN. II (1921, I), the asymptotic formula is proved for k = 4, s = 21 and it 
is shown that the singular series is uniformly positive. Apart from a detailed study 
of the singular series the paper introduces an improvement in minor arc technique, 
namely the use of the inequality (m denoting the union of all the minor arcs) I 

s 1 f (r@io) I28 d0 < max ] f (re2nie) j2cg-2) 
s 

1 f (reznie) I4 de. 
m einm 0 

For the first factor on the right Weyl’s estimate is available, and the second factor 
can easily be estimated by elementary means. 

In P.N. IV (1922, 4) the authors prove their asymptotic formula for r(n> for all 
s > (k-2)2k-1+5. But the real interest of the paper lies in the study of the singular 

series. It is now commonplace to realize that the inequality S > 0 implies, subject 
to absolute convergence, that the congruence 

x:+.,.+x,” = n (modm) 

is soluble for every modulus m; conversely if the congruence is soluble for all 132, then 
S > 0. In fact we can be more precise. If in the summation formula for S we 
restrict Q to the powers of a fixed prime W, the series turns out to be finite for n # 0 
and represents w -0-1) times the number of solutions of the above congruence mod+ 
for sufficiently large t. Moreover, S equals the product of the restricted sums extended 
over all primes W. 

This idea, which is fundamental not only for Waring’s Problem, but for all applica- 

tions of the Hardy-Littlewood method, appears first in P.N. IV. It is historically 
interesting that the important relation between the singular series and the congruence 

was formulated by the authors as a lemma only (Lemma 2). 
* There WBEI a preliminary Eannouncement in Proc. London Math. Sm. (2), 18 (1920), vii-viii. 
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In P.N. VI (1925, I)? the authors break new ground. They prove first that almost 

all positive integers are the sum of fifteen fourth powers, and more generally the sum 
of 

(&k- 1)2k-f+3 

non-negative Tcth powers for k = 3 and k: > 5. Secondly they prove that all large 
integers are the sum of 

(#k- 1)2k-l+k+5+ 
(k--2)log z-log k+log(k-2) 

log k-log(k-1) I 

non-negative kth powers. The idea of the proof is to introduce a sequence of integers 

which have a relatively large density and are representable as the sum of few kth 
powers. It was the first step in the combination of analytical with elementary 
methods, serving as a signpost to the future, and in particular to the work of 
Yinogradov. 

Finally they introduced in P.N. VI the Hypothesis K, which asserts that the 
number of solutions of 

n= xt+.*.+x; 

is 0(n~) for each E > 0. Under the assumption of Hypothesis K they proved that 
their asymptotic formula for r(n) holds for s 2 2k+ I, in particular that each large 
integer is a sum of 2k+ 1 non-negative kth powers, if k is not a power of 2. Unfortu- 

nately, K. Mahler proved (Journal Londm Math. Xoc. 11 (1936), 136-8) that Hypo- 
thesis K does not hold for k = 3 by means of the simple identity 

(9x4)3+(3xy3-9x4)3+(y4-9x3y)3 = y12. 

Whether the hypothesis is true for k > 4 is still an unanswered question. For the 

application to Waring’s Problem it would suffice if the hypothesis held in a weaker 
‘mean square’ form. 

P.N. VIII ( 1928,4) differs from the preceding papers in posing a purely arithmetical 
problem. Let l?(k) be the smallest integer s such that for all n and all primes p, and 
all m > 0, the congruence xf+,..+x,” z n (modp”) 

has a solution in which not all the x, are G O (modp). 
The authors determine five distinct classes of k for which l?(k) > k and calculate 

l?(h) explicitly. They also prove that l?(k) = k if 2k+ 1 is a prime, For all other cases 

they prove the inequality r(k) < k. 
As a conjecture they mention the innocent-looking relation 

lim r(k) > 4, 
k-a 

which has remained unproved. It would be sufficient to find for all large k a prime 7~ 
such that 77 L_ 1 (modI%), 7~ < k4/3. 

Finally, a footnote should be quoted: 
‘We may add that “P.N. 7”, which is still unpublished, contains an application 

of our methods to the problem of the order of magnitude of the difference between 

t An ahtract appeared in PTOC. London Math. Sot. (2), 23 (1925), xx-xxi, 
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consecutive primes. We prove (subject to our generalized form of -f7ie Riemann 
hypothesis) that 

lxm ' P,+l--P~ <gJ 

n3 logn ‘- 3’ 

The paper was never published, but R. A. Rankin (Proc. Camb. Phil. XOC. 36 (194Q 

X15-66) proved that the lower limit in question does not exceed 3/5 under the 
generalized Riemann Hypothesis, whereas P. Erd% (Duke Math. J. 6 (1940), 438-41) 
proved without any assumptions that it is less than 1. Later R. A. Rankin (Journal 
London Math. Sot. 22 (1947), 226-30) proved that the lower limit is less than 57159. 

The subsequent major improvements upon the Hardy-Littlewood results in 
Waring’s Problem are due to I. M. Vinogradov. An account of his results is given 
in his book, The Method of Trigonometrical Sums in the Theory of Numbers, English 
translation by K. F. Roth and A. Davenport, 1954. 

He proved first (Annals of M&h. 36 (1935), 395-405) that 

G(k) < 6klog Ic+(4+log 216)k, 

where G(k) is defined as the smallest s such that lim r&n) > 0. A simplified version 
n+m 

was given by H. Heilbronn (Acta Arithmetica, 1 (1935), 212-21). Subsequently 
I, M. Vinogradov improved this result progressively in various papers, and in his 

book he proves G(k) < k(Nogk+ll). 

He also in a series of papers considered the validity of the asymptotic formula for 

r&n). The best result given in his book is that the formula holds for 

s > loPlog k-1. 

L. K. Hua had previously (Quarterly Journal, 9 (1938), 199-202) proved the 
asymptotic formula for s > 2k+ 1. 

The inequality G(3) < 7 was first proved by U. V. Linnik (Recueil Math. 12 (EW), 
218-24) and subsequently a simpler proof was given by G. L. Watson (Journal London 
Math. Sot. 26 (1951), 153-6). 

H. Davenport proved that almost all numbers are sums of four positive cubes (Acta 
Math. 71 (1939), 123-43); that all large integers not = 0 or 15(mod 16) are sums of 
fourteen fourth powers (Annals of Math. 40 (1939), 731-47); and that G(5) < 23 
and G( 6) < 36 (American J. of Math. 64 (1942), 199-207). 

Finally, the problem raised in P.N. VIII, that of improving the upper bound for 

r(k), has not received much attention. It was, however, proved by I. Chowla (Proc. 
Nut. Acad. Sci. India, sect. A 13 (1943), 195-220) that r(k) < kc, for some c with 

0 < c < 1, in all cases in which Hardy and Littlewood had not shown that P(lc) > k. 

In recent years there has been renewed interest in the Hardy-Littlewood method, 
which has been successfully applied to prove the existence of integral solutions of 

homogeneous algebraic equations with integral coefficients in a sufficiently large 

number of variables (subject to certain conditions if the degree is even). The proofs 
are very sophisticated, requiring a good deal of ‘old-fashioned’ algebraic geometry. 
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For some of these results, and for references, the reader may consult H. Davenport, 

Andytic methods for Diophantine equatiuns and Diophantine inequalities, Ann Arbor, 

Michigan, 1963, H. H. 
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By G. IL HARDY and J.E, LITTLEWOOD. 

1 . 
1 

T’ was asserted by Waring* in 1782 that every number 
ia tile sum of at most four squares, nine positive 

cubes, nineteen fourth powers, and, in general, g (k) positive 
k-th powers, where ,9 (k) is a number depending upon k done. 
Waring advanced no argument of any kind in support of his 
assertion ; and there is no re;~or~ to suppose that it rested on 
any basis more substantial than the examitlation of a nuder 
of particular cases. 

If the proposition ‘ every number is the sum of at 
most 912 positive k-th powers ’ is true for any particular 
value of m, it is true u for&i for any larger value. The 
number ,9 (Ic) is, by d&&ion, the 8m;rllest value of 3n fol 
which- the proposition is true. I’he problem suggested by 
Waring th falls ~~atur~lly into two parts. The i-h-at is the 
proof of’ the existence ot’ g(k), the secorld the determination 
of itf3 actual value a3 a function of k. It iH the tirtit of these 
two problems that. has generally been de& bed as T%7~ri~~9’s 
l3dxm, ‘i’his problem was solved by Hilbertt it] INN, t’tle 
the existence ot’ g(lc) having beet] proved before only when k 
is 2, 3, 4, 5, 6, 7, 8, or IO. The second problem is still url- 
solved, except wirer1 k is 2 or 3. 

* Es Waring, Meditrrtiones AIgehnicae, ed. 3, 1752, pp. 349-350. 
t D. Hilbert, ‘ Beweis fiir die Darstellbarkeit der ganzen ZahIen dmxh eine 

feRte Anzahl nter Potenzen ( Waringsche . Problem) ‘, mttit~gw Nuchrichten, 1909, 
pp. 17-36, md M& Alrttnlen, vol. lxvii,, lW9, pp. 91-300. 

$ Twenty-five in the firnt version of his memoir, 

1920, 2 (with 
48, 272-93. 

J. E. Littlewood) Quarterly thurnal Mathematics, 



2, In this note we yropose to give a short atccaunt of 
nnott~r solution of Waring’s Prolhn wlkAl uw IMW dis- 
covered recently a,nd wllich proceeds on entirely diffttre~~t lines. 
This solution is not, ia my S~HM of the word, elen~entary. It 
is based throughout on Caucl~y’s l’heore~n :ind the ordinary 
machinery of the theory of ntlalytic fhctions, and has, fro111 
beginnitqg to end, no point of contact with Hilbert’s solution. 
It migllt seem tllat a I$hly transcendental proof of a theorem 
wLclr 1~s already been proved, and that in an entil*ely 
elementary manner, is unnecessary. Tlh view, we tlA<, would 
rest u ~011 a Gap preh ensio r1 l It seems to us most desirable and 
important that W;hg’s Probletn, alld all ainA~r problems of 
Combinatory Analysis, should te brougllt illto relation wi tlr 
the transce11dental side of the Analytic Theory of’ Nu~nbers. 
Further, the method wlkh we follow, and whicfl we describe 
shortly as tAe method of Furq dissection, is in many WRJYI the 
mo8t natural alId, in spite of its considerable technical diffi- 
culties, the most straightforward method f’or tile discussion of 
any problem of this cl&-acter; and it is a mct.hod of great power 
and wide scope, applicable to almost any problem colxerning 
the decompositiotl of integers into parts ok+ a particular kind 11, 
and to many against which it is difficult to suggest any other 
obvious method of attack. 

* F. HausdorE, ‘Znr Elilbertschen Lijsung des Waring&en Problems’, Mcrth, 
Atu2dq vol, lxvii., 1909, pp. 30 I-305. 

t %. Stridsberg, ‘ Sur la dhmonstration de M. Hilbert du th&Gme de Waring ‘, 
Mrrlh. Awden, vol. Irxii., 1912, pp. 145-152. This paper gives references to two 
earlier notes by the author in the &*I& f&m Mctte~~til, vol. vi., 1910 and 19 12, 

$ R. FLemak, 4 B emerknng zu H errn Stridsbergs Ueweia des W aringschen 
Theorems’, Mrth. Awdw, vole lxxii., 1912, pp. 153-156. 

5 That is to say, it does not depend upon arguments which involve limiting 
processes. 

11 8ee G, H, Hardy and S. Ramanujan, ‘Une formule asymptotique pour le 
nombre des partitions de tz’, C’omptes Retldus, 2 Jan. 19 17 ; ‘ Asymptotic formulae 
in Combinatory Analysis ‘, Proc. London dkth. SW., ser. 2, vol. xvii , 19 18, pp. 
75-115 ; ‘ On the cmfficients in the expansions of certain modular fun&o&, 
Proc. Royal Sm. (A), vol. xcv., 1918, pp. 144-155 : S. Liaruanujan, ‘ On certain 
trigonometrical MHIIS and their applicationa in the analytic theory of r,umbers ‘, 
5!iwns. Cad. Phil, Sot., WI. xxii,, 1918, pp. 259-276 : G, II. Hardy, ‘ On the 

expression of a number as the sum of any number of squares, and in particular of 
five or seven’, Proc i’Vationa2 Acrid. of Scie~~ces (\Vashington), vol. iv., 19 18, pp. 
189493 : G. H. Hardy and J. E. Littlewood, i Note OII Meem. Shah aud V\‘ilaon’ti 
paper ell titled An anzpiricd fomda connected with Go’ldbnch’s i%%JWJ2 ‘, fhc. 

Camb, l’hi/. SOL, vol. xix. (1919), pp. 245-254. 
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Moreover, when our metllod is applied to this particular 
problem, it yields a great deal mnore ht~ can be obtained by 
more elementary methods. In particular it enables us to assign 
a dehite upper bound, in the form of a f’unction of k, not 
indeed for 9 (Q but for allother number G (Ic) which seems in 
some way; more fund;lment;tI. ‘l’t~itr number G (Q ia the 
least number 112 of which it is true that every number fm12 a 
cerlcr:i?z j&l mwards is tile sum of at most 712 positive k-th 
powers. It is obvious that G(k) <g(k), and it would seem 
that itI general Q (k) <g (kj; alld tllnt G (k) is more 
fundamental than ,9 (k) bec:luse its vnlue is less likely to be 
determined, in any particuh c:lse, by a number of arithmetical 
coincidences, The value of CJ (h) ia not kuowu for arly value 
of k save z ; nor has any general upper bound for G (K) yet 
been determined. Our method elIaMes UH to prove that 

(2 1) I G(h)52k-1k+ I. 

Finally our method yields not only a l>roof that repre- 
sentations of 12 in the form required exist, but also asymptotic 
fbrmulae for the number of representations. 

w e propose to give here a short account of our aualyh. 
not complete ill detail, ht full enough to shew cledy the 
mrrin ideas on which it is founded. 
will be published later. 

‘i’l~e complete investigation 

3. Suppose first that k is even, and let us denote by 

tile number of representations of 32 in the form 

72 = a,‘+ a,l’+...+ a#‘, 

where the a’s arc integers, positive, negative, or zero, and 
representations which differ only in the order* of the a’s are 
reckoned as dihct. Then r, &2)Js the coefficient of x” in 
the expansion of the fumAou ’ 

(3.1) fk*(x)= [f,(x)}‘= (1 + 2bk)r= %-k,,(,,.n. t 1 0 
We shall sometimes omit the suffix K to f or II’, when no 
ambiguity results. 

It is convenient to conserve the same notatibn when R is 
odd. The arithmeti&l interpretation of rk ,(~a) iB tile11 not f 
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quite SO simple, but the function is equally well ad@ed for 
our purpose. In particular, wider h is odd or even, Hilbert’s 
Theorem may be stated as follows: 

* We admit the value 0 for p when q= 1 only. 
t These asymptotic formulae are valid when x I) xp,, along my regular path 

.which does not touch the unit circle, The behaviour of fk (z) whet1 x tends to an 
‘irrational’ \point of the circle is far more complex : for a detailed study of the 
case k = ‘2, in which fk(x) is a Theta-function, see G. IL Hardy and J. IL Little- 
Mod, ‘ Some problems of Diophnntine Approximation ‘, Actu Mdicmt ica, vol, 
xxxvii., 1914, pp. 193-238. 
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Fa ($5) = ii va-’ if 
1 

= r(n) (log a)-+ G (x), 

IV 11e1*o c={2++#7r (1+&), 

instead of (4.3). We are thns led to replace fk,, (X) by 

(5 1) 
S 

. $ ha (2) = I + cz Au zF,$,e (Xe-2P”ii4), 
( ) 9 

and Y&H) by the coefficient of X” in +k,l (x), viz. by 

The srmrmtions apply to alI positive values of q, and al1 
positive values of p less thnn md prime to 9, p = o being 
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associated with q = I alone; ana tile constfillt term in @I) 
is added merely for tile s&e of formal correspondence, Arld 
it is of course to be understood that our wMe argument, up 
to tllis point, is of a purely form;kl character. It prove3 
nothing ; it merely suggests that pk ,(12) rnzly not unreasonably 
be expected to i&Al some sort ot” qproxirnation fbr 5J12), 

a hope wlkh more rigorous atdysis proves to be well- 
founded. 

We shall call the series 

(5 3) 1 

6. It will evidently be essential to prove that the singular 
series (5.3) is convergent for a giveu Ic alld all sufficiently 
large values of s. 
to shew that 

The most obvious wily of effecting this ia 

S p q= 0 h% t 
uniformly in p, c~ being a fuuctiotl of k only and 0 62 < 1. It 
is well known tLt 8 = 0 (dq) whn k = 2 ; it is riot 
difficult to prove, by theP;Pse OC known results in the thea*y of 
tile divisim OF the circle, tllat 

when k = 3 and 

S p) q= Q @+‘) 

S p , *= 0 (8”) 

when k = 4, E being any positive number ; and it appenys 
that we m:ky suppose, in gellertil, tllat a is any number greater 
tflan (Ic - 1)/h. 

where m is an arbitrary integer; and we are unable to prove, 
fur these more geaeral sulils, result8 21s accurate as tlrose stated 
above for tile specitil sum8 SP 4, 
tile best possible of tth 

wlGch seem to be substathally 
&d. We have not at present 

proved any result, collcernirlg tile order of Sp Q ,,t, which seell]H 
likely to embody the beat tl~t cata be stated tGIy.* For some 

* We have proved that, if q ie prime, 

8 
uniformly in p and nt. 

p,q,m = 0 (P”) 
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purposes, in particular that of solving the second problem of 
6 I, it is of the utmost importance that the best poAble result 
nf HIis kiild should be discovered. But for our first purpose, 
that of proving Hilbert’s Tl~eorem, not so much is necessarym 
All that is required is 50172e result of the form 

and such a result ia fortuwtely not difficult to find. We can 
in fact p~mw, by tire use ofcertairrl very elegant trarlsforlnations 
due to WeyI,* tllat 

7. It follows at aIce th:tt the aillgulw series i9 convergent 
for sufficiently large values of 5. FurtIler, its &solute value 
may be mde, by choice of IX sufficiently large value of a, aa 
near to unity as we pleue. !l%e tirst terrrr is unity : let us 
write the series, then, in the form 

s= I + 8’. 
We have I sp,p/p. I e 1 

for q 2 2 ; and I x,,,/a I < @rzp9 

where p = 1/4K and H depends on k only, for all values of Q. 
Choose a value of Y RHCII tllat 

w> H-, 

aud cnn therefore Le made ats small a~ we please by chuice of S. 

* H. Weyl, ‘ Uber die Oleicltverteilung van Zahlen mod, Eiug ‘, Matk Amah, 
vol. Ixxvii., 1916, pp. 313-352, See in particular p. 336, equation (11). 

t ‘l’he number of values of p aaaocictted with each value of Q ie + (q), the 
number of numbera less than and prime to + 
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It follows from (5.2) that 

(7 1) l j Pk,#( 11) j > ~c’,(6/kl-1 

for all sufficiently large values of s attd all values of II, 

(8 1) 1 

the cotltotir of itttegration being a circle I? whose cetltt-e is the 
origin and whose radius B is less than 1. We take 

111 order to study the integral @I), we divide the circle 
r into a large nuher of srr~all pieces by what we call a Farel/ 
dissectiulr. It is the use of this tnethod of dissection which ie 
the most charactet-istic feature of our analysis. 

!lh Rhey)d sen’es of order N is the aggregate of irreducible 
rat iorlal h,chtls p/q, whet-e o -<p 5 p 5 1y, arranged in as- 
cending order of mng~~itude ; it is plain that p> O except 
when y = 0, y = I, aud y <p except when y = I, g= 1. ‘I’ht~ 

is the Farey’s series of order 5, It is known that, if p/q nud 
p’/~’ are two successive terms itt a Farey’s series, tltett 

$4 -pqr= 1. 

Further, if p/ q is a term in the Farey’s series of order N, and 
$‘/q” and p’iq’ are the adjacent terrns on the left and the 
rigll t, and jp, Q denotes the interval 

then the intervalsjpk exactly fill up the cothuurH (0, I), and 
the length of the t&o parts into which jP,q is divided by p/q 
is greater than I /ZqN ntjd less than l/qN.* ‘.l~e essenti;\l 
poirlt ir3 that each of the ports o’j, Q is of order ~/qlv.t 1 

* When p/q is O/l or I/f, J& consists of a single part only, one or other of ;u”/q” 
and p’/q’ beirlg non-existerl t. 

t For proofs of all these nssertions see the second paper of Hardy mii Rama- 
nujan quoted otl p, 278, $§ L21 9 422, 
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If no~v we suppose that 17 is defined by 

x = BezTie (0 ( 8 5 l)t 

that the range of variation of B is divided up by hking r~s 
points of division all points belonging to the Farey’s series of 
order IV, and that the two extreme intervals, ending at B = 0 
and 8 = I respectively, are regarded as definirlg a single arc 
af the circle, we obtth the dissectiotl of the circle which we 
describe m the lhey dissectbn of order N, l’he arc associated 
with 21/p we call the I%re~ arc & 4, 

We shall find it convenient to whe 

(8 3) 
I k-l 1 

l -z Q, - =l-(q -= 
k k-q I 

b k-2 I -= w b 
k ’ k-1 

9 

80 tht a = b/(1 + b) nnd b = a/(~ ma). We take N- [PI; 
md we shll find that, for the purposes of this problem, the 
Farey arcs fall irlto two ches, arcs for which Q < 72a, which 
we ml1 m@r arcs, and arcs tbr wlhh 12a < p < dwa, which we 

chll 772hm* arcs. ‘i’he behaviour off8 (x) 1~s to be studied by 
quite different methods, according as x lies on an arc of one or 
he other of these two categories. When ?C = 2, a = I -a, 
and the minor arcs disappear: thus one of the characteristic 
difficulties of the problem ia abseut in this particular case. 

9. We begin by considering the mnjor arcs. Ue charac- 

teridic of a majo; arc is tht f.(x) ;k to a certain extent 
dominated by the approximative t’uuction (44, viz, 

A (5)’ (log $)-=. 

We can prove in fact that, on a major arc 

(9 Ij I f(x)=1 t 2w=qbp,+cP I Pd 

where 

(9 2) I 

and 

S I -a 

* p*=2r(1+a) - logx I P ( > 

(9 3) @ = 
l W ~p”fE 

PiQ 
1 7 

for every positive value of E. Let us suppose, to fix our ideas, 
&t q is not hrge and that .X is real. ‘hen $P Q is, in general, 
of order 72a, nud therefore, &Ice K < I, of h&r order than 
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of Waring’s problem. 

(10.2) 
I 1 

l;i -0 ‘6 -- = 
;k log --ie=v-ie, A! 

an itIterval extellding, on e& side of U, 

t ht1 1 / 2qiv id less t hl 1 /piv* ‘lb 
uestiull is then 

where 

=Zr(l $ a) X,,Y-“+ 4% Bp,,m$ (IV), ) 
1 1 

TVllen A= 2, tp (~2) can be ev,zluated in terms of elementary 
functio~~s, and we are led bock to a ft-rmilitlr forrr~l:~ irl tile 
theory of tile ‘I’lleta-furictiotls, Tile general fr~rrrnd~ (10.4) 
may be proved witllout difficulty by tire ntetllods of tile 
calculus of residues, as expounded by Li~ldelijt’ in llis work 
quoted in Q 5, 

The fmctimt + (nt). 

11, It is now necessary to study tile integral (10.5) iu 
golne detail; and a variety of rnetllods ;tt*e av~iMle for tl& 
diwussion, We observe tirst tlr;lt % or am X rises, towards 
the ends of a ~naior NT, to tile order of m;tgtlitude I/J@ 
Sirwe q < 32 a and iV< &a, tllis is never of lower order than - 

l/n, and in geueritl of greater. Ths irl gener;tl tlm Y is 

nearly equal to - +r when x is at tile upper end of a ma,ior 
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(i) Whatever method is followed, the annlysk is a little 
aimpIer when k is even? 
ideas, that k= 4. We have 

Let us suppose first, to fix our 

where 

Usi~~~ BarlIes’ results, we art: led to the conclusion that, 
for the range of values of Y linder consideratiou, we have 

(NJ) + (nz) = 0 I&Y-k exp (- HPM Y-J) 1; 

wlme H is positive atId, together with tile constmt implied 
by the 0, independent both of Y and of ~12, aild tile ambiguous 
aigrl is to be interpreted irl the most ut~t’;tvourable nlallller; 
chosen, thnt is fo say, so that, when x is Ilear the end ot’ tile 
rllajor arc in question, 

is aa nearly as possible equal to *vr or - 47~. It is clear that 
we must take the plus sign WIMI 8 is positive rttld am Y 
rlegative, and the minus rrigtl in the opposite case”. 

It was by the ailalysis sketched above that we first obtained ’ 
the formula -( 11 A)?, on w lk+ the must critical pact of our 
proot (wllen k = 4) depends. It would 310 doubt be possible 
to treat the general case on similar lines, The formal compli- 
catiom of t Ile llecessnry antrlysiv would however be considerable, 

* So far as the mere proof of Hilbert’s Theorem is concerned, we might without 
prejudice suppose k even throughout; for if (e#g.) a number is always expressible 
m the sun-~ gf a fixed number of sixth powers, it ie afortiori alwaya expreseille as 
the guru of a fixed nulnber of positive cubes. For other purposes it would be very 
undesirable that k should be subject to any restriction, 

f H, W. Uarnes, L’l’he asymptotic expnnsion of integral functions defined by 
hypergeometric series ‘, Pwc. Lmdon With. SOL, aer’, 2, vol, v., pp. 69416. 

392 



and b = &. 
WI& k is odd, 

$ (712) = Q p- 

00 
Yt4~+2m?rui du + i 

I 

e- Yuk-2tlmdi & 

Each of the inteE;rals on the right m:Iy be analysed by the 
method of steepest desceuta, hut there will be two term3 in 

* When LC is at the centre of the arc the sign is indiffererrt, since Y is real and 
cos+w = CO8 (- @r) = &* 

t It would be possible, by using the full force of Barnes’ results, to wplace 
(I 1 .I) by a far more accurate formula, but Such refinemerlts would be irrelev>Lnt to 
our purpose. 

$ See, for example, G. N. Watson, L The harmonic functions apsociatell with 
the parabolic cylinder ‘, Proc. London Jhth. Sot., ser. 2, vol. xvii. 11918), pp, 1 IG- 
148, where mnny references to the literature of the mljjt?Ct nre given. 

8 There are E- 1 ‘~01s’ : the one with which we are concerned is that which 

is real when Y in purely imagihary. 
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fixed elld of the patI1 of iGegra.tion. It will be f’ouud that 

(11.3) $ (m) = 0 (4) -I-- 0 (972+-I 1 Yj). 

‘he second term is trivial : there is nothing of importance in 
ill NW ;trlalysis whh depends uPon the distinction between 

Jf k is odd, our upper bound (11.3) for ) $(w) ( cont,zins two 
telm~. ‘he second of these, wheu suhtituted into (I 2, I ), will 
coM&ute 

0 (qK+” [ Y 1 Znz-“-I) = 0 (QKf& j Y I). 

~This contribution is hogether trivial ill compkson with other 
error terms which we aMI be compelled to rctrliu. We n+hly 
thereI’ore proceed with the argument CM though LJ were even, 

Suppose now hat B> o and 

Y= 9’” (v - ;e> = qk p&, 

a0 that p=vsec+ 1/(12co4). 

Then 

pt {- Hef(‘-“J”iml+bY-bJ =-HTI~~+~~+~v ’ (cos~)“cos!P, 

where YP= + (I - b) r+& 

It is easy to verify that the lxtio co&/cos~ remains between 
positive bourlds f’or o <#s $7~ Ttms 

1 E j = 0 [~XP [- JdtbflW (COS $)ltb]], 

where J, like H, is independent of’ 72, q7 or m. Finally, front 
(11.2) and (124, we deduce 

(12.2) 4p,q= 0 [q"' 1 Yl-@ 

x 5 &PbJ 
I 

exp (- Jml'bp-l-~Ilb(coS~)I+Bj]. 
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uf Wu3’il2g’s yrobzenz. 
r. 

283 

13, Pn using (12.2) we must distinguish two cases, 

and 
(i) Suppose first that 910 < I.* ‘ll~en S/v is less than, 
cos$ greater than, a positive constant. Also 

f2b q-l-& (nq+Qb >_ I 

and J712” ’ q-‘-” I? (Co9 $)I+ b > hl”3, 

where L is a comtant like H and J. 
thr~ a coustnnt multiple of q’/u. 

Finally, 1 Y/ is greater 
Heme 

(ii) Suppose that 12e7 1, Then cos$ is greder than 
a constant multiple of’ ~/h+ and 

q-1-b?2e (cos~)"~ 

is greater than a constant multiple of 

4 
-1-b f’ @-l-6, 

and therefore, since 0 < I /412’-~, than a constant multiple of 

924+(~--4(~+W = 1 l 

Also i Y 1 is greater than n constant multiple of qkB. Hence 
we obtain an equation of the form 

Finnlly, B> I 172, so that we are again led to (HJ).$ Wo 
have ths proved equations (W)-(W) of’ 4 9, 

TIie behctviuur offk (x) on tik n&or arcs. 

14. On a minor arc qk) 12 ; and 1 Y 17 pkln, so that Y is 

in general h:ge. Ths the argument of the precedirlg sectbus, 
which was based on the assumption that Y is generally smell, 
fails in principle. 

* Any other po sitive constant might be used instead of 1. 
t We assume here that k > 2. In this case K > &kb (the sign of equality 

occurring when k = 3, K = 3, b= 4). ‘I’he argument rtiqu&ea modificntiou when k = 2. 
$ The argument again requires anodification when k = 2. 
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It is easy to see, moreover, that tire formulae (9.1)-(9.3), 
if true, will- no longer express a, genuine fipproxim:\tion to 
f (cc). For 

!PPY I -L 0 (qK+a (&ny} 

I 0 (,fqK--l+E) 

= o( 72 aK+E 

1 3 

since ti < I, so that the term $P,p will be irrelevant, and 
we shll have simply 

(14.1) f(X) = 0 (7taKSE)* 

Now there is nothing to suggest any abnormal rise in the 
order of m;\gnitude of j’ (;c), new p:Wicular points of the circle 
of convergellce, except ill 80 f;cr as such a rise may be accounted 
for by the influeilce of a term 9, *I It is such a term which 
dominates f (2) on a major arc : bn a minor WC, where there 
is no such domirlating iilfluence, tllcre is HO reason to expect 
thntf(x) will exceed the order of the error terms wld afbct 
all our auatysis. In short, it is rensont\ble to expect (14.1) to 
Md over any mirlor WC ; and this expectation is in fact 
fulfilled, though an entirely different proof is required. 

15. Our proof rests upon the following lemma in the 
theory of’ ‘ I)ioplml&e Approximation ‘# 

Y na- < g < 7P+ ad p < 71a+c, the7z 

dA woi-d of explanation is required as to the use of-’ E. ‘I’lle 

&ted in ‘4 6. The result is sufficient for oL purpose but 
(like the result of fi 6) is prob;lbly not final, and fur this reason 
\ve reserve the det:kils of the proof, 

Our lemma leads at once to a proof of (14.1). Suppose, 
for simplicity, that X is real (so that we are considering the 
central point of a minor arc). Then 

f(x)=r+2 2 xuk+2 xxuk 
l_<lNp t-w 

= Q (xl + 0 (11, I 
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(15.4) 4pp=2r (1-t a) %u (log g, 9 q 
x=x/x, Q = x&Q-i/q, 

r 
a = 1 /If, H: = (Ii- l)/ I!!= I i 2-k+i, 

16. Returning to the contour integrctl (&I), we have 

the summation extending over all arcs ED Q of the Farey 
dissection of order 312 = [P]. We write thi’3 equation in the 
form 

(16.2) 3’, (77) = q + s2, 

where Bl comprises the tertm contributed by major NW and 
& those contributed by minor arc3, It foHow at owe horn 
(15.3) that 

(16.3) Is3 = 0 (12baK+9 ; 

but Sl requires cotwidernbly more discussion. 

* The value of 18 1 at the end of a minor arc in less than 11 qniBa < 11 T$, since 
q> ?P. Hence the liues from xP, q to the ellds of its associated arc make with the 
radius vector an angle less than @, so that the whole arc lies within a =gion of 
the type employed (e.g. by Stoh) in the ordinary extensiona of Abel’s therlrem. 
See for example Bromwich, I@uite $wies, pp. 210412. On major adds the li~ti 
referred to are generally nearly pnrttllel to the tangent at xp qv 
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(16.5) Rpn= 0 I (J E P,Q 
= PP q + %,*~ 

say. It is plnin, in the 

will be convergent if (S - 1) X > 25 a’,e, if 

(16.7) s>2K+l; 

a condition we shall henceforth suppose to be mtidied. Ad 
80 

BpRq = 0 {12s4-1+&}, 

ZR O( @iZK+t) + 0 (@+-nk--1+E), 

(16.8) ‘1;(11)= z T  S2= XiP *+ 0 (?PK+~) + 0 (123n-nX-l+$ I 

17. We next perform two transformations on ipq8 I 
(i) We first replace $!, in iPja, by a function of tile tyPI: 

considered it1 $5. Ttle t’unctiom 

q= {2r (1 +u)}8(y (logya 

* It must be remembered that 2 impliea summation with respect to p as well 
as p. 
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where F is defined 8s in 0 5, differ by a function regular for 
X- I ; and it is easy to see that, in suhtituting one for the 
other, we introduce only an error term trivial in comparison 
with thone already present in (16.8~. 

(ii) We next replace ttle arc of integration EP p by the 
complete circle of which it is a part. This proce’sa also is 
easily shown to introduce only an error term of lerss importance 
than those present in (16.8). 

We have thus replaced X& in (16,8), by 

where 0 is defined as in 6 5 and the path of integration ia the 
circle II; and this is equal to 

18. l’he summation h (17.1) extends over all values of p 
which do not exceed #, and all valuea of p less than and prime 
to p. The series remains convergeM, when p ranges to intinity, 
if sh> 2 or s> zK, a condition inciuded in (16.7). Also 

We have therefore 

The equation (XI) container the proof of Hilbert’s 
TheoremI In fact, we have z3eefl in 0 7 that the coefficient of 
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290 Mr. Hwdy and ii&. LiMewood, A new soltt tion 

n 8u-1 is positive (and as near to hty as wt: please) for every 72, 
if only s is large enougll. Also 

sa-ah--l esa-1, 

and SUKctSU-I 

ifs&>1 or s > kK- 2”-‘k - . 

It is to be observed that this last condition includes the con- 

dition S> ZK+ 1, previously imposed upon s, in all cases 
except that in which k= 2. 

lt follows that Y, (~2) > O for s >_ G (I$ where G (k) is a 
number which depends only on K, and fbr all sufficiently large 
values of 31. In other words every laqye mmber 29 tfic ~2~712 of 
at most G (k) positive kth powers: and’ f&m th it obviously 
follows that every number is the sum of at most 9 (k) positive 

l kth powers, which is Hilbert’s l’heorem. 
It is plain that we have in reality proved much more thah 

Hilbert’s Theorem ; in particular* tllat to every k correspotzds 
u c, (k) such that 

rk I b, - 

prp + (“lk)}]’ x 8 
&lk)-1 2 A!& e-Znpxijp 

!  
rp + (s/k)} ( ) P 

for s> G, (k). Here G, (k), like g (k) and G (rE), is a nutnbel 
which depends only on k, 

On the vdues of g (k) ad G (k). 

19. The numbers of ,q (k) arld G (k) we the I~st numbers 
such that (1) every rlumber is the NM of at most 9 (k) positive 
kth powers ;tud (2) every Ecrrge number is the S&I of ;tt most 
G (k) positive kth powers, It is ohious tht 

Q (k) L g (k). 

The preceding analysis est;tblishes the existence of these 
nulnbers ; but does not, ats it stands, lead to a dehite value of 
either, though it suggests very forcibly that 

(19.1) G (It) < Pk+ 1. a . - 

The known results, fbr the first few valnes ot’ k, are as 
follows.* 

~~- .---_ -..-.. .- 
* See the dissertations of A. 6. Kempner, obey &IS Waringsche ProHem and 

cinige VeraElgenlcinerungen, GWingen 1912, and W. is. Baer, Bcitrtige mm 
Wtwingschelz A-obknt, G ijttingen 19 13. 



In the first place, it is known that 9 (lc) does not exceed 
the numbers given in the following table: 

k= 2, 3, 4, 5, 6, 7, 8 

9 (k) e 4, 9, 37, 58, 478, 3806, 31353.* - 

l’llese m~l;bers t’ur~kh, a fortiorz’, upper bounds for G (I& It 
has also been proTed by Landau that G (3) _< 8. 

The corresponding lower bounds for g (Ic) are 

g (k) 24, 9, 19, 37, 73, 143, 279. 

Thus g (2) = 4 and g (3) = 9, while there is a wide range of 
uncertainty fbr all higher values of k 

As regards Q (k), there is even greater uncertainty. It is 
known that G(k) > k+ I for all vahes of k. Thus 4_<G (3j18, 
but the actual v&e of G (3) is unknown : empirical data 
point to 5 or 6. Similarly, nothing is known about G (5) 
save that it lies betweerl 6 arId 58. 
a little more is known, viz. that 

When k is a power of& 

G (k)> 4k: - 

in particular G (4) > 16, so that G (4) lies between 16 and 37, - 

20. If s> 23, the error terms in (18.1) are of lower 
order than the power of 11 which multiplies the singular series. 
Or~r analysis therefore makea it appear very probable that the 
itlequnlity (19.1) is true. The vtllues of the ri@t-Iland side 
of’ the illeqtl;klity are 5, 13, 33, 81, 193, 449, 1025; so that it 
lvould give new values for G (k, except when k ia 2, 3, OL’ 
5. Itt order- to prove it gerlel*i\lly, it is necessary to study 
the wi @ar series 111 ucl~ more closely. 

The singuk series may be written in the form 

8=1 +A,+A,+...+Ap+*.e . 

Frr particular values of k arid s, the values of the most important 
terms of the series may be calculated mi t hou t excessive labour, 
and upper boutldn assigtted to ttle remainder. The series may 
thus be expressed as n sum of terms which oacike according 
to simple l;tws, and show in a most illuminating manner the 
source of the irregular v;lriations of Txt 8(12). Suppose, f’or 
example, that k- 4, s = 33. It is pIail; that the most irn- 

* The numbers towards the end of the table need not be taken too striouely, 
9s they have been obtained by writers anxious otlly to establish ~0~~2~ numericii 
result. But a good deal of work haa been devoted to the earlier cam, and in 
particular to the cases k = 3 md k = 4. 
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portant term8 in the series are the fur which 1 & Q 1 is most 
nearly equal to unity : these correspond to 4 = I 6, q’= 8, q =5 
and certain associated values of p. When s is as large as 33, 
all other terms of’ the series are quite small ; and we find that 

rr ,,(11)=cnyl+ 1~054cos(3nP” l&p) a 

+ *I47 CO3 (&2n- - #T) + (*038) 

where (9038) denotes a number whose rnodu 
CM, and 

+ = 2 x 32 = 2&l < 223 = 23, 

It is easily verified that 

} + 0 (n++E), 
.tus is less than 

1+ la54 cos (&nrr - &7T) + *I47 COS (:?27T - &7T) > ‘1029 

80 that 9’ 4 &) > 0 for all sufficiently large values of n. It 
fuliows th& G(4) < 33, or in other words that eve)-y large nwmber - 
is the sum of at most 33 fourth powers, 

It may be hoown similarly that 

G (6) < 193. 3 

In this case it will be found that aZE the term3 in the singular 
series, except the firat, are quite srm~ll: a fact which in its&’ 
suggests very forcibly that the result, although a considel*able 
improvement on what is known, is a long way fi*om the 
ultimate truth. 

21, Our general proof of (ELI) does not involve any 
difficultg of principle, or novelty of idea, otiter ttlan those 
which we have explained in Q§ 3-17. But the completion 
of the proof demands a considerable number of’ simple alge- 
braical calculations of which it would be difficult to give 
a short and intelligible account. We must therefore confine 
ourselves for the moment to :I few gene& remarks. 

We suppose that s = P%+I; and wllat we have to prove 
is hat there is a number 6, independent of 12, suctl that 

1X1,6. 

It would no doubt be possible to prove this, for any particular 
value of k, by an argument proceeding on the lines of Q 19. 
The general proof, however, is very much simplified by a 
preliminary transformation ot’ our series into sin infinite 
product. 

It is easy to prove that 
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aatkfies tile equatim 

whenever q and q’ are prime to one another. From this it 
follows tt1at 

X =1+dw+&z+d~+r.. 

The problem of inding a lower bound for S is thue reduced 
to that of finding lower bounds for each of the factors xW. 

The discussion of x= depends upon the arithmetical relations 
between a and k, the nnost troublesome factors being those 
f’or which w is a divisor of k or is of the form p&c + I. 
to fix our ideas, that k is prime. 

Suppose, 
Then the factors in question 

correspond to P = k and w = nzk + 1. The other factors are 
easily shown to be unimportant. 

If P is of the form rnh~ + I, and n is not divisible by a, 
Am2, A+, 1.1 
simple tbrm 

are found to be zero, and xlm reducee to the 

xw =l+Aw. 

All tl~at is necessary, then, 
bound tbr IA,!, 

is to find an appropriate upper 
and this C~UI be done if we know such a bound 

f’or 1 At& 1. Now it is easy to prove, first that 

j sp,w j 5 (k - 1) da, 
alld secondly that 

Using one or other of these two inequ:klities, the first if a > 4’ 
itnd ihe second if IT<&, we obtain ir; either &ae an inequality 
i’or 1 A,1 which proves sufficient for our purpose. If n is 
divkible ‘by m, the argument is slightly more Gnplicated, but 
in principle the 13alne. Tht: factor xk, corresponding to a=k, 
mav be dealt with in a similar manner. 

‘i’l~e cokderation ok’ composite k’s does not introduce any 
fresh difficulties of a sel-ions n&ure; but it is hardly possible, in 
such a sketch a~ this, to give a coherent account of the various 
complications which ’ a& ; atld we must pass thcln by until 
we he able to publish ourI proof in full. lhr object in this 
paper has been Lerely to gi;e a general account of&r method, 
Ml enough to make clear to the reader the fundamental ideas 
on which it rests, and the ~ature of the difficulties wlkh arise 
and the analysis which is necessary to overcome them. 
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CORRECTIONS 

There is a correction to (10.4) in 1920, 5 (footnote on p. 45). 
In the formula for C, above (5.1) on p. 276, the denominator 

should read l+/k). Similarly at the top of p* 289 and in the 
asymptotic formula for q&Q on p. 290. 
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Some problems of ‘Partitio Numeronnd ; 
I: A new solution of Waring’s Problem. 

van 
6. H. Hardy in Oxford und tl. E, Littlewood in Cambridge. 

Vorgelegt van E, L a TI da u in der Sitzung vom 30, Januar 1920. 

Introduction. 
1. The present memoir is the first of a series, in which we 

propose to develop in detail the new analytic method which we 

have found for, the discussion of Waring’s Problem and a number 
of allied problems in kdditiver Zablentheorie’. The general lines 
of our method, in so far as it concerns Waring’s Problem in parti- 
cular, were explained in a recent paper l) in the Quaded Jorm2uZ 

of’ Afatlmmtics, This paper contains also full references to the 
literature connected with the problem. Our object here is to give 
full details of the proofs, up to the p&t at which Hilbert’s famous 
theorem, first proved in this journal*) in 1909, emerges as a corol- 
lary from our analysis. 

Notation and terminology. 
2, 1. The following notation will be adhered to throughout 

the memoir: - 
k, s, +I; p, q, and 112 are positive integers or zero, k > 2, s > 0, 

O-=P<4r IP, 9) C = 1, p>O if q>l; 

1920, 5 (with 6. E. Littlewood) Nachrichten won der K. Oesellschaf t 
der Wtisenschaften zu Gbttingen, Math. -phys. Klasse, 1920, 33-54. 405 



34 G, H, Hardy and J. E, Littlewood, 

1y 
1 1 

= 2it-1 
1 

I X = 1 s- 
K 3 a=-, be---- lc R-l, 7 

e(x) = e2nix, q e 0 
X 

=e-, 
( 1 Q 

We denote by r&) the coefficient of x” in (f(x))“t so that 

It is evident that rk,# (12) > r,,,(n) if s > s’. If k is even, rk, 8 (rr) is 

the number of representations of B in the form 

where nj is an integer, positive, negative, or mm, ana represen- 
tations which differ in the sign or order of the numbers fij 
are reckoned as distinct. If k; is odd, the arithmetical inter- 
pretation of 9.k &) is not quite so simple, W’e have in fact, if , 
fz > 0, 

where Qtr (n) is th e number of representations of n by exactly p 
positive k-th powers. 

8. 2. It is plain that, if n > 1, 

(2.21) 
1 

5 SW = m , s 
If CxY --Yq-- ax 
X 1 

the contour of integration being the circle r whose centre is the 
1 

origin and whose radius is R = 1 - -* 
%a 

Wa divide r into arcs & 41 which we call Farey arcs, as fob 
lows. We fdrm the Far@ keries of order N = [d4], the first 
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0 1 P and last terms being i and 1. We suppose that -t where 
¶ 

q > I, is a term of the series, and 2; and 
Q 

c the adjacent terms 
4 

on the right and left; and we denote by &rl the interval 

P 

I  

P 
I  

--a 

4 4 (a +a”> ’ Q  + 4(Q + 47 l 

The intervals ,iO t and I jl I are defined to be 0 9 ( ’ I&i) ana 

( 
1 

1 
- =, 1 respectively. The intervals &, ‘I just fill up the 

interval (0, l), and the length of each of the parts into which 

A4 (7 
1 

is divided by p is not 1~ than - 
I 

G! 2!0 
and less than - 3). 

0 
If now ths intervals jP c2 are considered as intervals of variation , 

0 
of -> 

2x 
where f) = arg x, and the two extreme ‘intervals amal- 

gamated into one, we obtain the required dissection of r ihto 

ar@s &7 Q’ 
Wle call $v a nzt#Ir arc if q ( tiaj a l&NW arc if 98’ < 4 ( n? 

The am of r complementary to & we de&e by qP,q. 
In considering any particular Farey arc &rlf we shall write 

X = Xxp,,l = 1Ye 4 
= xe,(u>, 

so that X is positive when x lies on the radins vector to the point 

xf+ ‘I’ fina 0; kp,q we have 

X 7 = IX 

where 

We shall in general use E to denote a fixed, but arbitrary, posi- 
tive number, and R to denote a positive number depending upon 7~ 
only. Different E’S or A’s will, when necessary, but not always, 
be distinguished by suffixes. The symbols 0 and u will be ased 
in the manner which is now classical. It is always to be under- 
stood, however, that the inequalities or asymptotic relations implied 

3) For formal proofs of these well known propositions see G. H. El ar d y  
and S. R a m an u j a n , Aspptoti~ ~bmu~cte &+a contbi~twy adysis, Proc, London 
Math. SOL, ser. 2, vol. 17 (199, pp. 75-115 ($5 4,21-4.22). 
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36 G. H. Hardy and J. E, Littlewood, 

‘in the use of these symbols are, unless the contrary is stated ‘ex- 
plicitly, satisfied uniformly in all parameters other than k and 
(when it occurs) E. Thus, if q is defined for ~2 = 2, 3, 4, . . ., 

means that to every positive E corresponds an H = H(k, E) such 

that I~~<HP?‘+~ for 92 = 2, 3, 4, . . . . 

Statement of the mtin theorem. 
3. Hilb er t ’ s theorem may be stated as follows. 
Theorem A, To evwy k corresponds n +g = g(k) smfi tlmt 

r,,,(12)20 for szg and n> 1. 
We shall prove 
Theorem B. TO WW~ k correspods u G, _I Q, (k) szt?ch tld 4, 

for s > G,. 
Itwill be shown that this series is absolutely convergent for 

s > s, = s, (k), and that its sum - which is real, since the terms 
(p, q) and (q -p, q) are conjugate - is positive. 

From this theorem we shall deduce, first 
Theorem C. To every k cowesponds a G = G (1;) ami! c~ti 

% = no(k) secch that rk &2) > 0 for s 2 G, n 2 rz,; 
and then Hilberks theorem. 
We shall use CJ, G,, G to denote the teas1 numbers for which 

these assertions are true. 

The singular series. 
4, We call the series 

s = c (+qeJ- 9223) 
PI cl 

the silayul~r series. The use of this series, which is the dominatilg 
idea of our work, is suggested by the following considerations. 

If we write x = XxFIq, we have 

P---I 
f( > X =-I+2 5 xvke,&9 x--1+2 c e&k”y) 5 X(24+Ir’“* 

V=O h =I) I =I, 

f 4) f(n) TV g(n) means that - + 1 when N + 00. 
g 
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If now X + 1 by positive values, so that x teds to xpIq along 
a radius, then 

E c)(l) + ru + 4 log f i(l 
P ( ) 

f(x) ru 2r(l + a)% log & Oa; 
!l ( 1 

it being understood that, when SP fl = 0, this formula means , 

1 ( ) 
-ta 

f( > 5 = 0 log x , 

We have also 

where F(X) is regular for X = 1”). Thus 

(f(x))” w C(-rFs (X) = FP,rl, 
k 

Our fd~pdal idea is that of approximating to the coeffi- 
cients of f” by a sum formed from those of the various approxi- 
mating f-unctions Fp, ‘i. We therefore replace X by x eq (- p), 
3, (X) by its expansion as a power series in X, pick oat the 

T 

5) This well known proposition may be proved as follows. The function 

is regular for y  = 0 (the integral being uniformly convergent in the neighbour- 
hood of y  = 0). And if y  > 0 mye have 

s 
O” t-” dt - = rp - G) r (G) y-“. 

0 t+Y 
‘f’hesc wptiom establish the truth of the proposition for 0 < G < 1. It is 
trivial for G = 1; and it may at once he extended to other values of G > 0 by 
il i f f  erentiation. Incidentally we see (from the integral expression of x ti”-l e-9 
- F,, (e-g)) that I;*lr (x) is regular at all points of the unit circle except z = 1. - 
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38 G, H. Hardy and Y. E. Littlewood, 

coefficient of xn, and sum with respect to p and p. We thus 
obtain 

as the function by means of which we are hoping to approximate 

to %a (fl>. 

Properties of the singular series. 
5, 1, Lemma 1. lf /?, y, . . . are integers then 

In accordance with our use of the symbol 0, this equation 
holds uniformly in fi, y, . . . . 

Our proof of this fuClamenta1 lemma is based on certain 
transformations due in substance to Weyl”>. Eor the sake of 
formal simplicity we consider first the case k = 4. We have 

ITI 
4 

4 = ~~e*(p(hl-z*)+B(K-z3)+y(h)--z*)+6(h-I)). 

9 

the summations with respect to h an&Z extending over a complete 
set of residues to modulus p. Writing h = I + Ii, ~0 &t&n 

ITI 
a- 

4 - R e,(Qph.,P+ B, 
1 I’+ Ch 

t 1 1 
I+ 4) t I 

where 33, , Cl& , . . . are quadratic, cubic, l a . polynomials in 1~. 19 
with inte&aI Loefficietits, whose precise form is irrelevant to the 
argument, Writing h again in place of 2, we have 

lz’l 
e 

4 = c (1) 
h1 F ( 

e, 4p h, ?T + Bh 
1 h’ + Ch 

1 
‘I), 

where (1) denotes a number whose modulus does not exceed unity. 
Applying the familiar inequality of C an c h y and S c h w  ar Z, 

we obtain 

/T,I’zSqC ~e,(4ph$+Bh h’+C h ’ 
h h 1 h )I 1 

1”) + B, 1 (h’ - I’) + ch 1 (h - 1)). 

6) H. We y  l,, iiber die Gle&mteklung 210~ Zu?&n mod. E&w, Mathem 
Annalen, vol. 77 (1916), pp. 313-352. 
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Writing 18 = 2 + h,, and repeatixlg the argnment, 

where B, h 
13 a 

isr a polynomial in h, and Ih, with integral cr>effi- 

dents. Applying the C au c h y - S c h w a r z ineqnality again, and 
replacing I once more by h, we have 

Finally, writing ?a = 2 + Ir,, we have 

It is plain that the argument used here is perfectly general; 
ad the resulting inequality in the general case is 

5. 2. If (k!, q) = 6, we write k ! = 6k,, Q = a&, SO that 

&P, Q) = 1. 
The summation with respect to lo,, 7$*, . . ,, h,_, is defi_lled by 

0 < h. < q(l5.j s A: - 1), SO that H< gk-** =f And evidently 

where x* is defined by 

The number of terms in C’ is O(qkwn), ad in each of them 

1 I 
c - qe Thus 
2 - 

(5.22) ? 5r = 0 (q-). 

In C”, C is mro unless H E 0 (mod. Q), when it is go The con- 
I 

7) The index of the power of q may be at once verified by induction: for 

2(2k-l-7Q+k-l = 2”-7c-1. 
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40 G. El. Hardy and J. E. Littlewood, 

gmence is satisfied for at -most F = O(qk-‘) values of H; and 

therefore*) for at most 0 (q ’ v2 ’ “ )  sets ( I I . , ,  hp, I  l ‘, ;h,_,). Thus 

From (5.21), (5. 22), and (5.23) the lemma follows immediately, 
As obvious con&&s we have 

The term for which y = 0, Q = 1, is 1; write then S = 1+ S’. 
We have 

S P*Y = -(l--%)+E 
Q 

& I= ( 

1 -- 
K 4-E 

oq 1 7 

1 
where p = - 4K l Also 

Thus 

V 
%!+I3 

< v’tY+- 1 <-,- 
p-2 2 

f 5 
1 

= l+S’q, 

if only s is sufficiently large. 

8) See E. Landau, if&v die A~~721 der Gitterpunkie ha gewisom Be- 
reiches, GGttinger Nachrichten, 1913, pp. 687-771 (p. 717). 
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Some problems of ‘Partitio Nunvmrum’. 41 

Behaviour of f(x) on a minor arc. 

We deduce this from 
Lemma 4. If q and t WC wbitrwy fixed positive mmbm, and 

We &note generally by E,, Ed, ..J functions of q and c which 
have the property stated. 

We begin by performing on UP a series of transformations 
agalogolrs to those of $ 5.1. In this case, however; we may at 
once quote the find result, a~ it is given explicitly by Wey lg). 
We have 

where H = h, h, . . . l+,,1, and the summation with respect to 
h,, h 27 ..I h 

t B-1 is d&d by 

ad that with rwpect 
more than p+ 1 values. 

to Z iS over an unbroken sequence of not 

We replace this inequdity by 

(6.11) 1 U/f ( A/Pek c’ j 2 / + AyKek C” 1 C / = u’ + r, 
t 2 2 

2’ and x” being defined as iri 5 5.2. AJI~ we have, in the first 
place, 

(6.12) Ti’ = 0 (#-k pk-P p) = 0 cpK-l) z 0 (12(8_ ‘1 a + ‘I). 

6, 2. In discussing U” we observe that 

I I 
F (p+l (k!pHsO (mdq)), 

9) We y  1, Zoc. cit., p. 330. 
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Suppose now that k! p H = ;1 (md. q), where 0 5 A c q, and write 
-w ci = UC+ Vi, where il = 0 in Ul and A > 0 in Ui* If I = 0 
we must have (in the notation of 5 5.2) H G 0 (mod. Q); and this 

k-r 

caa happen for at most 2 !-- = 
Q 

values of H (for none 

if pkwl (r Q). To ia& of these correspond at most 0 h@- ‘) “) 
or 0 (p”“) sets (hi, Aa, . l l l &-I)’ Hence 

Since y < nQ + ‘, q > j2" -‘, we have .!!- = 0 (la”l) and so 
‘1 

Next, suppose that A > 0, and that 

k!pH E ik!pH z ;1 (md. q), 

where H' = hi hi . . . I&-,. Then H'- HE 0 (mod. Q), or H’ = m$+H, 
where IP~ is an integer. Since 1Hj a’nd 1 H’I are each less than 

P k-1, this can happen for at most 

2 yk-’ + 1 -- 
Q 

different values of IT, ad so for at most 

( ( 
7c - 1 + E#J 

0 Max P E7 
2 

tP 
)I 

4 -1 
z 

in 
B= 7 cosec- = O(plogq) = 1-t EH 

l 

;1=1 Q 
oh 1 

The first term gives 

4 
,p-w+r,) . 

In discussing the second term we may suppose yka' c 8; and 
we obtain 

4 
$2(X-k)f l--Ct+E~~ 

1 = 4 
(K--)a+~, 

1, 
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since q < ?a 1 - a+ ? Thus U;l and U;, and therefore U”, are of 
the form 0 (titK- ‘)*$- ‘)* SO, by (6* 12), is U’ ; and Lemma 4 
now follows from (6* 11). 

6, 3. III order to dedtice Lemma 3, we write 

t( > ‘x x - 1 + 2 2 u’i x +2 Vk 

OSVSOJ 

c x = -l+f;(x)+f&q, 
v>m -- 

where ~3 = I I $2 H-i and 5 is an arbitary positive number. Then 
I 
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Behaviour of f(k) on & major WC. 

1. 1. We now suppose that x lies on a major e~rc, We write 

It should be observed that, on a major arc, 1 Yj cannot exceed a 

fixed upper bound (and is in general small); for g < 1 ad 12 = 

Ig”el = 0(-&J = o(g- = O(1). 

(7.12) g e,emY(‘+jJk = 2 g 8,$-e- Y"'icos2mz(2~-j)du, 
Z--O m =o 0 

10) This formula may be proved, by classical methods, in the following way. 

The function 

. 
fb> = c El+j e 

- Y(2 +j)” 
? 

Z---W 
where E, = 0 for z < 0, has the period I ; and it may be verified at once that 
it has a derivative f(j) bounded for 0 < j < 1 and that f (0) = 8 (f( -0) + f(+ 0)). 

Hence it is expressible in a Fourier’s series 2 2 E,,$ yrn, where 
??I =o 1 1 

Ym = ,S cos2nm(u--j)f(?d~du = cos 2~127~ (2 + u -j) ~t+~ e --Y(~+u)kdu 

0 I- 

s 

00 
O” -YzP u- &G e - rZCk cus 29~ (u -j) d@ = 

s 
e cos 2m?r: (u -j) du. 

-00 0 
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Substituting fronn (7.12) and (7.14) into (7.13), ad changing the 
order of summation, we obtain the result of the lemma. It may 
be written 11) 

when Y4 has its principal value, vk e- 
a log 3 

, the imaginary 

part of log Y lyjing between - +a ad +a. 

Asymptotic formulae for v(m) and x(m), 

Lemma 6. lf x lies on a major arc, so that f Yi is not 

exp(-,(YzckT2m~i21))a21 = +-$&+o(lY~~-~-~) 

+ 4 m 
-$(1-b) 

I YI 
-+ 7 

4 t 

E = exp (- A d+” 1 Y I4 cos #J), $J = arg 1. 

It is enough to consider the integral in which the ambiguous 
sign is negative ;; the other assertion fallows by changing @ intu 

so that 
I- W d--2mniu) = - Z(v”- kiv). 

11) In our paper in the Quarterly Journal tbe term in s;I, (I, m was omitted 
in error in the case’ when k is odd: 84, q, m = 0 when k is even. The omistsion 
i8ects nune of the results of the paper. 
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When Y is real (and positive) we have 

The right hand side is an analytic function of 2 when 8 (2) B 0 ; 
the equation (7.21) therefore ‘holds for 8 (Y) > 0, 

Let 

where c and g are positive. We can choose A, SO that lu,l ( 1 

and O<a( z z when c < A,. We shall ultitiately choose c to 

be a number depending only on k and satisfying this ct>ndition. 
It may be observed, in order to avoid any possible misuder- 
stmding, that (x, and. all geometrical elements of the figure ad- 
joined, are functions 0f k only. 

Since larg 21 = [ - bl~, 1~ i ab, the path of integration may 
be changed in the right haGI side of (7.21) from the real axis to 

0 

(1) + (2) + (9, when (1) is the straight line from 0 to v,, (2) the 
straight line from vI to et,, and (3) the continuation of this last 
line to infinity j2)* We write then 

(7.22) 
Srn 

exp (- Z(v” - k i-v>) C&J = I, + I9 + I..* 
0 

Consider first II. We have, when v lies on (l), 
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fR(-Z(v"-7cia)) = [z(~(x;'"-'COS(l~cr-~)-kcos(a-~)) 

= 121 S((LP cos 76cc - k cos a) cos !F+ (SP sin ka - Tc sin a) sin P). 

When v lies on (2), we have v = v, - y e 
- ;-nib 

, where 0 <y (c, and E 

9 ( (v+7eiv,) 

16 -. 
ck- -2 

16 

- Z( h -i = + 0 
i-sib 

y2 

3 

e vf2 
- 

2 0 3 e 

-+-7cibpj 

() y ++- r 

the term in y vanishing since vt+ = A This is 

- 4 p a~-kiv,)-AIZIexp((~n.(l-b)-qnb-~~)i).ye(l+O(y)), 

Now 

(7.24) ~(-~(zj’-Iriu))I~(-Z(,~~-7civ,))-AIZIy2(1+O(Y)) 
2 %(- z(v; -kiv3)-A1Z(y2 

for 0 ~5y c A,. We choose c = +Min (A,, AJ; (7.24) then holds 
when v is on (a), and 
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FMly, on (3) we have 2; = V, + ye- @“, where y 2 0, and 

I ( arg Ze - p+bzi 21;“‘ )1 < 4 lr 

for k 2 3, 3 ( r < k. Tt Hence 

!R (- Z(vk - ki v)) ( !H (- Z(t$ - k i vJ - A Ze- i bni vt-” yq). 

Thus 

(7.26) Is = e- i-bxi 
s 

O” exp (- z(v”- J;iv))dy 
0 

= 0 lexp(- Z(+-k~vq))J 
( s 

OOe--AfzlY”dy 
0 

G O(IZ-+ exp (- Z(vt- kiv,))~), 

as before. Now 

- z( v; - kiu,) = (k-l)iziv, = -(k-l)lZ]e-ip, 

so that 

(7.27) a(-Z(v,“-kiiv,)) = -A~Z~cos~ 

From (7,25), (7.26) and (7.27) it follows that 

(7.28) Ia+ Ia = o(lz(-* a*(-Al21 cos F)); 

and from (7.21), (7.22), (7.23) and (7.28) that 

SW exp(-(YUA-2maik))dN = 2 “z’ (1, + I, + 13) 
0 

Substituting for 2 in terms of Y, ad observing that the ratio 
cos ?R Cos * remains superior to a positive bound for all values of 
@ between - + g and 4 n, we obtain the result of the lemma. 

7. 3. Copbining the results of Lemma 6, we see that if x 
lies on a major arc then 

420 



Borne problems OF ‘Partitio Nnmerorum’. 49 

(7.31) Qp (nz) = 0 (tn- *(I - b, 1 Y I- + b E) + 0 (112-k-l 1.y I), 

(7.32) 1 (at) = & + XI (4 

(7.33) x,(m) = 0 (nz ii1 - b, f Y I- “%) + O(?P* 1 YI). 

Behaviour of f(z) on a major arc (cot2tinued). 

8, 1. We have, from (7.15) ad (7.32), 

f(x) = %*q + $,‘I7 
when 

(8.W !Pp,‘L = ‘zr(l+a)&,,Y” = 

and 

@ P, fI 

By (7.31) and (7.33), this is 

if q = 1, the sum has the value 0. Hence: 

(8. 12) aa = 2 5 .,‘, s;,,,+ O(1) = 0 *x+J 
g n2=1 i 

nag 1 g+ O(l) 

= 0 (qx + ‘)* 

Clearly dso 

(8.13) @ t= 0 (*I + ‘>* 
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8, 2. There remains @I to be consiqered. We have 

so that 

Hence 

(8.21) E = 0 (exp (- A dfb q-l-” d (cos 7~l)++~)), 

and it follows from the defini.tion of a1 that 

We have 0 < 8” < A q-9 n-4+5”, and SO = 

YS 
cos’q = -- 

VP 1 
v2+ t)* 

> 
VP + A ¶-= 9Pqa ’ 1 + A q-’ da 

1 
2 (1 + A) q-2 ,2a = A$ figa’, 

!l -lab n”(cos q)‘+’ > A q+’ n” (q PZ-~)‘+~ = A. 

Hence, as 1 PI > Aq” 0, we. have 

From (8.12), (8.13) and (8.22) we have 

(8. 23) @p, ‘f = 
O(*%+~)+O(n~B*%+E--~,%b) = &1”rS’) 

since 9’ ( ti. 
8, 3. We may summarize our conclusions, as regards the be- 

haviour of f(z), as follows: WC Ihave 

Proof of Theorem B. 

9. 1. Returning now to the integral (2.21), we have 

1 
r,,(w9 = ‘23ti s 

(f(2))” dx = 2 1 - JT x- s 2si e 
If or dx 
--F- p P* rj 
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the summation extending over all arcs gP,(! of the Parey dissection 
of order N = [d-“]. We write this in the form 

(9.11) 

= s, + s,, 
Z!R and m denoting typical major and minor arcs of the dissection. 
It follows at once from Lemma 3 that 

(9.12) s o( 
sux+r I4 

e= n 1 ) . 

As regards S, we observe that, on an arc D?, 

where 

= 0 (Qp, y) + 0 (6p, ,)Y 
say. It is plain that 

(9. 14) x @p, 9 = 4 ?a 
sax+& 

1 I 

Also 

9 = O(pJfY~-") = o(*x+E(qkIv_iHI)-u) 

= d4 --1+~(l)s+F)P)-q* 

From this equation and (8.23) we deduce 

=oti 
( 

ccx+E*(S-1)(X-l)+E O” 

s 

dF) 
e Pt ‘1 -oo +2+ ,*>iw- 1) 

1 

C 4 n 
nx+as-u-11-t (S-1)(X-1)-f-E 

Q ) I 

provided s a k + 1. NOW the series 
00 q-1 
2 C qCs - ” (‘I- ‘) + ’ is 

4 =lp=O 
convergent if (s - I) (1 - x> > 2 0r s > 2 K + 1, and supposing, as 

14) This’ formula is not true uniformly in s, and may therefore be held to 
violate our general principle (5 2.2) as to the use of 0 and O. But the formula 
falls into line with the general principle so soon as we fix our attention on any 
particular s = s(k); and this is sufficient for our argument. 

423 



62 G. H. Hardy and J. E. Littlewood, 

we shall do henceforth, that this condition is satisfied, we have 

m P#!l = 4 In ax+as--a-l+8 15). 1 t 
and SO, by (9.13) and (9.14), 

EJ P*!l = 4 ‘yb su%+&)+ Q(,8aX+“8-a--l+E)t 

(9.15) Y&2)= sl+s* = ~I,.,+o(ra”““+‘)+o(~aX~+as-a -i+s I* 
9. 2. We now perform two transformations on IP,g. 
(i) The functions 

and 

8 
F P,‘l = 

(2 J-0 + w sp,* 
( 1 

s 

rw ¶ 
g #+f x9 - c IS$,n 

n 1 = 4 1 
4 cm 

differ by a function regular at X = 1 and GC fortiori bounded 
near x = 1. Further, it is plaia that 

(2I’(l+ cc))” (log -$)* - CFJX) = O(1) 

uniformly in p and p. Hence, if we replace vi,,*, in &, by FP,IP 
we intSIuce an error 

o(q+y) = o(~p-“(‘-X)+e) = O(l), 

provided only s(1 - X) > 2, s > 2X, a condition which we have 
already assumed to be sati&& This error is plainly trivial in 
comparison with the error terms already present in (9.15). 

(ii) We next replace the arc &, in Ip q, by the complete , 
circle C The error thus introduced is 

15) It w3li be useful later (though irrelevant for the purposes of this me- 
moir) to point out thsbt this formula is s-till valid when 8 = 2 K+ 1, since then 

Q-1 
5 c 

(S-l)(%-l)+E 
n” 

Q 
=lp=‘() 

= 0 2 q- l+$ 

1 

= O@~). 

!I ( p-1 

The inter& of this lies in the fact that 2 X + 1 = 9 when k = 3. 
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Bat, if X = Bei’, we have, uniformly ifi p kl g, 

F,m = 0 (11 - xI-“a, = 0 (C 1 - -isa 

(1-B)P+4Rsin’~U 
1 1 

= O((L&+q-y. 

If b. is the angular codibe of one end of gP y, nF), > A $ > A. t 

Hence our integral is the sum of two, each of which is of the form 

Hence the total error inhducd is 

() 

( 

*(SU-1)(1-a) c ps”-l-s(l-x)+” 

PI 4 > 

= o n(su-l)(L--a) 

( 

c psa-s(17X)+~ 

1 ( 

= o nmx+2a-l+8 

q ( 12” 1 

= 4 
g~sa” -f- E 

1 1 

9. 3. There is now no difficulty in completing the proof. In 
the first place 

1 

s 
Ksx) (fx 

2ni r xnel 
= da+ e, (- n p>, 

SO that the first term on the right had side of (9.21) is 

The series may be regarded as limited by g ( VP, or as extended 
to infinity, indifferently; for the difference is 

0 ga-1 

( 

c qe80+1fe 

1 

= o(n4z-~(12a)-s(1 --X)+2-t-g 
1 

q > ?P 

= 4 n 
sm+2u-1++ 

) = o(nsax+$ 
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If s is sufficiently large, S > !, by Lemma 2, so that the 
leading term in (9.21) is effecti& of order dn? The third 
term is always df lower order, since m - a -e 0. Finally, the 
sec0nd is 0f 10~4~ der if 

sax<su-1, sn(1 -x) > 1, 
or 

s > kK = k2'-'. 

10. We have thus proved Theorem B. It is plain that Theo- 
rem C is an immediate corollary. To deduce Theorem A we have 
only to take g = Max (G, ?Q, since any number less than tid, is 
the sum of at most 32, positive 7+th powers. 

We have not, in this memoir, determined an explicit upper 
bound for any of the numbers yt G,, G. The whole trend of our 
analysis is, however, to suggest that the necessary value of G(7c) 
does not exceed 

k2"-'+ 1; 

SO that, for example, every large number is the sum of at most 
33 biqu&ates, 81 fifth powers, UP 193 sixth powers II;), It is, in 
fact, possible to prove more than this; but the proofs involve a 
detailed examination of the singular series which we must post- 
pone to our later memoirs. Our second memoir, which will be 
concerned particularly with the case k = 4 (a case in some ways 
the most delicate and interesting of all), and in which (going 
beyond the 
every large 

results which we have indicated) we shall prove that 
is t32e S211’12 of’ ot 2wOst 21 bigzcadrates, will, we 

hope, be published shortly in the Matheenatische Zeitschrift. 

16) This result is now fur 7; = 4 and X: 2 6, but not for k = 5. ‘The best 
result we can prove for k = 5 is G (5) 5 53, which is new. 
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Some problems of ,,Partitio numerorum~~: II. Proof that every 
large number is the sum of at most 21 biqwdrak. 

BY 

G. H. Hardy in Oxford and J. E. Littlewood in Cambridge. 

1, Intlroduction, 

1. I . This memoir is essentially a sequel to one which we published 
recently in the Gijttinger Nachrichter?). It could not in any case be 
intelligible to a reader unacquainted with our earlier memoir; and we 
shall therefore quote formulae from the latter without further explanation. 

In the memoir referred to we laid the foundations of our new method 
for the solution of Waring’s Problem, carrying our analysis just so far aq 

was necessary for the proof of Hilbert’s Theorem, the fundamental exis- 
tence theorem for the numbers g(k) and G(k). Here our object is to 
find the best possible inequality for the particular 0 number G (4). A good 
deal of our analysis, however, is valid for a general Ic, and will be useful 

to us when we proceed to the corresponding general problem. It will be 
found that the special interest of the case k = 4 is quite sufficient to 
justify its consideration in a separate memoir, 

1.2, It is known that 

19<3(4)237, 16 5 Q(4) 2 37, 

these inequalities, from left to right, being due to Waring, Wieferich, 
Kempner, and Fief erich respectively. For detailed references ee may 

refer to the dissertations of Kempner”) and of Baer3). We need men- 

1) G. H. Hardy and J.E.Littlewood, Some problems of ‘Partitio numerorum’; 

I: A new solution of Waring’s Problem, Gijttinger Nachrichten 1920, S. 33 -554. We 

shall refer to this memoir as W. P. 

“) A. J. Kempner, Uber das Waringsche Problem und einige Verallgemeine; 

rungen, Inaugural-Dissertation, Gijttingen 1912. 

“) W. S. Baer, Beit#r&ge zur~ Waringschen Problem, Inaugural- Dissertation, 

GSttingen 1913. 

1921, 1 (with J. E. Littlewood) Mathemutische Zeitschrift, 9, 14- 27. 427 
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tion only that the deepest ksult, viz. g (4) < 37, was obtained in 1909 by 
Wieferioh, whose analysis is a refinement upon that by which Landau, 
in 1907, had proved that g (4) 2 38, Here we shall prove nothing con- 
cerning g (4); but we shall improve the upper bound for G ( 4) very 
notably, by proving 

Theorem A: a(4) 5 21. 

2, A sharpening of our earlier analysis. 

2.1. In 8 9.2. of W. P. we proved that, assuming always 

sr2K+1=2E+1, 

(2.11) 

where 

rE.&) = &pJS + O(n8an-t~) + 0 (nsa+ax-a-t+&) 

= @&B)+ O(n8ax+E) + O(,~a+@----+E), 

It will be necessary now to replace the term 0 (n8aXfE) by a terti of 
lower order 4). 

2.2. It will be found, on an examination of the analysis of W, P., 
that the critical error term 0 (,~a~+~) arises in two places only. All 
other errors are of lower order than that of the dominant factor naa-l, 
either independently of the value of 8, or at any rate whena s *z 2 K + 1. 
The two critical errors arise as follows. 

In the first place we have 

where m is a typical minor arc of the Farey diaeection. 
Secondly, when we consider the corresponding sum connected with 

the major arcs, we are confronted by a sum 2 ap, q, where 

and !D2 is a typical major arc of the dissection, and we write 

2 $4 = O( 
nsax+E 

> . 

It will be observed that these two errors arise in exactly the Same 

way. The upper bounds are obtained by substituting in the integrals the 
crude approximations, f = 0 ( nax+&) on a minor arc and @ = 0 ( naXfE) 

4) The formula (2. 11) would lead only to @ (4) < 33, in itself a new reeult, - 
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on a major arc. Here we refine on our previous argument by the use 
of a single new idea. This idea consists in an appropriate use of a known 
result, viz. that the number of positive integral solutions of the equation 
Xk + yk = n ie 0( ne) for every k > 1 6), or, as we may express it in 
our notation, 

2.3. We have 
rk,2 (n) = 0 (n$ 

Hence 

Now 

1 
and so, since R=l---, 

IIt 
Hence 

4 = 0 (~~!f(z)!“if(~)!“-“Id2.1) 
m 

E O( 
~~s-4~ an-t-e ZJi f(x) I* ldx I) = O(n(8-4~n*+ZQ+~). 

7tt 
Again, we have 

6) For a formal proof of this result see II. Cauer, Neue Anwendungen der 
Pfeifferschen Methode zur Abschiitzung zahlentheoretischer Funktionen, Inaugural- 

Disaerlation, Gijttingen 1914, S. 38. ‘For k = 2 (when the result includes a fortiori 

the corresponding results for 4, 6, . . .) see E: Landau, Ober die Anzahl der Gitter- 
punkte in gewisaen Bereichen, Gijttinger Nachrichten, 1912, s. 750. 
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Q P 

(k = 3). 

2.4. The argument of W. P. showed that 

r&n) =CWa-IS+ O(d), \ 

where i -< sa - 1 if sax < su - 1, i. e. if 8 > EK = k2? It is now 
clear tJhat this result holda if only 

( s- ax+2a<s&-1, 4) 
i. e. if 

s > (k- a)K + 4. 

For k = 4 these inequalitles reduce to s > 32 and s > ‘LO respectively, 
so that the improvement is very substantial. And if only’ we can estab- 
lish the existence of & positive constant CJ such that 

when s > ‘21, we ghall have proved not only Theorem A but the more 
precise theorem 

Theorem B: ~~,~(n) - Cn!8-3S (8 2 21). 

The proof of this theorem is in fact reduced to a discussion of the 
singular series S. 
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18 G. II. Hardy and J. E. Littlewood. 

3. Factorization o’f the singular series. 

3.1. The discussion of the singular series is greatly simplified by 
the following fundamental lemma. 

Lemma I. If 

where 3 is prirrd) and 

We have 

where h and h’ describe conlplete systems of residues to ‘moduli q 

and q’. But 

+ 

where Q = h q’ + Tc’q ; and, since (q, q’) = 1, f~ describes a complete 
system of residues to modulus qq’. Hence 

(3.11) 

Next we observe that, if z, describes a complete system of residues 

pime to modulus pl, and # a similar system for modulus q’, then 
p = pq’ + p’q describes a similar system for modulus q q’. Also 

S 

Hence 

:= S pqrk-G )” (Spgk--l,q’)g e 
P 

(- ;;,) 

which proves the lemma. 
-- -.-. - 

*) The symbol 3t’ is used in this sense down to the end of 5. 2, after which it 

is used in the ordinary sense. 
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4, Rules for the calculation of .A=, l 

4.1. Lemma 1 i8 true for tiny value of E. The lemma8 wbch follow 
are also true generally, provided anly that k is not divisible by z Thus 
when k = 4 they hold for n > 2. 

The sum An, involves the argument PS, and we might write 

A 47 Y = A;r, (n). When, as will Bornetimes happen, n is rqlsced by 

another argument, this argument will .be shown explicitly.. 

Lemma 2. If (z, k) = 1, a > 0, 0 < p < E, then 

A ,akfp = 0 

acceding & n i3 not 0~ is a: multiple of nut. 

(1) We have first 

._ 
We write 

h E ,pk+,-Q + h’ (O&<n, 0,<ht<nuk+4u-1), 

and we obtain 

The sum with respect to x vani& unless h’ ia divisible by n, i. e. ?L = z hi, 
where 0 2 h, < JP~+~-~; in this case the sum is JE. Observing that this 
range of variation of hl iti, to modulus +-l)b+p, equivalent to nE-9 de- 
scriptions of the range 0 < h, < n(a-l)k+p, we obtain 

It should be observed that the preceding argument i8 valid even whe’n 

,U = 0. We obtain in fact 

(4.11) 

and otherwise 

(4.12) S p,nak+p = na(k-l) S 
P,nCm 

(2) We have now 
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We write 

13 = mu 2 + (pt CP > o>, 

where 0 2 a < n uk snd $ ia leea fhsn z jr and not divisible by 7~. We 
have then, by (4.12), 

A aktsp =gz-- 
4 

The sum with respect to z vanishes unless n is divisible by JP% If however 
n-nab, where v is an integer, we have 

4.2. Lemma 3. If (JT, k) = 1, l-1 > 0, I 
A ,ak - -0 (n+O (modnakB1)), 

A nakz-n 
a(k-8)-l (n ~0 (modnuk-I), n_)rO (mod d)j, 

A ,ak= n- ( II ’ &L (k--&-1 (n -, 0 (modnak)]. 

By (4. ll), we have 

s p/k = 
&k-l) A 1 ,uk = JT --q-g, 

Writing 
P 

we obtain 
13 =nx+pl (O(X<nak-l, O<p’<3+ 

A iTak =n-q-~~-~)* 
P’ 2 

The sum with respect to x is zero unless in is a multiple of z*k-? If 

n = @--I 9, , we have 

The last Bum is - 1 or n - 1, according as Y is nut or is divisible by Z, 
This proves the lemma. 

4.3. Lemma 4. If (n,k)=l, lip<k, 

A ,-c/b = 0 (ns;zO (modzp-I)), 

( I) In the equation 
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we write 

and we obtain 

The sum with respect to z vanishes unless h’ _I 0 (mod n) , or unless h’ = nFY, ) 
where 0 < hl < JTP-Q. In this case the exponential is unity (since ~1 < k ), 

and we obtain 
S 

p,--rp 

E Jpf+1. 

(a> We have thus 

A II -T+ I =Kqe(-g* 
P 

Writing 
P =xz+p’ (o~x’<?r~“-l, O*<p’<n) 

we obtain 

and the sum with respect to x vanishes unless n = 7cp-l Y, where Y is 8n 
integer. In this case 

A -- 
,zI’” -- 

and the sum is - P or z - I., according as Y is not or is divisible by n. 

6. The form of 2, (k===4,n>2). 

5.1. We now suppose E = 4, BO that all the results of 5 4 hold for 

n>2. Taking first the case ,U = 0, we have 

j A,ak 1 2 nafk-8), 
by Lemma 3, 

Next, if ,u = 1, we have ;AJ<n and so 

IA ,ak+l 1 < natk-8)+1, 
by Lemma 2. 

Finally, if 1 < p < k, we have 

by Lemma 4, and 

by Lemma 2. 
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Thus the terms of x, may be exhibited in the form;) 

1 + A, + p-q + [ma-q + l l ’ + [nk-l-] 

+ tik-“(Cl] + [z] + CC”] + [n”-a]+. 1 l + [2+1-q) 

+ n-y [ I ]  + [ J r ]  + [n-j + p-q +. l l + [3+-q) 

+ . * *  . . *  .  .  .  .  .  .  .  .  .  .  l .  .  .  . . * .  

where [x] denotes a number whose modulus is less than x. Hence (pro- 
vided only 8 > k) we have 

where 
L =l+An+&, 

Taking now k = 4,s > 20, we have 

IB 1 z < n-17+27C-‘7(1+n+Jt-17) < 7r-16 (n-14, 

(5.11) L = 1 +A,+[n-14]. 

5b 2. When we come to consider A,, it is necessary fo distinguish 
different cases. 

Suppose first that n is of the form 4m + 3, Then the residues of 
h” to modulus n are the same as those of Fy ‘, and SP. X reduces to an 

ordinary Gaussian sum. Thus I SP,X 1 2 ~‘5 and 

1 A, 1 < nl+ < n-9, 

& = 1+ [q-9] + [n-14] = 1+ [Jr*] (7c = 4m+ 3). 

Next, suppose z of the form 4m + 1. Then”j 

If z=== 17, j Al7 1 < 17(;)= < &, 

(5.21) X17 = 1+ [&I + [17-l4]= I$- [i]. 

&? 1 
<n-3*3, ] A,: < n-~*s, 

‘) It should be observed that, owing to the vanishing of Aldrlk and A,crk+!s 
when rt does not satisfy certain congruence conditions, x,-t is in all cases a finite ‘series; 

but this ia irrelevant for our argument. 

“> See IS. Weber, Lehrbuch der Algebra, Bd. 1, S. 584. In Weher’s notation, 

& is one of the numbers 
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and 

(5.22) x,= 1 +[n -2’5] + [n-141 = 1 + [x2] (ZZ = 4m +- 12 29). 

From Lemma 1, (5. ll), (5.21), and ([5.22), it follows that 

8 =X3%53113 (1+ [81)11(1+ [J-l>g 0 + tn-“lb 
rc=Pm+lpJ l z=4m+3 

- 

Thus irz order to estublish OUT conclusion when 8 = 21, it is only ne- 
c~sary to show thut 

lxa/>~>O~ 1X6+-d, lxls/>~~ 
5.3. We find by direct calculation that “) 

It is however (as we have to consider the case of 13 also) more. convenient 
to proceed &s follows. The numbers & are the roots of the equationlo) 

(r”+15)a = 2o(r - l)“, 
from which, 

X5 = 1+ [*291] + [5-l*] = 1+ [13], 

[&1>‘7=a. 

5.4. Similarly the various values of XP 13 are the roots of 
l 

*  

(1‘” + 3q3 = 52([ - s>“, 
from which 

Irl”,< 39+ 6V’13 < 60.7, 

p, J=lCl -c 7% 

that 
1 A,, 1 ‘( 12 (06)~’ < ,002, 

so 

--- ----._--- IX13/>fl* 

9) From this point onwards JT is wed in the ordinary sense. 
lo) We her, 1. c., p. 584. 
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The pof of Tiiemems A and I3 is thw educed to a proof that 
I&l >Orn 

6. Discussion of x2. 

6.1. The arguments of 0 3 fail when JZ = 2, and it is necessary to go 
back fo the definitions of A,, A,, . . . The first step is to calculate the 

sums spt, ,r. We find by direct calculation that 

s = = p 0, I ‘J sp , 4 2(1+e+i), s, = 1 8 4(1+ d’“‘), SpI18== 8 (l+ dPni). 

If Y&5, 

sp,gy =&($) 
h 

(o 5 h < 2’)s 

Writing 

we obtain 

s 
PA v= 

and the sum with respect to z is zero unless k’ is even. Suppoaing 

h 
I 
= 2 h,, so that 0 < IJ, < 2wT4, we obtain C 

Thus 
S p,++p = Zaa S#, ap 

6.2. Observing that A, = 0, we write 

~54, we have 

] A,ru-tz + A,4a+a + A24a+4 1 < 28~2-l’~, 

1B 1 < 28 cy> < 2-l’ < l 00025, 

~9 = 1 + A, + A, + A,, + [+00025]. 

6.3. Of the terms A,, A,, A,, the most important is the last. We have 

Ala== c (~~s~~lex~(~~-~~)=~~+~~+$+~, 
p=l, 3, , .  l , 16 
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where a, is given by p = 1, 15, 91a by p = 3,‘13, and so on. And 

(cos$)~~= - (cos$~= l 66535O + [3-W’], 

% 1 
=- (1 l 3307 + [lo-*]) COB (“,x - 7) ; 

(cos;+)21= - (COSMIC= l 020736+ [lo-“], 

2& =(*0415+ [lo-“]) cos(;+ g; 

(cos$= - (coB~)21~ [5*10-a], 

and so also for (cos ;)=. Thus 

tills + ai = [2 40-J l 

Similarly we may write 

where ‘!$ is given by p = 1, 7, and so on: and 

(cos;)~~= - (cosy-r’=.189636 + [lo-“], 

% 

I  

1 
Z==- cm3793 + [lo-“]) cos (7 + y).; 

(cos !gl= - jcos g2L [1(-p], 
8; = [lo-‘]. 

Finally 

Collecting our results, we may write 

&=l- lm3307 cos ( g - y ) + ‘0415 COB (;g + F) 

- l 3793 cos 
( 
y + y) + 3 [ ~OOOl] + [*0017], 

and the total possible error is [ l OO2] L 

6.4. We have now to verify that the sum of the first four terms of x0 I 
is in all cases greater than l 002 . It is easy to see that the least fa- 

vourable cases are those in which cos 
( 
5n 
- - Fc 
16 > 

has its greatest possible 

value, viz, cos Fc , This happens when n z 2, 3 (mod 16). We have then 
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C 1 - 1’3051 +-- n o345 + ‘3504 -+- 3 [ ‘OOOl] + [ -0021 
= 0108 + [ l oo231 > '0085 = o > 0. 

It will easily be verified that, when n has any other residue to 
modulus 16, the margin is much greater. 

7. Conclusion. 

‘7. I. We have now proved Theorem B when s = ‘Ll , and Theorem A 
is an obvious corollary. It is not immediately obvious that, if Theorem B 
is true for s = 21, it is also true for s > 21+ All our arguments are 
valid for s > 21, except those of $5 6. 3 - 6, 4; but the numerical discussion 

of these two paragraphs has, strictly, to be repeated for each value of s 
in question, Our own calculations refer only to the cases s = 2 1, 31, 33, 
in which we have, at various tities, been particularly interested. No 
point of principle is involved, and the calculations in other cases may 
be left to anyone who may be sufficiently interested in the matter to 
make them 11), 

It is evident that we may, with the help of the singular series, study 
as closely as we wish the variations of ra S (n) as n assumes various 
residues to modulus 16, It is clear, for ’ example, that the numbers 

lGm+Z and 16m+3 are, to put i-f roughly, less readily expressible 
by 21 biquadrates than any other numbers, and something like 200 times 
less readily expressible than the numbers 16 m + 10 and 16 nz + 11. 

There is no difficulty in applying the methods of this paper to the 
proof that 

(7.11) G(k)5 (k - 2)2’-‘+5 

for any (part&Ear value of L, as for example 3, 5, 6 or 7. We find 
thus that G(3) 2 9, C(5)<53, G(6) 2 133, and G(7) =< 325. The 
first of these inequalities is not new Ia), and in fact Landau has proved 
that G (3) 2 8: but the numbers 53, 133, 325 compare very favourably 

with the 58, 478, 3806 at present known. The proof that (7. 11) is true 
generally, however, presents certain algebraical difficulties, of complication 
rather than of principle, and we must postpone it to a later memoir. 

We have not indeed worked out this proof in detail, the analysis which 
we possess carrying us only so far as the less favourable inequality 

G(k)lk2E-'+l 
ndicated by our earlier researches. 

11 
) See however’ the following note of H,err Ost rowski. 

Is> The accompanying asymptotic formula is of course new. 
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We conclude with OIM final remark. It might well be supposed that 

the proof of (7. 11) for (say) k: = 7 or 13 would be more difficult than 

for k -. 4. This is not so; the proof for k = 4 ia, in essentials, more 
delicate and critical than far any other value of k. The f&t is that 

it is only fur k = 4 that our inequality expre~~ something near the 
ultimate truth, It is known that Q (4) 2 16, and, the difference be- 
tween 16 and 21 is comparatively small : this corresponds fo the facts 

that the critkd factor of 0 6 nearly mnishes in the least favourable case, 
and that there is a term in xs which is sometimes actually greater than 
the leading term 1. When ‘k: is larger, our value ia much too high, and 
the singular series tends (for such values of 8 M are contemplated in our 
analysis) to be dominated completely by its leading term. 

(Eingegangen im Januar 1920.) 
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Some problems of ‘Pwtitio Numerorum’: 
IV. The singular series in Waring’s Problem 

and the value of the number G(k). 

By 

G. H. Hardy in Oxford snd J, E, Littlewood in Cambridge. 

1. Introduction. 

1, 1, In this memoir we continue the investigations initiated in two 
earlier memoirs bearing a similar title, and complete the proof of a]ll the 
assertions which they contain l). We Bhall assume throughout that tie 
reader is acquainted l with the notation and terminology of these memoirs. 

The fundamental theorem of Hilber t”) wserta the existence of the 
numbers g (k) and U (k). In our first memoir we proved that, if 

1 K = 2’-l, 1 
a=- ,k: ’ X=1-ff’ s>2K+1, 

then 

(1.11) r,, 8 (9i) = C nea--l S + 0 (It’QX+E ), 

wbre S is the ‘singtrtar pJeries’ 

(1. 12) 

1) G, H, Hardy eniI LE. Lit&wood, Some problems of ‘Partitio Numermm’: 
I. A new solution of Waring’s Problem, Gijttinger Nachrichten 1920, S. 33-M; 
II. Proof that every large number ia the sum of at most 21 biqua&rates, Mathe- 
mat&he Zeitschrift 9 (192 f), 8. X4-27. 

The third memoir nf the series (Some problema of ‘Partitio Num’erorum’ : III. On 
the expression of a number ae a sum of primes) will appear shortly in the A&a 
Mathematioa. The problems considered in this memoir are of a somewhat different 
character. We refer to these memoirn as P. N. 1, P. N, 2, P. X 3. 

8, D. Hiibert, Beweis fiir die Darstellbarkeit der gwian Zahlen duroh ein? 
feste Anzahl n-ter Potenz411, GGttinger Naohrichtsn 1909, S. 17-36: reprinted w&h 
certin ohanges in Mathematisohe Annaten, 67 (1909), S. 251-300. 

1922, 4 (with J. E. Littlewood) Matbwtische Zeitschr$t, 12, 161-88. Ml 
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The sum of the series is positive, and indeed greater than k, if s is 
sufficiently large; and pax < sa - 1 if s > kK. Thus 

(1. 13) ?y, &a> - Cnsa-w, 

as n-+m, for all large enough values of s, say for sZG,(k). 

plain that Hilbert’s theorem follows as a corollary. 
It is 

Important simplifications of our method have been effected by 

Landau”) an,d Wey14). These improvements relate to our treatment of 
the ‘major arcs’. In particular Weyl has shown that, if we are concerned 
with an existence theorem only, so that it is not important tJo obtain 

the best possible upper bound for G (k), the rather difficult analysis 
which we used may be replaced by an argument of a much more elementary 
character. 

We proved nothing in this memoir about the values of G, (k j or, 
G [k), though our analysis suggested very forcibly that ‘. 

(1.14) 

In order to prove this it is necessary to examine the singular series more 
closely, and to prove that 

(1. 15) S > ir = a(k, s> > 0 

fur srs,. This would be sufficient; but in fact, as Herr 0s t ro w ski 
has shown”), the truth of (1. 15) for s r s0 will involve 

(1. 151) s > CJ = a(k) > 0 

t the value of 0 being independent of s) for s > q,. Ina our second me- 
moir, however, we effected an improvement in (1, I l), showing that 

(1.16) 
r fr ,  s @) = &pa---l S +- 0 ( n(R-44)flx+2a+E) 

( a better result if only k > 2). If now we can prove that (1. 15), and 
therefore ( 1. 151), is true for s > (k - 2) K + 4, we shall have proved that 

(1. 17) G(k)~G,(k)~(k- 2)K+5. 

This we proved before when k = 4, in some ways the most interesting 
case. It is the general proof of (1. 17) that is our primary object now. 

3) E. Landau, Zur Hardy - LittlewoodMhen Lijsung des WaringBchen 

Problems, Gijttinger Nachrichten 1921, S. 8G-92. 

4, H. Weyl, Bemerkung zur Hardy-Littlewoodschen L6sung des Waring- 

s&en Problems, Gijttinger Nachrichten 1922. 

6j A. Ostrowski, Bemerkung zur Hardy - Littlewoodachen Liisung dea 

Waring&en Problems, Mathematiache Zeitschrift, 9 (1921), S. 28-34. We ret’um 

to thig point in $ 6. 3. 
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Our principal the&em then, will be : 

Theorem 1. There is a positive number G = o ( k, a) such that S -y 6 
for &(k- 2)&j-5, so that 

rk, Jn> - CrP-l S 

fur all such dues of s. In purticulur, rk s (n) ia. positive for all such 
vulue~ of s and all sufficiently large v&e9 of n, so that 

G(k’)s(k--2)K+5. I 

1. 2. We have in any event to undertake a detailed examination of 
the singular series; and we shall push our analysis a good deal further 
than is necessary for our immediate purpose. We do so primarily because 
the analysis is interesting in itself. Rut it must be remembered also 

that the inequality ( 1. 17) is, in all probability, far short of the actual 
truth. It is not unlikely that the order of the error term in (1. N), 
which is the obstacle to further progress at present, may before long be 

materially reduced. The discussion of the singular series, for values of s 

smaller than those contemplated in Theorem 1, will then become of 
immediate importance, as every improvement in ( 1. IG) will give a 
corresponding improvement in the value of G (k). 

It may be useful if we summarise at this stage the existing state of 
knowledge as regards the values of g(k) and G (k). This is exhibited in 

the following table. 
_~------ --- __-- - - 

k= 2/3j4151617 18 

4 9 I 37 58 ’ 478 ~ 35OG 
b 1 

4 9 / 19 I ’ 37 I 
I 

/ 31355 

73 1 143 1 2’79 
I I 

4 8 37 ; 58 1 478 1 3806 31353 

(5) I (9) 1 21 I 53 / 133 325 773 

4 4 1 16 ’ 6 I 91 8 32 

The numbers in the first line are the upper bounds for g(k) which have 
been obt#ained by elementary arguments, and are due in order to 

Lagrange, Wieferich, Wieferich, Baer, Baer, Wieferich, and 

Kempner respectively’). Those in the third line are the corresponding 
----u 

6, The names tire those of the authors who found the actual numbers quoted. 

The proofs of ‘Waring’s Theorem ’ for the cases in question arc due to Lagrange, 

Maillet, Liouville, Maillet, Fleck, wieferich, and Hurwitz (and Maillet) 

respect ively. For detailed references 8ee A. J. Kempner, Uber das Waring&e 

Problem und einige Verallgemeinerungen. Inaugural-Dkertation, Gijttingen 191’1, 

and W. S. Baer, Beitriige zum Waringschen Problem, Inaugural - Dissertation, 
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upper bounds for G (k), and are identical with the numbers in the first 
except when k = 3. The inequality G(3) 2 8 is due to Landau’). 

The fourth line contains the upper bounds given by Theorem 1. It 

will be observed that the numbers for E = 2 and k = 3 are inferior to 
those already known, but that there is a very substantial improvement 
for all larger values of k. 

The second and fifth lines contain the best known lower bounds fur 
g\ kj and G @) respectively. It was observed by Euler, and later by 
Bretschneid&), that the number 2Q - 1, where 2 is determined by 

3E =2”1+m, 0 < m < 2k, 

requires I -+- P - 2 powers; and this observation gives the numbers 
tabulated. The numbers 4, 9, 19 are mentioned by War i n g , but there 
is nothing to show that he had recognised the general law”). 

The numbers in the fifth line are more interesting and require further 

explanation. It was proved by HurwitO) and Maillet?) that 

G(kj& k+ I 

for every k; and in some cases, e. g. for k = 3, 5 and 7, no more than 
this is known. 

In other cases it is possible to prove a good deal more by the 
consideration of simple congruence relations. The simplest case is k = 4. 

Every biquadrate is congruent to 0 or to 1 to modulus 16, so that a number 
1 G m + 15 requires at least 15 biquadrates. Thus (as was ob;served 

by Landau) G(k) 15, and Kempner, considering numbers 16”. 31, 
--_.l__l__- 

Giittingen 1913. The numbera for k = 7 and k = 8 could no doubt be substlantially 
reduced. 

Proofa of the existence of g (k), from which tin upper bound for g (k) could be 
calculated, have also been given for k= 10 (I. Schur), k = 12 (Kempner) and 
k = 14 (Kempner). 

7) E. Landau, Uber eine Anwendung dar Primzahltheorie auf das Waringsche 
Problem in der elementaren Zah’lentheorie, Mathematische Annalen, 66 (1909)? 
s. 102-105. 

“) See Kempner, lot. ok, S. U-45. 

9) Waring asserts quite explicitly, not merely -that g ( k) exi&, but that 
g (2) = 4, 9 (3) = 9, 9 (4) = 19, %t sic deinoepa’. Nothing is known, so far as we are 
aware, inconsistent with the view that the numbers in question are the actual values 
of g (k) for every k. 

I0 > A. H u rw it z, Faber die Darstekng der ganzen Zahlen als Summen von 
n-ter Potenzen gamer Zahlen, Mathematische Annalen, 65 (1908), S. 424-427. 

lL > E. M ail1 et, Sur la dkompoeition d’un entier en une somme de puissances 
huit i&mee d’entiera , I3ulletin de la soci&b, mathkmatique de France, 86 [1908), 
p. 69--77, 
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where @ is kge, improved this inequality to G (4) 1G. He also proved 
that G(k)> 4k whenever k is a power of 2. and that 6(6)&g* This 
is the ori& of the remaining number8 in ou; table. Again, every ninth 

power is congruent to 0, 1, or - 1, to modulus 27, 80 that B number 
27 m. + 13 requires at least 13 ninth powers: thus G (9) > 13. 

Considerations of this character concerning cubes lead only to the 

Hurwitz-Maillet inequality; and when k = 5 or k = 7 the resulting 
inequalities are entirely trivial, for any residue to modulus 25 can be 

generated by 3 fifth powers, and any residue to modulus 49 by 4 seventh 

powers. It will be found that these simple facts have a very ‘interesting 
bearing on the structure of our singular series. 

2. The formal theory of the singular series. 

2 1 . . The singular series is absolutely convergent for sufficientFly 
large values of 8 ,12) and. is then expressible as an infinite product 

(2.11) 8=1 +A,+A,+ l .‘*. =CAQ=&Xs& .., =- r-x,, 

where z is a prime and 

(,2. 12) 7 =1 un -+ A3 + AZ, + . . . =~AJ3) 

The sum 31, is a finite sum, 
of iL onwar&14). 

for Ann is always zero from a cert,ain value 

The question of the absolute convergence .of the series and product will 
be discussed more precisely later. Our immediate object is to determine 

the form of the factors xX, 

2. 2. We suppose that g = d(;C 2 I), and we denote by ,v(& q, n) 
the number of solutions of the congrence 

for which 

(2.23ij 

We write 

(2.22) y(q, q, n) = M (q, n> = 2w(q)m’“J 

Pinally, we denote by 

i 2.23) Won) = ml) 

12) P. K 1, S. 40. 
13) P. N. 2, S. 18. 
I’) P. N, 2, S. 22 (f. n. 7). This will also appear incidentally later (S. 374). 

Is) When it ia unnrccsmy to show explicitly the dependence of 3-f on N. 



166 G, H. Hardy and J. Es Littlewood. 

the number of solutions of (2.21) far which 0 -< xr < q (r g 8>, and for 
which not every x is divisible by Z. Such a solution we may call a pi- 
milive solution. 

IFollowing Landau, we write ” y 1 z’ and ’ y $- z’ for c x is divisible 
by y ’ and 6x is not divisible by y ‘* We shall find it convenient, moreover, 

to have a special notation ta express ‘y’ 1 z, yf+l f z’, i. e, ‘y’ is the 
highest power of y that divides x’l In these circumstances we shall 

write ‘y’J z’, 

This being so, the value of xlr is given, in terms of the numbers N, 

by the following theorem. 

Theorem 2. suppose thut 

(2.24) k:> 2, n81k (02 O), (JWI~ (B 2 O??) 

and let 

(2.2611) B-O (B=O)7 

The proof of this theorem rests on a series of lemmas. 

2.3. Lemma 1. If 

ne i-k (0 2 o), q = 22, r.>8+1 (n>a-j, /i>0+2 (n=2), 

(2.31) x E 5 + anj.-8-l, 

(2.32) 

We have 

(mod q)* 

The terms r = Of1 are those which occur in (2.32). 

Suppose then r 2 2. The index of the highest power of it that . 
divides r ! is 

Id) (n ) 1 n meane, of course, 3~ k ‘@ Bk 1 b Jz rB+l)k + n. It a meaning is different from 

that of spk 1 n, which would mean fl BEi,, d-+-n. 
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Hence the r- th term ia divisible by JP, where 

167 

c ‘> 0 - z~+Y(rE-O--- l)-d+x~;T+(T- l)(A+-6-2)-z. 

If n>2, c-R>;T-22-11. If n=z, nzO+3, and so 
c- i;>r--1--2,-l. C IF either ca8e c --A>-I,. arc--kxl. E 

U. Lemma 2: ~AxA(f2)- 7~~+-~W(n~~,n~. <’ m 

Writing, a8 u~ual,~YJ== &, we have 

A, == A,(n) qy) e,(---- np) 
P 
Q-1 

=p-“z 2 e,(p(x:+x,f+ .,. -+x~-n))=q~s~c,(X), 
p s~,x,,...,xg=O x1. xp,.  l . ,  x0 

where X=$+x:+ . . . +x,“- n and c,(X) is Ramanujan’s sum17) 

c,(X) =~c(pX). 
P 

If A.=l, 

P Z n, c,T(x)=-l (x-+X), c,(X)=n-1 (nix), 
and 

(2Aj A, = 3 -“(C(-l)fCn)=n-Xi-n”+nM(n))=iz’-*M(n)- 1. 
x UT I x 

If i-d, 

c,~(X) = 0 (d-1 + X), c &Xj = -29-l (+11X), / .z 

If now 

we have 

and so 

17) See FL Ramanujan, On cerbain trigonometrical sums and their applications 

in the theory of numbers, Transactions of the Cambridge Philosophical Society, ‘231 

t 1918), pp. 259-276; G. I-I. Hardy, Note on Ramaaujan’a function cp (n), Proceedings 

of the Cambridge Philosophical Society, 20 (1921), pp. 263-271; and P. N. 3. 
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The lemma follows fpom @, 41) and (2.42). As corollaries we have 

Lemma 3: ~~2 0. 

L em ma 4 : If n is representable in any manner as a sum of s 
( positive, negative, or zero) k-th powers, then x3 > 0. 

Lemma 3 ip an immediate consequence of Lemma 2. To prove 
Lemma 4 we have only to observe that A a= 0 from a certain value 
of 1 onward@), and thst, under the hypotheiis of the lemma, M (&j > 0 
for every 1. 

4> 4. r,. Lemma 5. If ~761 k (02 O), thert 

(2.51) N &i, m> = n(~t -‘I )(8--1) N @I, m), 

where Q! is defined m in Theurem 2, p 2 p7, and m is wbjtrary. 

We may suppose p > v, and write 

(2.52) xr = f&+ .rni’-e-l (0 2 [,< m-y 0 2 a,< nH+l)* 

Let k=nfik*. Then (k&=1. Also 

(2.53) X;G (,“+ ko(lrE,lk--lw~ (modnrl), 

by Lemma 1. If now 

(2.54) 

the congruence 

(2.55) \7 k--v &xXr=m 

s equivalent to the pair of congruences 

(2.551) 

(2.552) 

In what follows we take into consideration only primitive solutions 

of (2.55) and (2.551). I n such a solution of (2.551) some & say &, is 
not &visible by z. This being so, the values of a,, a3, . . , in (2.552) 

may be assigned arbitrarily, and then, since (k. F1-;, n) = I, the value 
of a, will be determined uniquely to modulus Z. There will therefore 
be ~8 possible values of a1 less than ++I, and no (~fl+l)@-l= z(~+~)x--I 
seta of a’ 8 associated with every solution of (2.551). That is to say 
we have. 

(2.56) N @I, Ina> z ,(@+I)-1 Nl, 

la) See S. 369, footnote I’). 
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where N (n.!‘, m) is the number of primitive solutions of (2.55) and IV1 

the number of primitive solutions of (2.55i). 

Again, N CM-~, m) is the number of primitive solutions of 

(2.57;) 

If here we write 

and use Lemma 1 and the hypothesis p > Q?, we obtain 

(2.58) N (njr--l, mj ==b J-9 l = dWV1. 
f$’ fL,. I . ., II - 8 

From (2.56) and (2.58) we deduce 

(2.59) N( n!l, m> = ng-1 N (JT!~-~, m ) 

and the lemma follows immediately. 

Proof of Theorem 2. 

2.61. Let I’ be the integer such that ~#k+~ 1 n#,, so that 0 5 11 c k; let 

t 2.611) ;1,=Max(~k$-~+1,liSk+(1)); 

and suppose that 1) i,,. 
We divide the &tions (primitive or imprimitive‘) of 

into 

NC R 
classes 
$93) in 

as follows 
number; 

. In t*he first 
in the second 

class 
class 

we put the primitive solutions, 
the sol ution B in which every x 

is divisible by z but not every x by # ; in the third those in which 

every x is divisible by 9 but not every x by n”; and so on, 
The second class of solutions is correlated with the class of primitive 

dutions of 

and the number of primitive solutions of (2.133) is plainly xtk-Q R times 
the number of similar solutions of 
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or ia 
,(k--l)o N &k, 2 

> 
. 

Similarly the number of solutions of the (CI + 1) - th class, where 

44 ifi 

(2.615) 

There are no solutions of any higher class, since (,8 -/- 1) k: > pk + 3’ + 1 
and jt@fgl+l f n, Hence, if 1> Bk -f- Y + 1, and so certainly if A 2 i,, . 

we have 

2. 62. Again, if R. - ak > 9, and so certainly if 1> A0 and u 2 p: = 
we have, by Lemma 5, 

(2.621) d -ak 

Making this substitution in (2.616), and multipIying by zr.+8’, we 
obtain 

(2.622) &(1--d M @A, n) 
a=0 

If a < ,8 and 43 < k, --$ is divisible by 7~ v, and we may re- 

place it in N by 0. If n>2, p=O+1~2@<;rt@~k:. If 7c=2: 
9=8+252e<k unless 8= 0 or 0 = 1 S in which cases 93 s 3 2 k. 

Hence we may replace every N in (2.622), except that for whicll 
a = /3, by 0. 

It follows that the right hand side of (2.622), is equal, when 12 &, 

to the value for x J?T given in Theorem 2. It is also independent of R? 

and therefore, by Lemma 2, equal to 

(2.623) lim J$(~--~~ H (&, n) = x,. 
I,+= 

This completes the proof of the theorem. We may observe that we 
have shown incidentally that 

(2.624) A +== 0 (1 3 &). 
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3. Some properties of the sums SP,*. 

In this section we establish certain properties of the Gaussian 

which will be useful for the further study of the singular series Ii)). We 
have not attempted to make the theory complete, though we have deve- 
loped it a little further than is absolutely necessary. 

We denote by 

x = x, = xx(m) (12 x =< h = 43 (q),l 

the h Dir i c h 1 et’s ,character# to modulus q. “O) x1 is the principal character, 
and X, is the character conjugate to x,. We shall be concerned only with 
the c80e u -= 79, where z > 2 and A s Y 1. 

It w;ll be convenient to write 

q--l 
(3.12) &,=&oe,~~k~ 

j=O 

It is plain that, if R 2 k;, 
I n 

(3.13) sp,q= &,*+A’1 = s;,q+ 2-l. 
edj 

3.2. Lemma 6. If (1, q) = 1 then, 

Cx,Vh,(m) = 0 
x 

unless m s I (mod q), in which case the sum is h. 
The result is obvious if (m, qj > 1. If (m, q) = 

tirn the congruence mm’= 1 (mid q). We have the 

YJ) x&Q = z,(l) zx.mt) = XxPo 
and 

Cz,(lm’) = 0 
K 

unless Zm’ II 1 or m :: 2, in which case the sum is h. 

1, we determine xo 
n 

IQ) What we do is, in effect, to develop from our own point of vkw certain 

portions of the theory of the division of the circle (Kreisteilung) l It is not unlikely 

that the substance of our analysis is to be found elsewhere; but it is not altogether 
eany to extract, from the classical accounts of the theory, the particular parts which 

we require. 
fO) A systematic account of the thmry will be found in Landau ‘a H~&tcck, 1 

(Zweites Buch) . 
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We write 

(2.21) 6 = (h, kj = (p(q), k;) = (+I(, - l), k). 

3.3. Lemma 7. There are just 0 ch.aructers 31, which pumess 

the property 

(3.31) 
x , ”  = Xl l 

These characters are given by 

(3.32) x,w E e t+ I ( > -iv 

where p = 0, 1, 2, :, ., d - 1 and z is the index of 1. 

We have generally 

where y is the index which specifies 3~. ‘I) The necessary and sufficient 
condition for (3.31) is that kyx E 0 (mod h) for every 2, or that 

(3.34) 
.- 

kY= 0 (mod h). 

From (3.34) we deduce 

(3.35) kY -0 
-F= 

[mod$. 

” which has the single solution y E 0 to modulus a’ Thus (S.35) has the rl, 

solutions 
oh -- i ---. __ -- y fi (e-o, l,..., 0-l) 

to modulus h. These are all solutions of (3. 34), and are plainly the 
only solutions. 

We shall call the characters x’==- x,, which satisfy (s. 31 j the special . 

characters. It, is clear that zx, is a special character. 

Lemma 8. We have 

452 

Lemma 9. Suppuse that q = d (A > 1), und that k 1 fl: - 1, 80 

that is= k. m Then 

(3.37) Ze,(Zp) = 0, 

“I) Landau, S. 401-402. 
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if (P?P) = I and the summath is extended over those residues 1 of q 

for which 6 1 x, 

We denote by 
G=g+mn 

the primitive root [mod a> to which the indices refer, g being a primitive 

root (modn)?) 

Suppose first that B = k = 71: - 1. Then the indices of the E’s in 
question are 

0 1 n-l, Z(Jz-l), .m., (nl-l-l)(n-1). 

Suppose that x, and x, are any two of these &--l indices, x, > z,, 
and I, and I, the corresponding values of 1. Then 

where ,U is an integer, and 

G Ph - 1 s g’“s - 1 s 0 (modn). 

Hence I,--- E,E 0 (mod+ On the other ;and, Zx and I, are incon- 
gruent to modulus q, since pd = x,- 2, < zA-l (JE - 1) and G is a pri- 
mitive root fur Q. It follows that the Z’s in question are the numbers 
of the arithmetical progression 

so that 

The lemma is therefore proved when S = 7t - I. The extension to 
the general case is immediate,, The indices of the Z’s in question are 
1lOW 

0, ci, 26, r*., n-l, l ... 7+(7z-l)- CE 

lir -- 1 
and form B arithmetical progressions of the type 

A, A+n-I ,..., A-+-(+‘-l)(n-I), 

where A is one of 0, 6, 26, , . l , z - 1 A 8, The Z’s corresponding to 
tyhe indices contained in any one of these progressions form an arithmetical 
pregression of difference n, and the sum of the lemma splits up into 
,“G -- 1 

8 sums which vanish individually. 

32) Landau, Handbuch, S. 394. 
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3.4. Lemma 10. We have 

the summation with respect to X’ extending over all special characters. 

We may plainly restrict 1 to values prime to q . If ( I, q ) = I, 
cm, qJ = 1, we have, by Lemma 6, 

Hence, if i runs through values less than and prime to q, 

The sum with respect to j is zero unless x,, is special, when it is h: 

whence the lemma. 

Lemma II. If q = d (1 < 12 k) alnd 6 = (h, k), then 

(3.42) s 
? 

S 
I 

P, Q, k = p, u, 6 l 

This is an immediate consequence of Lemma 10. For the right hand 
side of (3.41) involves k only in so far as the special characters are fixed 
by k, and is therefore unaltered when & is replaced by 6. 

Lemma 12. If q- & (1 < A 2 k) and n+ k, then 

(3.43) s &I 93 
P,%k= l 

> 

It is plain from (3.13) that what we have to prove is 

(3.44) S 
I 
p,u,k = Y 0 

or, by Lemma II, 

(3.45) S 
I 

p, $8 = n 
0 

By Lemmas 10 and 8, we have 

where the last summation is restricted to values of 2 whose indices are 
multiplea of 6 ; and this sum is zero, by Lemma 9 14)* 

23 > T& has been proved already, in a different manner, in P, N. 2, 8.19-21; 
but it iH interesting to see how the result arises from our present point of view. 

a4 ) Since S 1 n I I when z f  k. 
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3.5. Lemma 13. If A=$, q-z, and 6=1, then 

(3.51) 

But if 6 > 1 then 

(3.52) 

where 

and the summation with respect to 3~’ extends over the special characters f I 
exclusive of the principal character xl. AIso 

(3.54) 

We may regard (3.52) as including ( 3. 5f), since its right hand side 
disappears when S = 1. 

We have, by (3.13) and (3.41), 

S P* a k: -1 + s;dM = 1 +Jp,(~P)x,o --t-~e,(lp)27X,4)~ 
I 2 x’ 

where the principal character ia now excluded from the summation with 
respect to x’, and I runs from 0 to g - 1. The sum of the first two 
terms is 

The third term is 
1+c,(P)=~+P(JI)=~* 

Cx,~(1,)Ce,(zP)xxt(zP~8 
x’ 2 

Since 1~ runs through the residues of q when I does so, the inner sum 
is z,~, whence the result of the lemma. 

Finally, to prove (3.54), we have only to observe that, q being 
prime, X, is primitive ( eigentZich)23), and 

ir,i=V& 

4, The behaviour of x 72 for large values of n. 

4. 1. In this section we are concerned with large values of Z, and 
may suppose z > k, so that 8 = 0, F = 1. The O’s which occur refer 

to the passage of JZ to infinity; the constants which they imply depend 

upon k and s, but not upon n. 
We suppose that k > 3. E 
Lemma 14. We have 
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other than. the principal character. 

This follows at once from (3.52). 

Lemma 15. If $2 1, p=O, then 

(4.12J &r = 1 + q&““)a 

We suppose first that z+n, so that P = 0. Then 

i4.13) x,=1+& 

Here We replace A, by the right hand side of (4.11). Any product of 
$s is “X and so, when we expand by the multinomial theorem and invert 
the order of summation, we obtain 

where T is a product of s t’s, x a product of 8 x’s , and the number of 

terms in z is O(lj. 
1 

The inner sum is O(J&) for every x and all 

values of n in question 21), and so 

A A _= O( Jp. (Vjq8* )q z qJ&-q, 

which proves the lemma when z + n. 
Next suppose z ) in, so that 0 < Y < k l In this case R, = Y + 1 snd 

Now t$&. = n M for 299+19, by Lemma 12; and so 

Ad = n-s&i. (- n p) = F8CAR (n), 
P 

This completes the proof of Lemma 15. 
If n is fixed, 7t j- n from a certain value of YZ onwards. Hence we 

obtain 

Theorem 3, 

p=Trx,, 

The singulur series S = 2Aq9 and the product 

are absolutely convergent for 8 2 4, and S = P. 

*3 It is - 1 if x is the principal character, and the producb of a x and a t if 1 
ie non-principal (and so primitive: Landau, Hundbuch, S. 480). 
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4.2. Lemma 16. If s > 1 then 

(4-21) i+o(n3-11)<~~~il+~~-~+,.,+~~~k-~))(l+o~~-~--)8)). 

This is proved already if /3 = 0, and we may suppose ,6 > 0. From 
Theorem 2 we have, on the one hand 

( 4.22) 

and on the other 

x ,T (n) > d--dN(n, 0), C 

f4.2.3) @> 5 (I+ nk--p + . . . -; ,(B-1)(k-8)) d-N (n, 0) 
+ n/~(k-81+1--N(n, n’), 

where n’= -E- 
,Pk’ 

Since neither 7~ nor n’ is divisible by zk, we have 

+-8N(n, 0) = d-8N(n,n) = &j, n1-8N(iz,n’) = &d), 

and each of these is, by Lemma 15, of the form 1+ O( &id). Thus 
h.21) follows from (4.22) and (4.23 ). 

,4s a corollary we have 

Lemma 17. If s&k+2 then x,=1+0(+. 

5. The numbers y,) F (k) . 

5.1. Given k and n, and any positive integer rrz, there are two 
possibilities. Either (i) there is a number 

(5.11 j h .z = h(k,s,n) > 0 

such that 

(5.12) x >h.7 .3! = 

for s 2 m and all values of n, or (ii) there is no such number. We 
define 

y, = y (k 4 

as the least value of ‘YYL for which (i> is true, and r(k) by 

(5.13) w  Z Max Y, . ;r 

Further, we define 

7,: = y’(k,n). 

as the least value of m such that 

(5.14) 31, > 0 

for s 2 rn and all values of lip . 
It is evident that rh 5 y, l 

Lemma 18. If x, > 0 for all sufficientJy large values of 92, then 
x, > 0 for all values of rz~. 
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11 
special 
appear 

It 

proving this Lemma we leave out of account for the moment the 
case k = 4, n = 3. That the result is still true in this case will 
incidentally later. 

is easy to see that, apart from the exceptional case, q < k:. Thus 
if n>2, q=ti+1~2Qd5k. 

If ?tI= 2, ek3, then cp=O-$-2<2’sk. 
If z = 2, 0 = 0, k is odd and 43 = 2 c 3 2 k. 
If ~=2, 0-1, then k is oddly even and. p==3<<sk, 
If n=2, 0=2, then q~= 4~69, unless k-4. 
Thus 43 < k in every case except that in which k = 4, IT = 2, when 

cp-k 
Nbw let 

n=nP;‘,+n’ (0 < nt < e’). 

If rt’ + 0 then /Y = 0 (since Q? < k) and so, by Theorem 2, 

X.-rp) = n’~----) N (ny n) = nyf--) N (ny n’) = xx (7~‘). 

But xn (n) > 0 for large values of m, and therefore xn (n’) > 0. It 
follows that xJc > 0 for all values of n that are not divisible by JC. 

Again, if (m, n) = 1, we have, by Theorem 2, 

X+Trn) ===L n~f~--s)N (no, 0), 

since q7<k. The left hand side is positive if m is large, and , so 
N(ny 0) > 0. Hence, whatever be the value of m (prime to 7~ ). 

xx (nv m) > &I-~)N (STY, 0) > 0. 

It follows that xrr i 0 also when n’ = 0, which proves the lemma, 

5.2. Lemma 19. The necessary and sufficient condition that 

(5.21) N(Ju, n) I;- 0, 

for every n, is that s > ynd’ Further, -- 

(5.22) u: = y;r 

except when k = 4, n = 2, in which case 

(5 23) Ya =16, ‘-15. 3’a 

Leaving aside the exceptional case, so that F < k, let s > 7:. Then 
~,(nv)>O. But p-0 when n=zv (since q-&), and so= 

Hence 

If on the other hand n E/F 0 (mod ZT), then /3 = 0 (since v < k: ). E 
Hence 

&T = nr(-)N (n’p, n> 
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and 

Thus 8 > 74 is a sufficient condition that (5.21) should hold for every ~2, 

Next, suppose that (5.21) holds for s = 5, and every n. Then it 
holda, a forfiori, for s > 8, and every n, and the N’s that occur in 

Theorem 2 are both positive. Hence 

It follows, first that s 2 rk is both necessary and sufficient ‘for (5,21), 
and secondly that s 2 7; involves s > ys, ii e. that $ = y3. 

If E=4, n==2, then 2’ = 16 .-Now x 4 is congruent to 0 or to 1 
to modulus f 6, according as 5 is even or odd. It follows that N (16, n) > 0 
for s 2 16 and every n.; that 

N(lG, n> > 0 (1s.tn), N(16, O)= 0 

when ~45; and that N(l6, 15j=N(16,0)=0 when8<15. Finally c 
it follows, from Theorem 2, that 

x3 > h, (s 2 16), & > 0 (s = 15), 
xl( I& 15) ~ 28i;-l~)+4(l-lirN(1T,, 15) = 2-11(fl+1) 

md 

;ys (I#* 15) = 0 

Since 2 -11 (@+I) +Owhenb-*oc,, these results embody (5. 23). 
we see that Lemma 18 is still true in the exceptional case. 

5.3. Theorem 4: G(k) 2 r(k). 

( 8 = 
15) 

'2 i 
1 ) 

(s < 15). 

Incidentally 

Leaving aside for the moment the exceptional case k = 4, 
suppose that s 2 G(k). Then any sufficiently large n is the sum of 

s k- th powers, so that xn > o for every 7t and all sufficiently large 
values of 72. Hence, by Lemma 18, xx > 0 for every n and every n, so 
that s&+ It follows that G (k) 2 yz for every X, which proves the 

theorem, apart from the exceptional case. In this case y,, = I& and the rl 
result is still true, since G (4) 2 16 a8), 

__---_ 

37) lV(l6,15) = $I’ when S= 15, since each x may have any one of the values 
1,3,5, “., 15. 

as) The lower bound F for G is associated with the vanishing of the aiagular 
series S for s< l’- 1, except when k = 4. When E = 4, r r= 16, and the series is 
positire for s = --IS, but assumes arbitrarily small values for suitable values of rt. 

It should be observed that our proof (see 3 5. 5 below) that 

G(P( 7c--3))~yx=~q (z>2) 

(Fortaetzung der Fubote 28 auf nficheter Seite ) 
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5.4. Lemma 20. Suplpose that ,t”lk, and that 9: is defined CIS 
in Theorem 2. Further, suppse that 

and 

(5.43) d 
*z - 1 E---.-; 

F 

so that (3 - 1 and (k,, d) -1. Thelk 

(5.44) 

We write Q =- JI (1’. We must distinguish the cases ,YF > 2 and JT =..I 2, 
ci) If z> 2, y= 8 + 1. We suppose that G is a primitive root 

(mod’ Q). We divide the residues to modulus Q into classes as follows. 
Consider first the residues n, prime to p, If zt is the index of in,, we have 

WI; leas one 01’ other of the d values 0, 1, l . . , cl -- 1, and e one or other 
of the ‘vfo values 0, I, . . l , ‘t/~~ - 1. The d values of n, with a common 
e we class together and call the numbers 

Cd,” ( e =o, l,*..,v’o-lI); 

the class of numbers cc: with a fixed e we call C,“. 

Next, consider the residues ni for which YZ~ 1 ni, where 0 < i < p3. 
We have 

ni II ,“EiNi, 

where the N,$ 
As G is also a 

are the 
primitive 

-5 
) 

to 

numbers 
modulus 

less than and prime 
write 

to &l-i . 

is essentially the same as K em pne r ’ s proof (see pp. 45-46 of his Inaugural-Dkser- 
tation ) that 

G(29>2~=2?. = 
His proof too fails when k = 4, and he has to appeal to the structure of the particular 
number 31. 

aR> Wle write # (e) for E ule r ‘,B fun&ion usually denoted by T ( p), aa Q? is ueed 
hero in a different sense. 
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where 

.mi has again one or other of the values 0: 

other of the values 031 f - “7 ‘v/i-- 1. The 
1 3 , l . , d -- 1, and e cme 
y+ new classes obtained 

or 

In 

this manner we denote by 

c 2 
e (e-0, l,..., ~‘j-lj, 

and a typical member of C% by C$ 
Finally, the single number 0 is the sole member ccl of a class C,Y. 

The ‘otal number of classes into which the residues are divided is 

F-1 
‘4’0 + l/J1 + l l .  + y+1+ 1 = . -+ + 1 = cn = c .  

We may denote the whole system of classes, in the order in which 
they have been defined, by C,, C,, . . ., G,, . . ., C,, and a typical member 
of C, by c<,. . 

The class bPO consists of the residues of k- th powers of numbers 
x prime to n. For 

k c n0& :, ~,“e(“-‘) = &)‘I’o* 
d 

Also x G’ for some f (since (x, n) = I), and 

so that xk is an CI*. Moreover we can choose t so that tk, has an arbi- 
trary residue m, to modulus d, since (k,, d) = I, so that every tiO is an xk 

Finally, to complete the properties of the classes which are imme- 
diately relevant, c 1) I belongs to Co, (2) q+xr, where ti0 and u,. are any . 
members of Co and C, respectively, belongs to C,,, and (3) uO q, where 
LI,. is a given member of C,,, can be identified with any member of C,, 
by choice of a,. & 

Of these properties (1) is obvious. To prove (2) we observe that, if 

is an cx,, , since y+ 1 ylO. Finally 

and we can choose m, so that nim, + mi shall have an arbitrary residue 
(mod d), since (z, d) = 1; hence ti,,,c~~ can be identified with any member of C, l 

5 r . *I. To prove Lemma 20 it is enough, by Lemma 19, to show that 
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for 8 2 c and every in. And the necessary and sufficient condition for 
(5. 51) is that every n should be congruent (mod JP) to the sum of at 
most c numbers aO. If any CII, is the Burn of not more than c cl,‘s, then 

so, by (2) and (3) of the I&st paragraph, ia every ti,,. In these circum- 

stances we shall say that C, is representable, and what we have to prove 
is that this is so for aI1 the c values of r, 

Suppose that 1 2 c’ 2 c. Then there are at least cf differed dames 

representable by not more thm c’ a0 ’ B. For, in the first place, this is 
true when c’ = 1, Suppose that it is true for c’ = 8 < c but false for 
c’ = F + I, and let C be a typical class representable by c Q’S, and C,. 
a c. Then ar belongs to a c’, and therefore, since no new classes become 
representable when G is changed to z + 1, ti, + 1 belongs to a c. _-- 
Similarly czr + I + I = ccr + 2 belongs to a C, and, re;?eating the argument, 
cuerv residue (mod Q) belongs to a c, which is a contradiction. 

Taking c’ = c we see that c distinct classes, and therefore all residues 
(mod ej, are representable by c tiO’s, which proves the lemma, when z > 2. 

(ii) There remainsthe casen=2, inwhich v-0+2, e-d-l, 

c = ZF=@. In this case there is nothing to prove, for any residue 
(mod Q) is representable by at most Q i’s, 

A particularly interesting case is that in which d = 1, E = TG - 1. 
In this case 

k = nO(n - l)ko, 

where k0 is prime to Z. Here 

))x=<n~~=nO+’ (n>2), y2=<2F=2e+a ( 7c C 2) . 

If n > 2, y, = 7c’p. For 

so that 1 is the only a,. Hence N(n~,O).=O if S<M, and Y~&P, 
by Lemma 1% In particular 

p=71-k+1 

if E-W- 1. Thug, y,=5 if k-4, y-=7 if k--L 

If ?t = 2, k=2”&. Suppose first’ that 0 > 0. Then 

90 - X’ =l (mod 2’+‘), 

and ao xk I I (mod 2 ‘7, Except when k -= 4 our argument above applies, 
and we obtain 

kp” = 20f” y2 = d (0 > o)* 

The result still holds when k: = 4, since then y9 = 1G = 2’. 
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The argument fails if 8 = 0 (so that E is odd). Here Q = 29 = 4 ; 
- I is a k-ic residue (mod 4); and 0, I, CL, 3 are all representable by 
at most two of the numbera + I. Thus 

yz = 2 E p+l (e = 0). 

*I. Y 6. In general it is possible to go a little further than in Lemma 20. 

Lemma 21. Suppose that d, / d, where d, > 1. Then 

( 5. tx‘i y, 2 Max(d,, c - l)m 

Since d, 1 n - 1, (5. til ) gives in particular 

ye7~Max(n- l,c- 1 
in all oases and, 

~~7~M.ax(k- 1, c- I 
if 0 > 0. 

To prove Lemma 21, suppose that 1 2 c’ 2 c, and let Y (c’) be the 
number of classes, other than the class C, (containing the residue 0 only), 
that are representable by not more than c’ q$. Then 

(5. 62) v(c’+- I)2 Min@(c’) + 1, c - I). 

For, if (5. 62) is false Y(C’ -$- 1) = P (c’j -;r: c -- I. Let c be a 
typical class of the Y (c’) classes, and C,. a C’, Then, if fir belongs to C , 
al, + I must belong to a C or to C,, since no new classes, other thk 

perhaps Cc, are representable by c’ + 1 c$s. If q.+1:10, a,+2 
belongs to Co, and therefore to a c’. If ar + 1 belongs to a C, cxr + 2 
must belong to a 6 or to C,. Repeating the argument, we see that 
every residue, other than 0, belongs to a c, which is a contradiction. 

From (5. t;?) it follows that 

v(c - I) 2 c - 1, 

so that all residues, 0 perhaps excepted, are representable by at most 
c .- I cI()b. It remains to consider the residue 0. Let d = qd, and 

Then tf; + 1, since 7~~ < y(p) and G is a primitive root (mod e), 

and 0 is representable by d f cto’s, which completes the proof of the 
lemma. 

Suppose in particular that d1 = d = 2, so that n; > 2 and 
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In this case the C+ are the two numbers -+ 1, and 

But 
1 1 

c--l=2(ne+‘-lj=g(n’l.-l), 

so that 

Thus in this case also we can determine y, exactly. 

5. 7. It is convenient to sum up our results concerning the cases 
d = I and d = 2 in a separate lemma. 

Lemma 22. 
to 7c, them 

(5. 71) 

If k = 29, 

(5. 72) 

Ii k is odd, 

If k- n+- Ilk,, where 7~ > 2 and k0 is prime 

L = ,@+I, 

where 0 > O and k0 is odd, then 

then ya=2. 

If k=;-nt) 7T-- W o:, where JZ > 2 and k0 is prime to ST, then 

(5.73) y~+z~+l - 1). 

5. 8. We know that G(E) 2 r(k)= Max yn. Thus, when k is 
given, every value of y, gives a lower bound for G(k). These, when 

less than k + 2, add nothing to our knowledge of G (k), since G (k) is 
always greater than k. There is therefoke a special interest in determining 
as systematically as possible all cases in w,hich 

Y,>k+lm 
Lemma 23. We huve] 

(5. 81) r,s+1 

dess (CC) k==2’ (ti>i~), IF==~, when, y,=P’=4k, 

(p) k=2’3 (0>0), ~=2, when y,=2’+‘=ak. 

or (y) k- GE (0>0), where n>2 andeln-1. 

In cases (a) and (p) (5. 81) is a se; f 1 in case (y) it may be true or false. 

We write k=#&k,, as in Lemma 20. If 8-0, 77> 2, then 

Y CC 
It= =E+llk+l, 

by Lemma 20. If 8= 0, z-- 2, then y. = 2 by Lemma 22. Thus we - 
seed only consider cases in which 8 > 0 ._I 
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8uppose first z > 2. If k, > 1, we have 

k+ 1. 

Thus (5* 81) is true unless kO = 1, k = JE%, which is case (7~). 

Next suppose ZF==~, k===~“k,. If LO> 3, we have 

Thus (5. 81) is true unless k, = 1 or 3, cases (EL) and (p) . 

The case in which k = 6 is interesting as falling under both (p) and (- 3’ j. 

If n=3, k=3.2=--n(n - 
0 

1> ) ~=-n- 1, d-..l,andy,-3-=!k And 
9 x ;?2=i ,. 8. 
In case (y), (5. 81) may be true or false. Thus it is true when 

k =:3, n=- 3, for then yi3 = 4. But it is false when k =---. 6, n = 3. 

5. 9. We must now collect OUF results and state them as theorems 
concerning I ‘( k ) . We shall say that k is exceptional if it has one of 
the forms in <a), (p), or (7) of Lemma 23. 

The or em 5. If k is not exceptional, then. 

I’(kj =< k --;- 1. h 

This is an immediate corollary of Lemma 2tS. 

Theorem ti. If 8 ,:‘- 1 then I’(a”> r:-i 2’+‘. 

Theorem i. If fj :> 1 then I’i2”3) 1_.z g’-+‘, 

Theorem 8. r( 6) =-I 9. 

These theorems follow from Lemma 23, when we observe that the 
llumbers in question in each case exceed k + 1. 

Theorem 9. If n >p 2, 8 >- 0, then l“(ne(n - 1)‘) z-- d+? This 
equality holds also whm 8 = 0, pmuided that k = z - 1 is nut exceptionid. 

The second part follows from Theorem 5 and Lemma 22. We mav 
therefore suppose 8 > 0. We have already seen that y, = - n e+l, whi& 
is greater t,han k $- 1. If JZ~ is a prime other than z, y,, 2 k + 1 unless 

,71 =-= 2, d (Z - I) =: 2’l, or n1 =-- 2, @in - 1) = 2” 3, or z 1 >> I y -2 

d+- ij==gG1, where E& - 1. 
It is easy to see that the first and third alternatives are impossible, 

and that the second can occur only when z = 3, 0 = 1, k = 6. In this 
case the result has been proved already; in all other cases we have 

Y .73 L y, and r(k) =:= y, =: G+k 

Theorem 10, If n:r3 2, 0-2 0, then 
‘1 

rt> pH(n --- 1)) 
1 

, f--z -&@+l - 1). 
A 
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Here yn = $(n*+l - 1), since d = 2. This is greater than k + 1 except 
when z = 3, 0 ‘* I, k = 3, when the two numbers are equal. Moreover 
i-nO(, - ‘> 1) cannot be equal to 2 01, 2 tfr 3, or zfl F, , where z1 += n, 8, ‘Y 0, 

‘“1 1 n1 - 1, Hence ynl < - yx and r(k) = yr 

Theorem 11. If n>2 and k--z%, where ti> 0, E[F-- f, then 

I”(k) 2 Max(y,, k + 1). 

It may be verified at once that JXH c’ cannot be of any of the fornls 

9, 2@13, np*s,, except when z~=3,8=l,e=2, k--6. In this case 
r’(k) = y3 = 9. The result follows from Lemma 23. 

Theorem 12. In all cases 

r(kj < 4k. 

The sigrl of equality occurs if and only if k :: 2 t+ (0 2 2 1. , 

Theorem 1~. Xn all caSea 

I’(k) < (k - 8~2’~‘j-5. 

This theorem, which is included in Theorem 12 except when k = 3, 
iti inserted only because it is what we require for the proof of Theorem 1. 
Our actual bounds for r(k) are much better. 

When k = 3, I’(3) = 4 < 9 = 1.4 + 5. 

It may help to elucidate the results which we have obtained if we shobv 
in tabular form the actual values of r’(k) for a number of values of k. 

k=s 4 5 6 7 8 9 10 11 12 13 14 15 16 17 W 

T(k)-- 4 16 5 9 4 32 13 12 11 16 6 ‘14 13 64 6 27 

k =f; 19 20 21 22 23 24 25 26 27 28 29 30 :‘31 32 

r(k) y= 4 25 24 23 23 32 10 26 40 29 29 30 5 12H 

The values of I’(k) f or k-&4,6, 8,9, 10, 12, 16, l&20, 21, 24, 
27 and 28 are given by the actual theorems and lemmas which we have 

proved; the determination of the remaining values demands further cal- 
cuIations into which we cannot enter here. 

6. The behaviour of the singular series when s > F(k). ZZZ 

tj.1. Theorem 15. Suppose that k > 2 and a, = Max( I’(k), 4). Tken 

(611) S>O 

for a 2 a, and all values of n. 

By Lemma 16, we have 

x;r> 1 II &-G 
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18, 

Hence there is a x0 = n&8) such that 

and (ti.11) follows from (6.12) and (6.13). 

It is plain that our main purpose is now accomplished; with Theo- 
rems 13 and 15, the proof of Theorem 1 is co mpleted. 

It is of some interest also to obtain an upper bound for Ft. 

Theorem 16. If s> k: +- 2 then =I= 

and t,he result follows immediately. 

Theorem 1.7. If sZk>3, then 

(6.22) S *;‘_ W 

where p-7 = 1 unless nk i a, and then pG7 = 1 --/- @. It is plain that 

where xa(n. As ci(n) = 0 (nr>, the theorem follows. 

The interest of this theorem lies in the resulting equation 

There is some reason for supposing that 

(6.24) rk,,(n> = 0 (nF), 

an equation from which very important consequences would follow. This 
equation would cease to be plausible if (6.23) at any rate were not true. 

6.3. In conclusion, we return for a moment the equations ( 1.15) 

and il.151). As we remarked before, the equation (1.15) is sufficient for 
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our present purpose; I but it is interesting to bring the remark of 0 st r o w s k i 
into relation with our analysis. 

Suppose that 
N (nq,,n) 1 1 C 

for every n and for s = so. There is then a primitive solution of 

for every n. Consider now the similar congruence in which s, is replaced 

bY s > 9,. Of the x’s, the last s - so may then be selected arbitrarily, 

and there will be at least one primitive solution of the ensuing congruence 
in the first s,,. Hence 

It follows that the inequalities which we have used, of the type 
\ 

2 XT > ,Y4-8); I 

may be replaced by inequalities of the type 

and our numbers h, = h (E, JZ, s> and 0 = 0 (k, s) by numbers of the type 
h n E h(k,n,s,) = h(k,n), and a=o(k,s,)=o(k). It is however unne- 
cessary to develop. this remark further at the moment. 

We add, finally, that the number r(k) has a simple and interesting 
arithmetical interpretation. In fact I’(k) is: the least ntimber m such 
thut every arithmetical progression contuins an infinity of numbers which 

are sums of m k - th powers. 

(Eingegangen am 31. Oktober 1921.) 

CORRECTIONS 

In the table on p. 186 the value of I?( 30) should be 31; see 1928, 4 (footnote on 
p. 540). 

In various footnotes (e .g. 14 on p. 165) there are references to other pages of the 
present paper. In these, the numbers are incorrect and the correct numbers can be 
found by subtracting 204. 

On p. 172, for (2.21) read (3.21). 

On p, 175, in the formula above the heading of 5 4, for 71~ read 7x’ 

On p. I76 and later, Lemmas 15, 16, 17 need correction: see 0 3 of 1925, 1. 

On p* 188, the fmal statement needs modification when k = 4 ; for this, see 1925, 1 
(p. 7) anti 1928, 4. 



Some problems of cPartitio Numerorum’ (VI): Further 
researches in Waring% Problem’). 

BY 

G. H. Hardy in Oxford and J. E. Littlewood in Cambridge. 

1, Introduction. 

1. I. In this memoir we continue the researches of the first, second 
and fourth memoirs of the series. 

The memoir falls into three parts. In the first (§§ 2 - 6) we are 
concerned with properties of (almost all’ positive integers n. We say 

that almost all numbers n possess the property P .if ‘the number of 
numbers less than n, for which P is false, is o (n) when iy~ is large. Thus 
almost all numbers are composite. 

We suppose throughout that k > 2. We denote by 

w =r*(n)=r, Jn) 1 
the coefficient of x1’ in 

(1.11) 

We write 

(f(x)y= (1 +a $x-“)T 

I) G. H. Hardy and J. E. Littlawood, Some problems of “Partitio Nume- 

Forum” : (I) A new solution of Waring’s Problem (Gijttinger Nachrichten, 1920, 

33-54); (II) P roof that every Iarge number is the sum of at most 21 biquadrates 

(Mathematische Zeitschrift 0 (1921), 14-27); (IV) The singular series in Waring’s 

Problem, and the value of the number G (k) (ibidem 12 (19221, 161~188), We 

refer to these memoirs as P. N. 1, P. N. 2, P. N. 4, 

We shall allso have occasion to refer to the fifth memoir (P. N. 5), viz* ‘A 

further contribution to the study of Goldbach’s Problem (Proc, London Math, Sot. 

(2) 22 (1923), 46.--56). This memoir, though concerned with a different problem, 

contains, in a different setting, several of the essential ideas of our present analysis. 

1925, I (with J. E. Littlewood) Mathemattiche Zeitschrift, 23, 1-37. 469 
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where 

(1.14) q(n) = /q$eq(- np), 
P 

(1.15) e(x) = Pis, e, cx> =e;, i) S p # Q= Yeq(phR), 
h=O 

P = 0 for Q = 1, while otherwise p runs through the numbers less than 
and prime to Q; and 

Our argument involves a number of parameters, and of letters used 
in conventional senses, so that our system of notation requires very 
careful explanation. 

Our principal variables are n, k, s, E, and 6. Of these, E is an arbi- 
trary positive number; 6 is also positive, and both E and 6 are to be 
thought of as small. The choice of 6, which has tIo be made so as to 
satisfy the varying requirements of our analysis, is always subsequent to 
that of k, s, and E. 

We use the letters A, B, C, with or without suffixes, to denote 
positive numbers whose value varies from one occurrence to another. 
When no suffix is used, A is an absolute constant (such as 2); B = B ( k) 
is a function of k only ; and C ;- C (k, s) a function of k and s. 

Sometimes, however, A, B, C will depend on other parameters, in 
which case these parameters will be indicated explicitly by suffixes. Thus 

B w? = B(k, E), CE,s== C(k, s, E, 8). 

In exponents, we use c instead of C. When c occurs not in an 
exponent, our conventions do not apply, and all the variables on which c 
depends are shown by suffixes. 

The symbols 0, o refer to the passage of n to infinit,y. Thus 
f = 0 iv), where f and 93 are functions of n (and in general of k, s or 
other parameters also) means that / f/ < My. Here _M is a number of 
one of the types A, B, C; and it is to be understood, unless the con- 
trary is stated, that M involves all parameters whose occurence is possible 
in the nature of the cme. If any parameter is missing, we say that the 
result holds uniformly in that parameter. 

Similarly f’ = 0 (9) means that 6 -+ u when n --, 00, or that, if q 

is any positive number, then ifi<vv for n&t,(q,aJ,...), where 

4 p, l ’ l 

are some of the parameters k, s, E, 6 ; and again it is to be 

understood, unless trhe contrary is stated, that all possible parametxs 

are involved. 
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1. 2. We prove first 

Theorem 1. I/ 

(1.21) 

then 

(1.22) &(m))q= &(m) - p(?#= O(TP8a-y. 
m=1 m=1 

From this we deduce 

Theorem 2. If E =+ 4, then almost all numbers are sums of 
($, k - 1) K + 3 non-negative k-th powers ; and in particular of 5 cubes, 
id7 fifth powers, 67 sixth powers, 163 seventh powers, 387 eighth powers, 
899 ninth powers, and 2051 tenth powers. The num#ber of non-represent- 
able numbers is in all cases O(TP~>. 

The result for cubes is considerably in advance of anything proved 
before, the utmost that is known being that a finite proportion of num- 
bers are sums of 7 cubes “)* 

The case E = 4 is abnormal, since then (i Ic - 1) K + 3 = 11~ 15, 
while the singular series (5 (n) vanishes, for all numbers of appropriately 

chosen arithmetical progressions, for any value of s less than 15. In this 
we prove 

Theorem 3. Almost all numbers are sums uf 15 biquadrates. 

In this theorem, 15 is the correct number, and cannot be replaced 
by any smaller number. If G, (k) is the smallest value of s for which 
almost all numbers are sums of s non-negative E-th powers, then 

(1.23) G, (4) = 15, 

while C, (3) is either 4 or 5, and G, (5) may be any number from 6 to 

27 inclusive. 

1.3. In the second part of the memoir (§ 7) we return to G (k), 
The best upper bounds known for G i3), G (4), . . . , G (A$, . . . , are 8, 
21, 53, 133, ...j (k-2)K+5, ..* .’ Our object is to improve these 
numbers (apart from G (3), with which we can do nothing) by combining 

the results of the first part with a simple elementary idea, We prove 

Theorem 4. I/ k > 3 then 

2) That is to say, there is a constant A such that more than An numbers less 
than rc are sums of 7 cubes. This result is due to Baer (W. S. Baer, Ober die 

Zerlegung der ganzen Zahlen in sieben Kuben, Mathematische Annalen 74 (X913), 

511-514). 
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(1.32) I 5‘ 
(k-ti)logZ-bgk+log(k-2) = ----- _--. -_ --._ ~--- -__- 

k log?+log(k- 1) 

In particular, all large numbers are sums of 
fz’fth powers, 87 sixth powers, 193 seventh powers, 
949 ninth puwers, and 2113 tenth powers. 

19 bipuudrates; 41 
425 eighth powers, 

We can still prove nothing new for cubes ; but the result for bi- 
quadrates is particularly interesting. All numbers from a certain number IV4 
onwards are sums of 19 biquadrates, and it would be possible to deter- 
mine a numerical bound for &* Now g(4) 2 19 (since 79 = d-2’+ 15.1’ 
actually requires 19 biquadrates ) . The determination of the actual value 
of g (4), whether it be in fact 19 or some higher number, is thuti theor- 
etically reducible to a problem of computation. 

1.4. The third part (5 8) stands on a different footing, since it 
depends on an unproved hypothesis, viz. 

Hypothesis K. me number of representations of n by E k- th 
powers is 0 ( W ) for every posi,tiue E. 

This hypothesis (a separate hypothesis for each value of k) is equi- 
valent to 

(1.41) r&n) --- O(w). 

It is true when k = 2 “), but has not been proved for any higher value 
of k. Its consequences in Waring’s Problem are very striking, and it 
is well worth while to investigate them in anticipation of a proof, 

We prove first 

Theorem 6. I/ Hypothesis K is true, then (1. 22) is true for 
szk+l. 

From this follows 

Theorem 6. If Hypothesis K is true, k + 4, and 

(1.42) rl (k) = Max (r( k), k + l), 

where r(k) is the least value of s fur which the singular series is always 
positive, then almost all numbers are sums of rl (k) non-negalive k-th 
puwers. In particular almost all numbers are (on Hypothesis K) sums 
of 4 cubes, 6 fifth powers, 9 sixth powers, 8 seventh powers, 32 eighth 
powers, X3 ninth powers, and 12 tenth powers. me number of non-re- 
presentable numbers is in any cuse 0 @l-c>. 
Y-- 

“) E. Landau, Uber die Lnzahl der Gitterpunkte in gewiesen Bereichen, 
Giittinger Nachrichten (1912), 687-7’71 (750). 

I ’ 
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It was proved by Hurwitzl) that 

except when k = 4. Hence, except in this case, 

Combining this inequality with .Theorem 6, we obtain 

Theorem 7. Ilf Hypthesis K is true, and k += 4, then 

(1.43) G, (kj = r;(k). 

As r(k) can be calculated, with sufficient labour, for any k, the 
problem of G, (k) would be solved completely if Hypothesis X were proved. 

Finally we prove 

Theorem 8. If Hypothesis K is true, then 

(1.44) 

2k+ 1; . 

from which follows 

Theorem 9, If Hypothesis K is true, and 

(1.45) r,(k)=Max(r(k), 2k+1), “) 

then all large numbers are sums of r9 (k) non-negative k - th puu;ers; and 
in particular of 7 cubes, 16 bipuadrates, II fifth powers, 13 sixth powers, 
13 seventh powers, 32 eighth powers, 19 ninth pouTem, and 21 tenth 
puu~ers. 

We show also that when (as is usually the case), r (k) < k + I, 
Theorem 9 may be deduced in an elementary manner from Theorem 67. 

It can hardly be doubted that the numbers of Theorem 9 are far 
closer to t,he realities of the problem than any given before. It is not 
too much to say that, if Hypothesis K were proved, Waring’s Problem 
would be within measurable distance of a final solution. 

- ---_- 

“) A. H u r w i t z, Uber die Darstellung der ganzen Zahlen als Summen von n-ten 
Potenzen ganzer Zahlen, Mathematische Annalen 65 ( 1908), 424-427. 

“) See P. N. 4, 179 (Theorem 4). The ground of the inequality G (k) > r(k) 
being (except for k = 4) the existence of a forbidden arithmetical progression, the 
same inequality holds for GI (k). 

6, In fact rg (k) = 2 k + 1 except when k is a power of 2, in which ca’e it is 4k. 
‘) This deduction is still possible in the exceptional cases, but the proof requires 

elaboration. 
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It may be useful that we should exhibit, in t;he form of a table, all 

is known about the numbers g(h), G(kj, G, (AT), r(k) for 2~kz510. 
may repeat that g (k), G (k j, G, (k) are the least numbers s such 
all, all large, almosf all numbers are sums of s k- th powers; while 

, 

r (L) is, except for k = 4, (a) the least, number s for which the singular 

series is positive for every n, and (E) the least number s such that every 
arithmetical progression contains an infinity of representable numbers. 

When k = 4, T(k) = 16, while @) and (b) are true for u’ 2 15, but for 
no lower value of 8. “) 

2. Further definitions. 

2. 1. We must begin by defining a number of additional symbols. 
In our earlier memoirs we used the ‘Fare y dissection’ of order 

N- [n l-a]? the ‘major arcs’ ‘$R and ‘minor arcs’ m of the dissection 
being defined by q 2 na and q > n” respectively. It was then shown by 
Weyl lo) and Landau 11) that our argument could be simplified by using 

a K 
a different dissection, viz. thaf of order [ n1-a], where ti = - ---- K+ 1’ Here 

we use two dissections, each different from either of those used before. 
In the proof of Theorems I- 4 we use the dissection of order 

(2.11) N 1 
zIz= ,1-q, 

[ 

where 

(2.12) a, = a, (k, 6) = a - 6 

and 6 is positive and small. The choice of 6 will be subsequent to that 
of k, S, E, so that S will then become a function of those variables, tend- 
ing to zero with E. The major and minor arcs will be defined by 

(2.13) q < nal, C q > nal 

and denoted by %JI,, m, . 
In the proof of Theorems 5 -9 (those which depend upon Hypo- 

thesis K) we use a quite different dissection, viz. that of ordel 

(2.14) N 3 
C [ 

nl-3U 1 3 
the major and minor arcs E,, m, being defined by 

(2.15) q&P, E q>na, 

9, See P, N. 4, 179, f, n. CH), This point about k = 4 is overlooked on p. 188 

(last sentence). 

l*) H. W ey 1, Bemerkung iiber die Hardy-Littlewoodschen Wntereuchungen zum 
Waringschen Problem, Gijttinger Nachrichten 192 1, 189 - 192, 

11) E. Landau, Zum Waringschen Problem, Hilbert Festschrift (1922), 423-451 
[Math. Zeitschr. 12 (1921), 219-2471. 
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Here ti is a number of the type c, which will be chosen small enough 
to fulfil the demands of our analysis. 

2. 2. We use t = fp q, 9 as hitherto, for a ‘Farey arc’ in general. 
We write 

(2.211) 
- -1 +i?p 

X E x eiV’ I I =e 98 

and (on the arc & J 

(2.212) x=&)P, p=;+iB, e==q 
Q 

We write also 

(2.22) s 1 E (D ‘P,,,=2r(l+u)--~~-$. 

(2.23) g (2) = 2 m8a-r 2” 
??S=l 

(1x1 < l), 

(2.24) F(x)= F(x,k,~)=~~~(m)x~=~m~~~~~~rn)x~, 
m=l m-1 

(2.25) 

Pinally, we write 

(2.26) ~,(n)=Km$(n>, 
qs 

G,(n)=O22$(n), 

so that 
!7>y 

and 

(2.27) Fl(x)=~m~a-lG1(m)x~, F,(~)=zrn8a-~@~(rn)xm, 
m=l Ina= 

so that 

(2.271) F(x) = E: (4 + FQ (x>’ 

Then 

(2.281) Fl = (ii$ 2 2 (+)8m8a-i(xeq(- p)>” = c Fp,*, 11a) 

and similarly 
P,q5 m P,QS 

(2.282) 

We shall take 

F a = 2 Fp q- 
Pt!l>=V ’ 

(2.29) V = d; 

b will be chosen later. 

We snppoge always that n > 1. 

lla) This notation means that we gum for q 5 Y and for all values of p aB- 
sociated with each such q. 
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3. Lemmas concerning the singulrsr series, 

3. 1. We have frequently to appeal in what follows to the results 
and arguments of P. N. 4, and we must begin by revising slightly a por- 

tion of that memoir. An incorrect argument in the proof of Lemma 15, 
to which our attention was called by Prof. Landau, affects the results 

of Lemmas 15, 16 and 17, and the proofs, though not the results, of 

Theorems 15, 16 alrd 17. It happens that the correction is relevant to 
the present memoir. 

Lem-ma P). We have, for s > 0, 

(3.111) y!&(n)1 < Q-H” 

(3.112) [q(n) 1 < qw8 

(3.221) 1 x, - l/<CpkG 

(3.122) ‘X, - I ] < cpl- kg (P I % P”fnL 

Also 

(3.14) IX,--1 I< cp’ (Skk-+ a). 

Here (3.121) and (3.122) give the corrected form of Lemma 15, 

(3.13) that of Lemma 16, and (3.14) that of Lemma 17. 

The result (3.111) is correctly proved on p. 176; and (3.112) follows 
by the same argument, the only difference being that the ‘inner sum’ is 
the trivial 0 (p ) instead of 0 (I$). 13) Th e subsequent argument of the 
text is a correct deduction of (3.122) from (3.112), provided we write 

O(P 1-h) for qp+q in the two places in which the Iatter Occurs. 

The other formula (3.121) is, Of course, merely a convenient restatement 

of (3. ill), since Xp =-1$-B, when #n. 

If now we substitute, in the proofs of Lemmas 16 and 17, correct 

expressions from (3. ll), (3.12) in place of incorrect expressions from 

Lemma 15, and leave the arguments otherwise unchanged, we obtain 
(3.13) and (3.14). 

3.2. The remaining Lemmas and Theorems of P. N. 4 are actually 

true, but the proofs of Theorems 15, 16, and 17 have to be revised. We 

require Theorem 15 in the sequel-, and restate it. 
-- 

12) Were 8, p, X are the A, ZT, x of I? N.4. 
12a) This notation means that (P’)~ is the higheet power of pk which divides n: 

pee P. N. 4, 166. The /Y here has of course no connection with that of (2.29). 

13) Our mistake there lay in failing to distinguish the two cases. 
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Lemma 2. If 8.2 Max(r(k), a> then 

(3.21) G(n) > c= 

The original proof, when corrected, requires the 4 to be replaced 
by 5. But the result is still valid when k = 4. la) For if s = r(k) = 4, 

k is odd, since otherwise ylr = 2 0+2 > 4. Then, writing 

in U1, by (3.121). On the other hand, in L&, S,, p is real, S& is po- d 
sitive or zero, and (since $) ) n) 

!!ip= zSi,pep(- np)= xS,“.& 0. 

If now /? = 0 we have Ia) 

while if p > 0 we have le) 

(3.24) Xp&Xp(p)~l-p-“’ 

by (3.23), since p = 0 for n = p. From (3.22) to (3.24) we obtain 

G>C n x, B(l-p-‘)n(l-p-3)>C; 
PiW<C I,tn Pb 

since X, is positive when p is fixed and s 2 r(k), and has only a finite 
number of distinct values for different values of n. 

tj. 3. In the proof of Theorem 16 we have, by (3.13) above, 

x,~(1+~-“+~-J+..*)(1~-Cp-~-)<1+C~-~, 

and the theorem follows. 

In the proof of Theorem 17 we have s 2 k > 3. Hence 

G < c 12x, nx, < c mp, 
P-h m Pin 

since 
)(<~+&i-“<l+Q-~; 

If p n, we have, by (3.13), 

x, < 1+ cp’-;f”Q,, 

14) We owe this observation to Prof. Landau. 
l6 > P. N. 4, 176, (4.14) and the equation five lines lower. 
‘3 P . N. 4, 177, (4. 22). 
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where pp = 1 unless $I k j n, and then pp = 1 + b. Thus 

x,< (l+;)op< (l-;)-cQp? 

n XP < (&jC JhPm 
PlfJ 9% 

The first factor here is less than n& for sufficiently large n, and it is 
proved in the original argument that the same is true of the second. Hence 

G < nE 

for sufficiently large n, the result desired. 

S. 4. Lemma 3. We have 

I& q !  _ -2.. _ 
I Q 

< B q-a, 

(3.42) pl,(m)j < cql-Bu 

for m = 1, 2, 3, . . . li). 
It is enough to prove (3.41), (3.42) being an obvious corollary; 

and it is enough, in virtue of the multiplication theorem I’) for x?, Q, to I 
prove (3.41) (i) when (q, k) = I and (ii) when Q is a product of powers 

of primes which divide k. 
(i) If p + k, we haveI”) 

(3.431) 
s p,paWr ’ - -- --- 

ak+,u I=p 
:p I 

--a-l 2 (pakf,rrjwa 

for 

and 

(3.432) 

for d > 0. Write now 

(3.441 

where Q contains all factors py of q for which r is not congruent to 1 
(mod k ), and q1 is a product of different primes. It follows from the 

mulfiplication theorem and the inequalities (3.43) that 

17) Compare P. N. 5, 49 (Lemma 5). The argument there is simpler. 

le) P. N. 2, 18. 

Is) P. N. 2, 19-21. 

20) Here, and in the formulae which follow, the value8 of the ~‘8, which differ 

from formula to formula, are irrelevant. 
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so that it is enough tlo prove (3.41) when Q = ql. But, if Q = q1 = IQ, 
we have 31) 

I ~Pdh 1 23 

for p1 > B, and so 

] pi 1 -c G < PI-” 

(3.45) 

This is (3.41) for q = ~1 l 

(ii) Suppose that po(k, where 8>0, that 

and 
A=ak+p>k&8+2, O-c&k, 

Then 23) 

where (P, p) = 1. Hence 

The inner sum vanishes unless b’= ph,, when it is pe+l. Hence 

and 

(3.46) 

This equation naturally holds also when A -< k, with a = 0, R = p* From 
(3.46) we deduce 

(3.47) p+pf 

since the last product has at 
disposes of case (ii), and camp II 

=~-“l~,*~ -=-CT, 
P 

most B factors, all less than B. This 
etes the proof of the lemma. 

3.5. Lemma 4. If PI, &, .- . . P $I, is a set of C primes, and Q is 
a number formed from these primes only, then 

(3.51) &Q-C< CC” (6 > 1). 

For 

“.‘) P. N. 4, 173, 
az) P. N. 4, 166, Lemmsl I. 
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3.6. Lemma 6 zx). l%e series C 8, (m) is absolutely convergent 

i or m >O, s&Jc-j-1. Also 

(3.61) ~l%q(m)I < C~~-c(d(m))S 
9>y 

(ek+l), 

(3.62) j G3(m)[ < CY-c(d(m))8 (8 2 k + 0, 

(3.63) 1 G,(m) 1 < cYz-s= (8 2 2E + 1). 

The last result is easily proved, for, by (3.42), 

! @ (m) ( < C 2 I q,(m) j < C 2 ql-ea< CY~--SO 
9 >*” or 

(since 1 - sa < - 1 if s ‘I Sk). 

The proof of (3. Gl), of which (3. G2) is an obvious corollary, is 
much more elaborate. We write 

(3.64) 

where now q’ is the product of all odd factors of q which are prime to k, 
and q1 is the product of the primes which divide q’ once only la); so that 

(3.65). VI 9= ~,,%Jo. 

In each term of (3.61), one at least of ql, qa, Q exceeds Ye ; and if 

Z;, Z$,, Z8 are the sums of the terms in which (i) ql> Y$ (ii) qs> Y;, 

and (iii) Q > Y’, then 

3.7. We write q1 = LIP,, qO = n.p,” ; and we make three prelimi- 
nary observations. First y 

(3.71) Irn,l< cq-C< c 

for all q and m, by (3,12), and in particular when q is ql, qs, or Q. 

Next aa) 
9$(m) = 0 

2 

unless pi-’ I~YL, and a jortiori unless .p,” 1 m9; so that Sq, (m) = 0 unless 

q21m2. From this last remark it follows that not more than d (m3), 
and therefore not more than ( d (m)) ‘, different values of q9 can occur 
in nun-zero terms of (3.61). Finally 

Ba) Compare P. N. 5, 52, Lemma 6. 
s4> Thus, if k= 13 and q = 22-3.58~7aJ1, qr= 11, q2= 72, Q= 2’m3-5’. 
*y P, N. 2, 20; P. N. 4, 170. 
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In particular, taking 5 = +, we have 

(3.721) 2 1% I < Cd(m). 
!A> 0 

We can now write down upper bounds for ZI, Z$, and J$. Consider 
first q. Associated with a given ql, we have at Lost (d (m))’ values 
of q3 ; and ) !Xq, 1 < C, 1 ‘%Q 1 < CQ -‘. Hence the sum of these terms of 
XI is less than 

c(d(m))“j~~~/ZI&-c<c(d(m)!2](IlplI, 

by (3.51); and 
Q 

(3.73) zl < C(d(m))“z j%,,j < CV-~ (d(m))‘, 

by (3.72). 
Q1 >,j- 

The discussion of ZT is similar, but we use the inequality 

I %2 I < %-c- We plainly obtain 

(3.74) Z2 < Cv-c(dCm))’ ~\%,,I < Cv-c(d(m))3, 
Ql>O 

by (3.721). Finally, the discussion of Z3 depends on the inequalities 
used for Z;. We have 

(3*W 4< qdw)Z,r)%q,j 2 cc 
!ll>O 

Q >.p+ 
< C(d(m))3 )7 &-“< Cv-c(d(m))3T 

by (3.51). 
Q>A 

It is clear that ( 3.61) is a consequence of (3.66) and (X 73)-(3.75). 

4. The behaviour of f(z) 0x1 a major arc WI. 

4.1. Our object in this section is to prove 

Lemma 6. On a major arc !Dit, 

(4.11) If-~~,&BEd~x+E, f 
so that 

(4.12) If - %,A < BeqXfE 
if 6 is chosen appropriately as a function of k and E. 
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This lemma may be deduced from the analysis of P. IV. 1, $4 8.1- 8.2. 

Every !!& is part of an 92 (since a, < cc and 1 - ce, > 1 - a), SO that 

the formulae there given may be used. The sums there called Qp and Qi, 
are of the form required, and it is a question only of the m,agnitude 
of Q1. In this sum we have now 

cos%p> Bq%-“ap) 

-1-b b 
Q n (~osy)l+~ > B q-l-bnb(pn-al)l+b = B n’l+b’d > Bnd, 

1 E 1 < Be-BmlSbnS. 

It follows at once that Q1 is also of the form required, and indeed extre- 
mely small. 

If this course were adopted, Lemmas i’ - 11, which are required only 
for the proof of Lemma 6, would become unnecessary, and our analysis 
would be appreciably shortened. 

The objection to this procedure is that it involves the reinstatement 
of the whole of the analysis of 5s 7 - 8 of P. N. 1, which is eliminated 
entirely in L and au ’ s version of the proof. If we are to preserve the 
simplifications introduced by Landau and Weyl, an independent proof 
of Lemma 6 is essential. 

4.2. Lemma 7. I/ 

(4.21) 02 P 

then 

(4.22) / hm I = 
I 

We have 27) 

which proves the lemma when nz = 0. And in 

Lemma 8. Suppose that Osh<q, 

(4.23) x = e-', Y- 4'9, t = $, V- e-y'v+t)"(v + t)'-', 

(4.24) 

-. 
2s) We llae for the moment the notation of P. N. 1, except naturally that, in 

conformity with the conventions laid down in 9 1. 1, we write B instead of A. 

e7) Landau, 1. c, 226 (Hilfssatz 2). 
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and that P(v), P,(V), Pz (v), .*. are polynomials in (v) = v - [v], 
defined successively by 

(4.251) PC > v =v+ l-(v)=v+,P(v)=~gv+ P(v), 

(4.252) PI(v) = s” P(w)dw = c,v + PI (v), 
0 

(4.253) ~~(v)=fP,odw=c,v+P,(u), . . . . 
0 

so that P(v)= 1 - (v’), P&J)= i(v) -B(v)‘, co = 1, c, = $, and in, 1 
general cr is a function of v only. Then 

(4.26) &- =&-l)rc,,~vv”l’dv+ (- I)‘~P@)V1”dv 
p=o 0 0 

This lemma merely embodies the definition of certain symbols, and 
the results of certain formal transformations required for the proof of 
Lemma 6. 

If we define N(x) by 

we have 

Writing u=(vq+h)l,qL(v+t)‘, and observing that N(u)=Y(vj, 
we obtain 

f h = kYrP(v)Vdv 
0 

= kYjPvVdv + kYfp;(v)VdP, 
0 0 

Z kYs*vVdv - 
0 

c,kyjiV’dv-kY~=P1(v) V’du. 
0 0 

This is ( 4.26) with Y = I, and it is plain that the general formula follows 
from a repetition of the argument. 

Lemma 9. If 

(4.27) 

then 

H=W(Y)=W(@y)=$ 

(4.28) 1 Yl < $$- < An-” 

u?t m,. 
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For H < n”lk-l< 1 and 

WI I- 
H1-a =qn l-aiyj <An~-a=An-“. 

4.3. Lemma 10. We can choose v. = v. (k, S) so that 

Since 1 k Y j < A k < B, we may ignore the outside factor. We take 
v =vlk, where 35 > 2. 

We write 
VW r3 e-Y (v+tlk y c 

- k ) m “(’ + t)mg 
i,m ’ ’ 

Every differentiation of the exponential factor of V introduces a factor I’, 
and a term in Y’ can be generated only by I such differentiations together 
with Y - I which do not bear upon the exponential. Hence the term in 
YE is a multiple of 

d (4 dV 
v-z [(v kY)‘( v + l)‘k-” (z+l)], 

and is zero unless (k - 1) (2 + 1) 2 Y - Z or 

Z> v-k+1 
Z -j->v,-1. 

That is to say, Y, is the least possible value of 1. Associated with a 

given 1 we may have. values of ry1 from 0 to (k - 1) (I + 1) . 

It follows that 

< B,, c; Y1z(H-“-C H-(z+l)(l-a,-o) 
1 

Z=Vl 

% 
< Bv,~H%+< Bv,~d-+ < - n 

(by (4.28)), if y1 =v&k,d), i. e. if v=vn(k,6), 
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It should be observed that we can aIways replace vI) (E, S) by a 
larger number of the same type. 

4.4. We understand by & (Y, b) a polynomial in Y and t, whose 
degree in either variabIe has an upper bound of the type l3d and whose 
coefficients have upper bounds of the same type. Since 1 Y 1 < A, 0 =< t < 1, 

we have always I& ( Y, t) 1 < Barn And we understand by R a number 
% 

whose absolute value is less than %-. 

Lemma 11.. We can choose vO = vO (k, S ) so that, in addition to 
(4.31), we have 

(4.41) 

(4.42) kYIo = kYjbdv=T(l+u)Y-a+Q(Y,t)+R. 
0 

We have 

e-Ytk = 
c .--- ------------ 

m, (- Ytky + r 
Wt! 3 

m-0 

if m, = m, (k, S) is sufficiently large; and so 

edytE = Q(Y, t) + R. 

=kYQ(Y,t)(Q(T:t)+R)=Q(Y,t)+R; 
while if p = 1 

EYI; = kYfuV’dv=-kYfVdv=e-Y@=Q(Y, t)+R, 
0 0 

Finally, if p = 0, 
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4.5. We can now prove Lemma 6. We have 

q-1 
(4.51) f= --1-+2~e,(phk)~e~“rr’2/=-l++~eq(phk)fh. 

h=o m-0 h 

It followa from (4.26), (4.31), (4.41) and (4.42) that 

(4.52) f,+=r(I+a)Y-“+Q(Y, t)-t-R 

when Y=Y~. Combining this with (4.U), we find 

(4.53) 

where 

(4.s41) e=~~+ep+e~, &==--1, ee=Z:e,(phk)R, 
h 

(4.542) e3 = J&W) Q  (y7 f )  n 

h 

Now 

(4.55) 

Further, 

Q (y7 ,“, =t:%, l,xkl yz ($)Y Lm 
where I, m, and the coefficients have upper bounds Ba. And 

(4.56) 

by Lemma 7. Lemma 6 follows from (4.53) to (4.56). 

5. Further lemmas preliminary to the proef of Theorems l-4. 

5.1. Lemma 12. I/ 1 x 1 -c I and 

then 

(5.11) Isi4 --c CI&lg+-8a, 

(5.12) 19(z) - r(m)(logyal < c. 

These are known results. 

Lemma 13. We have 
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This is trivial; for, if x= “e,(- p) = e-g, we have v= logi and 

by Lemma 12. 

Lemma 14. We have 

(5.14) 

For the sum is less than 

and 

- 2sa 02 
s 

# 
E +28a- 1 dzc 

84 

----_ I__ - <(, @a-1 
(1 +u2ya 

< A~PQ-~. 
--Qt -m 

Hence, by Lemma 3, 

(5.16) siF,!'dy< CnBsa-+' 
0 

(5.17) 

where 

a --- 
I-- zP( sa- , 2) 

17 ) @ is ultimately chosen in three different ways to suit three different argu- 

me&.. In each case it is chosen aa a function of k and 8 only. We anticipate 
this choice and allow ourseIves to treat p as a c. 
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(i) The integral is 

2n~(~,(m))am2”“-2~xj~m<Cn-c~mZ”‘-”(d(m))0~x~2m 
< cEn-C2m28&-2++y< c$28Q-~iC++, 

by Lemma 5 (3.62). The inequality (5.16) follows if we take E to be 
half the c which precedes it, and then replace c by 2 c. 

(ii) If s 2 2 k + 1, the integral is also less than 

Cr 4--28a 2 mzra -2 1212~<Cy4-2sant’sa-1c= Cn28a-b~l, 

by Lemma 5 (3.63). 

5.2. Our next lemma, which concerns the value of Fp,Q when x 
lies on an arc [, *, requires a word of preliminary explanation. The 
function Fp Q and ‘the arc & 8 are invariant if P is altered by a multiple 
of & , and ‘we obtain the colhplete set of arcs fP, Q, for a given &, if P 
runs through any complete set of residues prime to &* In what follows, 
p, Q , & being fixed, we select for our set of residues that for which 

(and of course P = 0 if & = 1 )* Prom this it follows that 

Lemma 17’“). Suppose that x lies on & and that &,Q is a Farey 
arc other than F, Q. l%en * 
(5.21) f IF~,~'(CN~alpQ-pPj-'a. 

We have 

(5.22) 

where 

(5.221) 

so that / o 

( 5.23) 

by Lemma 

x s 1 x \ e+ = Ixie,(p)e+@= /xieg(P)e-i”, 

-2n($-;)+e, 

iSn+pq< $7~ if N1 2 4. Hence 

~F~,s~=~~(~)8~(~~ie-".')!<CQ-8a~w 

12 (5.11) and Lemma 3 (3.41). 
If p, IT, and P, & do not correspond to arcs adjacent in the dissection 

then 

I2 ( 
n p 

P 
>I > 

4x A- 
l i- 

22 
Q I-+-- 32p1, I- 

I 
- 8tX 

1 

- 

“*) Compare P. N. 5, 52 (Lemma IO). 
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and so 

(5.24) 
Pi A ICC)/ >A,;--i=-----;pQ-qP1, 
&I QQ 

As q 2 N1, (5.21) follows from (5.23) and (5.24). 

This argument fails when the arcs are adjacent. In this case 

ipQ - qPj == 1. As x is not on &Q, 

I I 
A A uI > ‘II _ ..-- j 

QN 1 
QN :r,Q-tP!j 

1 

so that the conclusion still follows. 

Lemma 1P). If 

(5.25) G = r:IFP,Q., 

where the sign C implies summation over those pairs (9, Q) 3 distinct 
frmn (p, q>, for which Q 5 v = nb, and s > k -/- 1, then C 

where 

(5.261) a .~=a(2sa-l)-4p, 

and 1 = l(k, s, S) tends to zero with a; so that 

(5.27) 2 sG”lde; c Cen28a---1-2+F 

4 Pa rl 

if d- 6 (k, s, R> is sufjicienfly small. 

Since G is a sum of less than 9” terms, we have 
--“- 

G2<v2z1Fp,J2< CY"Nf8'zjpQ- qPj+ 

by Lemma 17. Hence 

where now the inner summation is defined by q 2 IV--, p Q - q P + 0, 
and the outer summation by Q 5 Y. But, if Pq E h (mod Q), where 
Osh<Q, we have 

~IpQ-qP~e280< ~‘lmQ+him28a30) <%+-2Q-28~~lm~2sa<A, 
P m=-m 

FO) Compare P. N. 5, 52 (Lemma, 11). 
30) The dash denoting that any term for which m Q + k = 0 ie to be omitted. 
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(5.28) ~~G2~dBi<CyZN:d”-1~~~<C~4~~85-11~g(~~+2) 

t EQ Q 
< Cn@8a-1)(h+k48 logn < ~&28U-1+&tE+t 

where Z= (2sa - 1 j 6, This PROWS (5.2s>. To prove (5.27), we chdm 6 
so that 1 < E, and then replace 2~ by E, 

5.3. Lemma 19. If s~k+l, v=d, and ~-‘<a,, 

ther, 

Here 

(5.33) n . = Min(2/3(sa - I), A& 2 Mk@,, A,), 
R, and A9 being &ined by ( 5.18) and (5.261); 1= 1 (E, s, S) tends to 
xeru with 6; and the second inequality is in each case secured by an 
appropriate choice uf 6. 

IF 1 

(i) We have 

(5.341) 

if qgv, and 

(5.342) 

if q>v* Hence 

(5.35) 

P 

by Lemmas 13, 15 and 18. As A, < 2p(sa - 1) and A3 <A, < 2sa - 1, - d 
(5.31) follows* 

(ii) The proof of (5.32) is similar, but rather simpler. Since 

w a,, q>y on every #I,. Hence 

(5.36) zJjF.J2idel 222 S$“jd+t-2Z SG21deI, 
1nt q>r ;” 4x> 4: 

and the conclusion follows as before. 

491 



24 G. H. Hardy and J. E. Lit&wood. 

5.4. Lemma 20. If $2 2 

so=so(k)= (ik- 1)K+2, (5.41) 

and 

(5.12) 

then 

(5.43) FJ 
ml 

the meaning 0, 

] f,2”id0/ cr: C,n Zsa-1-A4+vkC 
< CEn 

2sa-i-R,+& 
? 

f 1 and of the double inequality being the same as betwe. 

It is known31) that 

;fl< B,ti 
a-;-fE 

on ml. Hence 

where 

(2 8 - 4) (a - 2) + 3a = 2sa - 1 -p, 

which proves the lemma. 

5.5. Lemma 21. (i) Ij 8 2 2k + 1 then 

(5.511) a 6 = Min (I,, 1,> = Min(R,, au), 

and the second i?zequulity is secured by choice of 6. 
(ii) If skk+l then 

(5.521) &= Min(R,, It,‘, = Min (Ad, $), 

and the second inequality is secured by choice of 6. 

a1) Landau, 1. c. 230 (Hilfamtz 4). 
a2) See P. N. 2, 164~; Landau, 1, c. 241. 

492 



Some problems of ‘Partifio Numer~rum’ (VI). 

We have 

If”-~“j3<A,jf-~~2”+A,If-~~2/p71*8-2, 

(5.53) ~SIf”-~~/eIdeI<AsZ1S!f-~i861de1 
% at1 

+A,~‘SIf--p,l”Ip,188-21~~I=A.e~+~Be9~ 
% 

say, Now 

] f - y/ < Be,dqx+s< B, ¶ dn~++EJ< B, , 6n”(“+“) 

by Lemma 6, and so 

by Lemma 14. Now 

2sax + 2a - 12 2sa - 1 

de 1 < CE,d n28ax+8G--1+e, 

- A 4 = 2sax -4ax+2a 

25 

if 4a x < 1, which is true (with inequality except when k = 3). Hence 

(5.54) & < CE, d n28a-1--b~+E. 

Again, using Lemma 6 once more, we have 

- 
Now 

] hw 
I Q 

by Lemma 3, and 

(as in the proof of Lemma 15). Hence 

(5.55) g3 < cE, a +(8-1)-1 )7 q2x+1-2a(e--1)+&, 

qsn”l 

and so also, replacing q 2w+e by its upper bound TZ~~++E) 

- (5.56) es < Cf,an 2U(8-1)-iid&K+E 2 9 1--Z(8--)e 

q~?e 

In order to establish the complete lemma it is enough, after (5.54), 
to prove that 

(5.57) @* < Qs, a ~28a--1--2afe (s22Ic+1) 

and 
3a 

(5.58) & c &an 
5!8a--l- K +E 

(8 2 k -+ 1). 

Now 2x+1-2a(g-1)<3-4&=-l if s>2k+l, and then 
(5.57) follows from (5.55). Finally, we may replace u, by a in (5.56); 

493 



&J(j G. H. Hardy and J, J1:. Littlewood. 

observing then that l-22cc(s-P)<l-2uk=-1 when s&k+l, Z 
(5. 56) gives 

sag-y +& 
0 3a zag--- 

& -=c CE, 6 n logn < CE,dn 
K +’ 

3 

which is (5.58). 

6. Proofs of Theorems 1- 3. 

6. I. Proof of Theorem 1, We have 

say. Upper bounds for all these sums have been found in the preceding 
lemmas. Thus, when 6 is chosen appropriately, we have 

(6.121) J1 < C,n 
23a-l++-& 

(8 2 2k + I>, 

(ti.122) J1 < QEn2sa-l-;-g+& p 2 k + l), 

by Lemma 21; 

(6.13) (s 2 JG + 1) 

by Lemma 19 (5.31); 

by Lemma 20; 

(6.15) J 
4 

< C n2sa-l-~3+~ & (s 2 k + q, 

by Lemma 19 (5.32); and 

ts* 161) J6 < C+a-1-& (s 2 211: +1>, 

(6.162) J5 < Cn2ga-l-Y (8 2 k + I), 
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by Lemma 16, y being the particular c which occurs in that lemma. 
Hence, on the one hand, 

(6.17) &G(o (m))” < CE98a-1-I.+e 
tPS=l (s22k+l), 

(6.172) 2, = 2B(sa - 2), 1,= 42s~ - 1) - q?, 1, = g(s - so), 

and on the other 

(6.18) 

where 

(s 2 k -j- l), 

(6.181) A’= Min(y, A,, A,, 1:) =Min(y, 2B(sa - l), A,, 1,, Ai), ti 

The inequality (6.17) l s 1 much better than (6. 18) when it is valid, 
that is, when s > 2 Ic + 1; and it is essential to the proof of Theorem 4. E 
But (6. 17) is not valid for s > sO when k: = 3, since so = 4, 2 k + 1 = 7 ; 
and we therefore use (6.18) in proving Theorem 1. 

We note first; that s,>k+l; for if k=3, sO=4, and if k>3, 

s,> 2”-‘+2 > k+l. Hence (6.18) holds for s >s,. Also 

2~(sa--I>~2aj9, IZ,=a(2sa-l1)--4~>a-4~, &&$ 

If we take p = i a (and suppose 6 small enough to Secure that /3 < a,), 
2a 

the numbers on the right hand sides of these inequalities are 2, ia, -* . 

All these numbers are c’s (indeed independent of s>, and so is y+ Hence 
we may write c for 1’ in (6. 18). If finally we chose E appropriately as 

a function of k and 8, we obtain (1.22), and the proof of Theorem 1 
is completed. 

6.2. Prod of Theorem 2. If 

(6.21) S>S,= Max(r(k), 4) 

then, by Lemma 2, 

(6.22) 

Now ($k - 1) K + 3 2 4k 2 r(k) except for k = 3 and k = 4, while 

(i k - 1) K + 3 = 5 p- 4 = r(k) for k = 3. Hence (6.22) is true in all 

cases considered in Theorem 2. 
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If r(m) = 0, then lo(m)/ = e(m)> Crn80-? If then ,u(@ is the 
number of non-representable numbers between in (exclusive) and m jin- 
elusive), we have 

and so 

$u(mf> c($2)-p(?2) 

p(n) < c228a-2n2-2~ai,(a(m))2< Cnl-c, 

by (1.22). 
is therefore less than 

The total number of non-representable numbers less than n 

cd-++ ($)1-c+(~)‘-c+.*.) <Cd-c. 
This proves Theorem 2. 

6.3. Proof of Theorem 3. When k = 4 

(;k-l)K+3=11<16=r(k), 

and the preceding argument fails. In this case the conclusion of 
Theorem 2 is false. 

suppose that 

s = 15, f>O, -&<rn~n, 
and write 

m m’ I (16’-+m), m = m” (16’1 m). 

Further, suppose that a zero suffix attached to a number implies that it 

is not representable by 15 biquadrates, and that p (n), p’(n), p”(n) 
are the numbers of the classes m,, mi, m{. 

We have 33) 

(6.31) p(m’) > A,(m’)’ 

+n 

(6.32) p (n) = #+> i- tLYn 

35) P. N. 4, 179. 
=) We we a momentarily for an 

,) < n(A,ra-+ 16-‘). 

indicial A (d. e. an absolute c). We may 
plainly svppose a < 1, 
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If y(n) is the total number of non-representable 

then, by (6.32), 

numbers less than n, 

-.“--A,p+ 2.16-’ 
21-L 1 

by choice first of t and then of n, This proves Theorem 3. 

7. Proof of Theorem 4, 

7. 1. We denote by 

N!g (4 = Nk ,@> 

the number of distinct numbers not exkeeding n and representable by s 
or fewer positive k- th powers, and by 

Y&)=Y, ,(n)=n+l- Nk , , Jn> 

the number not so representable; and by 

#* = % Ck> 

the largest number [ such that 

N,(n) > C$-& 

for 782 no@, 8, E). It is plain that cly exists, does not exceed 1, and 

is a non-decreasing function of s. Also, as there are [ na] + 1 k- th 

powers which do not exceed n, we have as > a for s > 1. Z 

Lemma 22. We have 

(7.11) a,2 I- (1 - 24(1- q2 (s 2 2). 

First, suppose s = 2. Then (7.11) is a,, > 2 a, and is an obvious I- 
deduction from the formulae 

we may suppose then that s > 2. 

We divide the interval (1, n> into the n = [n&l parts 

(l”, 2’), (a”, 3”), + l ., (I?, n> 

(of which the last may disappear). We denote the interval beginning at 

j” by $, and its length by Zj. Then Zj > kj’-l, except possibly for the 

last interval. If then we consider in particular the intervals $ included 

in ($ n, $ n), it is clear that there are at least Bna such intervals, and 

that each of them is of length greater than Bd-a. 
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In (0, Zj) lie N,_, (Zj) numbers representable by 8 - 1 k- th powers; 
and 80 more than N,-, (B&-a) such numbers. Adding each of these 
to p, we obtain more than AT#- 1 (BP+=) dz'stin~t numbers, lying in ‘j, 
and representable by s E-th powers, It follows that 

and therefore that 
N,(n) 2 Bn” dv,-, (Bnl-“), 

From this (7. 11) follows by induction. 

7.2. For the proof of Theorem 4 we work with a new value of the 
number /? of 5 6, viz. 

B 
2sa- 1 Z- 

2s ’ 

observing that the necessary condition p < a, is satisfied if 29s < 1, which 
is certainly true if 6 is sufficiently small. This value of makes 

(7.21) d 1 
E R- 

(2sn -l)(.W-2) 
2- 

--.- - _-. - _--_ b 
S 

We denote now by Iz = Rs = R, s the number defined by (13.17 I j and 
(6.172) when 6 has its new valie. 

Lemma 23. If 

(7.23) v,  (nj < c&-A+e l 

The proof is similar to that of Theorem 2 (§ 6.2). If m is non- 

representable 

(a.(m))’ = (r, Cm) - e,(m))2 = (I,)” > CrnzBa-‘, 

L~DUM 24. Suppose that 3 satisfies (7.22). !l%en if R, > 1 - a,* t 
and therefore certainly if 

(7.24) VU - 2 a) (1 - aje’m2 (5’ 2 2) 

we have 

(7.25) . G(k) Is +a’. 
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In fact, if n is not representable by s + s’ powers, there are at least 
Ngf (n) numbers, not exceeding n, which are not representable by s powers. 

That is, 
Y8(n) 2 Nsf (n), 1 - A, 2 a,’ 

in contradiction with the hypothesis 1, > 1 - a,‘. 

7.3. We are now in a position to prove Theorem 4. The case 
E = 4 is exceptional, and we suppose first that k > 4. We shall verify 

that numbers s and s’ exist which satisfy the conditions 

(7.31) s+d=($k-- 1)K+k+5+[:,1; 

i7.32) s 2 r(k), skZk+l, s>s(), - s’> 2; 

(7.33) 1, > (I - Za)(l - .y’-“. 

We shall prove that these conditions are satisfied by taking 

(7.34) s=(~k-l)K+k+l=~O+k-I, g’=[t,]+4. 

In the first place, these values of s and s’ satisfy ( i. 31). Next 

(7.35) 8, > $k - 2)zE-’ > 2k-3 k>4kzMax(r(k),Zk+l). _ 

Thus the first three inequalities (7,32) are satisfied. Also 5, is positive, 
since its numerator is 

log -2 +>o; 
and so the last inequality (7.32) is also satisfied. It remains only to 

verify (7.33). 

When we substitute the value of s from (7.34) into (7.21) and 

(6.172), we find 

R _I = ___ -.----_---~ 
1 R a 

(2s,+k-2)(s,-k-l) n 20-q 2 get 
k2p+k-l) ’ 4 = K ’ 6= l 

Of these numbers, the least is R, . For it is obvious that R, < &; and 
s,z4k+l if kk5, so that 

Hence i = i,, and it is only necessary to verify the inequality 

(7.36) 1=1,=2a(k-1)>(1 - 2a)(l -a)[C’1+2. 

This is 
t$kl+z (k-2) K 

’ 2(k--l) 
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(7.37) 
[[J + 1 > (k-2~1QR2-logk+log(k-2). Elk 

logk-log(k-1) 

which is true. Hence (7.33) is true3&). 

74 . l It remains to consider the case k = 4; here [c,] = 2 and we have 
to prove that G(4)s 19. The difficulty is that so+ Ic - 1 = 13 < r(k); 
and thiEt difficulty 
and s’. There are 

cannot be overcome directly bY another choice of s 
two alternatives. 

(i) We may consider each progression Z (mod 16) separately as 
follows. Let y8 I (n> be the number of numbers m G 2, not exceeding n, 
and not represintable by s fourth powers; and &it (n) the number of ‘.I. _ _ 
distinct numbers m E Z’, not exceeding n, and representable by s’ fourth 
powers. 

It may be shown, on the one hand that 

(7.41) p(m); >A (s=so+3=13, m+o, 14,15) 

and so 

(7.42) v, I l(n> < A&-“+ (qa 14,w; 

and on the other that 

(7.43) N,), lf (n) > A, nCL&‘--E , 

where a## satisfies (7.11). Suppose now that arbitrarily large numbers 
n E 1 are non-representable by 19 fourth powers. We take s = 13 ? s’ = 6, 
choosing 2’ so that 

z-z’+o,14,15. 

Then the argument of Lemma 24 shows that there exist at least A&l 2’ (u) 
numbers m, less than n, not congruent tm 0, 14 or 15, and not iepre- 

sentable by s’ fourth powers. Thus 

and so 
1 - 

But this is false, since calculation gives 

The proof of (7. al), however, reopens the question of the arithmetic 
of the singular series, which we do not wish to discuss here. 

fore adopt a second alternative. 

33) It 
of 8 +.a’. 

may be that no other of 8 and 8’ Ieade to a 

We there- 

500 



Swe problem8 of !Pa,rtitio Numerorum’ ( VI). 33 

(ii) We take the pair of numbers s I--- 15, 5’ = 4; it happens that 

we can, by a special device, suggested to us by Mr. A. E. Ingham, prove that 

Y, (n) < A,r~l-~+& 

for s = 15, and this proves to hbe sufficient for our purpose. 

Let rt (t ) be the number of numbers m for which (i) 16t 1 ry1, 

(ii) 0 < wz < [, (iii) m is not representable a% a sum of 15 fourth 
powers. If now in < m < n and 16 +- nz, we have3ja\ / 

Q(m) > Am: > A&L An&*-l; 

and, if also m is non-representable, 

Hence by (6.17) 38) 

whence 

(7.44) z. (n) < A, nkL+& . 

Now a number m = lstm is representable as a sum of 15 fourth 
powers if and only if m’ is so representable. Hence 

and so 

y4,15 (n) = zrt(n) = 2 z. (w16-‘) < AEn’-i+E, 
t=n t=o 

by (7.44). Now 

(15-2)(15-8) 15-N 1 5 
-m-’ 2 = 16’ -4 

and 

1 - 2a) (1 - ay 

if s’ = 4. Our former argument therefore applies to show that 

G(k)s15+4=19; 

and the proof of Theorem 4 is completed. 

Ilblr) This is the epecial cage of (6.31) in which t = 0. 
3u) V&d since 15>8=2k. 
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8. Proof of Theorems 6 -9. 

8.1. In this section we use the Farey dissection of order N,, = [n1-3u], 
the major and minor arcs being defined by 4 < na and Q ; na, and a 

being a number of type c, which will be chosen small enough for our 
purposes. It is plain that, if ti is small enough, every major arc 9X9 is 
part of an 9X, and tz fortiori of an ‘92. 

We return to the anilysis of 6.1. We take (6. 11), replacing !!I&, m, 

by 9X,, m,, and we have to show that each of the terms J.. , Jo, J3, J4, J5 
is less” thin C+a-l-c. An examination of the argument shows that, 

except in respect of J3, it requires very little alteration. 

(i) The term J5 is disposed of by Lemma 16, and no further dis- 

cussion is necessary. 

(ii) J1, and J4 are disposed of by (6.13) and (6.15), each of which 
depends 0; Lemma 19 (and so on Lemmas 17 and 18). The result of 
Lemma 17 stands with Ng in place of A$; and (5.28) is replaced by 

\‘SG’Id8, < Cv4N;‘a--llog(N,+2) 
s 

< Cn (l-3 u) (2stz--1) + 4p logn. 

This is plainly of the form required if p is chosen sufficiently small. 

The other sums which appear in (5.35) and (5.36) 3.7) present no 
difficulty. The first sum on the right hand side of (5. 35) is disposed of 

by the trivial Lemma 13 ; and the second, and likewise the corresponding 
sum in (5. 36), by Lemma 15, which is still. available. We require only 

that Q > Y on every n-t,, and this will certainly be so if /? < a. 

(iii) J1 is disposed of by (6.121) or (6.122). Here we use the 
latter inequality and observe that it is true a forliori for arcs 9X?. 

Thus each of the terms J1, J,, Ja, q5 is of the form required. This 
could naturally have been proved iore simply, had we been working from 
the beginning in terms of the dissection we are using now. 

8. 2. It remains to prove that 

(a. 21) 

It is here only that we use Hvpothesis X. *r 
If 18 < a, as we have supposed, and x is on an 1st,, then either (i) it 

is on an m, or (ii) it is on an 9X, for wlaich Q > Y. In case (i) 

(8.22) j f) < BEna*+& < CTP-~ 
-__L_ 

a7) With %R,, m, for YR,, m,. 
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on fixing E; and in case (ii) 

on fixing E once more. 

This completes the proof of Theorem 6. Theorems 6 and 7 require 
no further proof, the first following from S as 2 followed from 1, and 7 
being merely a restatement. 

8.3. In proving Theorem 8, we revert to the method of P. N. I. 

We have 

(8.31) 
1 f” r,(n) = g-i Jz s 

>qpix 

say. We prove first that 

(8.33) 
I 
IS j 

Taking S, first, we have II 

]X,i <AxJ/fjsjdOI < C~‘e-2E”a-c’~~jflaL/d~/ 
m2 m2 

by (8.22) and (8.23). Arguing as in 5 8.2, we find 

1 S, j < CEn8a-1-cC+E < Cnsa-l-c. 

This disposes of S2. That S, is of the form required is obvious; 

it is in fact less than C (as in Lemma 13). As regards Sz, we have 

if”-qq <AsIf- VI”+A,If- d ivy 
r= cEnsax+s + cEnaxSE 1 y I-ab-1) 
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(since every !I& is part of an !!I&). The first term here contributes less than 

when E and cc are chosen appropriately. Alld the second term contributes 

less than 

This completes the proof of (8. ~3). 

3.4. The proof of Theorem 8 is thus reduced to a proof that 

We write 

7 being, as in P. N. 1, the arc of r complementary to 6 (or !%!, I* 

On 7, 101 >F$-, and so 
2 

since ea > 2 and a is a c. 

Finally 

S 6 
z=z (g fis=-l 2 (~-~)3e,(-np)=n”.-‘(~(n)-e,(n)) 

p,qsna 

(the Y of Gz (n) being now v). Hence, by Lemma 3 (3.313), (8.42), 

and (8.49, 

s 6 C nga-1 G (n) --i- 0 (@a-l--c) + 0 (n8a-l-cl(85-9 = es (n) + 0 @pa-l-c); 

which cordpletes the proof. 
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8.5. Theorem 9 is an obvious corollary of Theorem 8. We conclude 
the memoir by showing that when, as is usually the case ‘j8), r(k) < k + 1, 
Theorem 9 may be deduced in an elementary manner from Theorem 6. 

We know that 

$r,,,(m) - Bn. 

Hence, if Hypothesis K is true, there are more than B,d-& numbers 
less than n and representable by k k- th powerP). If n, is such a number 
fess than n, and n is not representable by 2 k + 1 powers, then none of 
the numbers n - n, is representable by k -+ 1. That this should happen 
for an infinity of values of n would plainly contradict Theorem 6. 

See P. N. 4, 184, for an analysis of the exceptional 

In fact, in the notation of 8 7, l;lS= 1 (0 k). = 

( Eingegangen am 18. Juni 1924.) 

cases. 

CORRECTIONS 

In the last displayed formula but two on p. 32, read vv, l-z’(n) on the right. 
p. 10. Jn the second line of the proof of Lemma 2, read s = 4 in place of k = 4. 
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SOME PROBLEMS OF “PARl’ITIO NUMERORTTM” (VIII) : 
THE NUMBER I’(k) IN WARING’S PROBLEM 

By G. EL HARDY and J. E. LITTLEWOOD. 

[Received 28 April, 1927, -Read 10 February, 1927.3 

1. Introduction. 

1 , 1. In this memoir we continue our researches concerning the 

number F(k), some of whose properties were developed in the fourth and 
sixth memoirs of the series t  l 

In 5 2 we give a formal prdof of what we have stated before: concern- 

ing the arithmetical interpretation of F(k), viz. that F(k) is (except when 
k = 4) the- least humber s such that every arithmetical progression con- 
tains an infinity of numbers which are sums of at most s positive k-th 

powers. 
In 5 5 3-5 we are concerned with upper bounds for F( FE). Since each 

of k+l and I’(k) is a lower bound for G(k), it is of interest to determine 
completely all cases in which I’(k) > k+ 1. Our earlier researches left 

little doubt which these cases are, but an exact proof that F(k) < k+l 

t G. Ix. Hardy and J. E. Littlewood, “ Some problems of ‘ Partitio Numerorum ‘: (IV) : 

The singular series in Waring’s Problem and the value of the number G(74 “, Math. Zeit- 
shrift, 12 (1922), 161488 : and (VI) : “ Further researches in Waring’s Problem “, itlid., 

23 (19251, I-37. We refer to theac memoirs as P,‘N, 4, P.N. 6, Some errors in P.N. 4 are 

corrected in P.N. 6, but the main results of P.N. 6 will not be required here. 
We assume that the reader is acquainted with the ideas and notation of P.N. 4, but, for 

the sake of clearness, we summarise the principal results, so far as they are relevant to our 

present purpose, in ,lj$ 1.2-l. 3. 
We may add that I‘ P.N. 7 “, which is still unpublished, contains an application of our 

a&hods to the problem of the order of magnitude of the difference between successive primes. 

We prove (subject to our generalized form of the Riemann hypothesis) that 

1928, 4 (with J. E. Littlewood) Proceedings of the Londorn Mathe- 
madica2 Society, (2) 28, 518-42. 
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in all others was lacking ; and this we now supply, the key to the proof 

being contained in our present Theorem 3 (Q 4). 

In the cases which were formerly the main obstacle, however, we 
now find that we can prove I’(F). < k as easily as l’(k) < k+l. We 
are naturally led to attempt to determine all cases in which I’(k) > k, 
and this, we find, involves the solution of a further problem, to which 
the key is <Theorem 2 (5 3). This theorem, like Theorem 3, is difficult ; 

but the trouble involved in proving it is not wasted, partly because the 

theorem has a certain intrinsic interest, and partly because the lemmas 
on which it depends are important in the actual calculation of r(k) for 
particular values of k. 

In $ 5 we prove Theorem 4, which shows that l?(k) < k except in five 
standard cases, in each of which r(k) is determined explicitly. To these 
five cases we add a sixth, in which we can prove that r(k) = k. 

Finally, $ 6 is concerned with questions of numerical calculation. 

1 . 2. It is convenient to insert here a brief summary of the notations 

and conclusions of P.N. 4, so far as these are directly relevant. It is 
assumed there that k > 2, and we shall suppose this here also, except 
where the contrary is explicitly indicated. 

The singular series is 

S = S(k, s, n) = 5 A,! 
q=l 

where A 1 = 1, A, = A#, s, n> (* > I), 

S,,, being a generalized Gaussian sum and p running through values less 
than Q and prime to 4. Here A,,+ = A&g if (4, q’) = 1, so that 

where m is a prime and 

X= = 1+&-)-A++... = EAh,. 
A 

WW series and product- are absolutely convergent for s > 42 (except for 
k- 2). Given k and 25, we define 8 and + by 

=elk§P @ = 0+1 (m > a), q5 = e-t2 b= a, 

t In PX, 4 necessities of printing compelled US to write - ;t~ T. 
$ PX 4, 176 (Theorem 3). 

g z[ymeans c4 x is a divisor of y ” ; x”ly means “ xv is the highest power of x which 

divides y ’ ‘. 
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and we sometimes write p for a? We have + < k, except t when 
k = 4, zr = 2. 

We denote by 

NI I+, v) = N(m”, v, s) 

the number of primitive solutions of 

i.e. the number of solutions for which 0 \( xp < sx (r < s) and not every 
xr is divisible by m, If (&)@I 1~1 then8 

where B = 0 if ,B = 0 and B > 0 if p > 0. Thus in all cases X= > 0. 
We denote by y& = &(k) the least number ‘yn such that 

fors>mandalln,andby ym = r,(k) the least number m such fhat 

xw >, h, = h(k, s, m) > 0 

for s 2 ‘yy1 and all n. Then & = yV except when k = 4, m = 2 (when 

y; = 15 and ya = 16)l). Our number r(k) is defined by 

r(k) = Max y-. 
w 

In order that X= > & > 0 for all n, i.e. that s 2 ym, it is sufficient 
that xw > h, > C for all suftjciently large TZ. The necessary and 
sufficient condition for this is that 

for all n71, in which case N(&, n) > 0 for h > $t f. 

1 I 3. Much of our analysis depends on a particular division into 

classes of the residues fo modulus p- We suppose that m > 2, SQ that 

__c__AI--f_____ _--_- - - - - - _ .  ----?.---____lt 

+ P.N. 4,178. 
$ Not wq7L 

§ P.N. 4, 166, Theorem 2. We do not ueed here the rtcfurtl vslus of B when.6 > 0. 
11 P.N. 4, 178 (Lemma 19). 
V P.N. 4, 178 (Lemma 19). 
1 f This is & particular consequence of P.N, 4, Lemma 5, 
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(f) = O+l. We write-t- 

k- .- d k* = &ko, 

where t? = (k -*, a-1) = (a-@k, a-l); 

a m-1 an a- -- E ’ 

~0 that (ko, d) = 11. Finally we write 

d-1 
c = c, = c,(k) = - 

d-1 
=-I e+1= d +1, 

and we divide the residues into c classes Co, Cl, . . l , Cc-1 as follows& 

If G is a primitUive root of p, and % is prime to P, we have 

7+, G G%h+e (mod p), 

where 

m. has one of the vrtlues 0, 1, . . l , d-l, and e one of the dues 0, 1, . . . . 
qO-l. The d values of no which have a common e we class together in 
the class 

c: (8 = 0, 1, l - . *  +0-u, 

and we denote a typical member of the class by a:, These & classes 
contain all residues prime to p. 

Next, if 1~~ is a residue for which ~~1 mi, where 0 < i < +, we can 
write 

32; s m’Ni E a’(j!“iqi+’ (mod p)t 

ryci runs from 0 ta d-l, and e from 0 to &-1. We thus define + 
new classes 

cg (e = 0, 1, . . . . &-1) 

of members at. Finally, the residue 0 is the sole member of SI class 
C+ 

0* 
The total number of classes is c, and we may denote them, in the 

t We did not UWI the Bymbol k* in P.N. 4. 

$ To fix ideas, we give the examplas : 

k = 34, w = 3, 8 = 0, + = I, p = 3, k" = 34, E = 2, d = I, ko= 17; 

k = 34, v  = 17, 8=1, q=2, p=289, k" =2, E= 2, d = 8, k,, = 1 ; 

k = 34, w =103, 8 = 0, tp = 1, p ==103, k* = 34: E = 34, d = 3, k" = 1; 

34 = 30. 2.17 =17'1 2 .I =103O. 34 *I. 

fi A misprint, Cc for Cc-l, runs through # 5.4-5.6 of P.N. 4. 
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order in which they have been defined, by Co, Cl, . . . , CE--, and typical 

members by Q, ‘al, . . . , ‘C-1, 

The class Co, which is particularly important, consists of the residues 
of k-th powers prime to m. In particular, 1 is an a~. Any two Q’S are 
incongruent (mod p), and therefore incongruent (mod m). The product 
of an au and an a, is an ar, and aoa,, where CI)- is given, may be identified 
with any Q~ by choice of %t. 

One additional remark will be useful, Throughout P.N. 4 we sup- 
posed that k > 2. But our analysis of the classes does not depend on 
this assumption, and is equally valid when k = 1 or k = 2. Thus when 

k = 1 we have 8 = 0, # = 1, 8 -1, d = a-1, c = 2. There are two 

classes, Co consisting of all residues save 0, and C, consisting of 0 alone. 
It is, in fact, obvious that all residues save 0 are representable by a single 
first power to m, and 0 by two. 

I . 4. We shall require, besides the ideas summarized in 5 5 1.2-1.3, 
a number of propositions which we state here as lemmas. These lemmas 

are either contained substantially in P.N. 4, or are easy developments 
of propositions proved there. 

LEMMA 1. If d > 1 uje have 

Iho I_ 0 (mod p), 

the summation ext8nding over every residue of Co. 

since G+o is an Q different from 1 and therefore: incongruent to 1. 
(mod m). 

-b For all this see P,N. 4, 180-181. The point of the incongruence of the &s iti not made 
explicitly. To establish it we observe that if G is a primitive root (mod p) it is a primitive 
root (mod w). Hence from 

GmO*o E @“‘+O tmod w) 

we deduce successively 

(mo-m;)qo ii 0 (mod m-l), 

mo-m; s 0 (mod d), 
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LEITMA 3. Every residue (mod p), except 0, is representable (mod p) 

as the sum of at w2ost c-l U& rind every residuJe by c. Tbis is true 

for k>2. 

When k > 2 this is contained in P.N. 4, Lemma 21, and the result 

is valid for k = 2 (see the end of 5 1 . 3). 

LEMMA 4. If 1 
sentable by at ‘YPLUS t 

c ad 

then 

p(d) is t72.e number of classes repre- 

(1 l 41) &+I) > mill {p(c’>+l, c1.t 

If (I . 41) is fake for cl, then 

a’+ 1) = P(C’) < c. 
Suppose that C* is a typical class of tha &?> classes, and that C, is a 

c* . If all is any member of &, ar--+- 1 must belong to a C*, since no new 
classes are representable by c’+l aok. 

Similarly (cL~+ I)+ 1 = 0[,+2, aT+3, .,., and so all residues, belong to 

some C*, which contradicts ,u(c’) < c. 

LEMMA 5. If dl ) d md d, > I, then the residue 0 is representable 

(mod p) by dl QO’S- 

This is proved in P.N. 4, in the cowse of the proof of Lemma 21. 

LEMMA 6. If  m > 2 and k = k/ko, then 

yww < 3 (k < a), 

yw(k) = ywo (k > 2). 

(i) Suppose, first, that k = dc > 2. Then $j C, d, and I/Q are the 
same for k and k, and the classes Co for k and k, are identical since 
each consists of the residues 

G’GJlo (7~2~ = 0, 1, . . . . d-l); 

which proves the second resnl tI, (The proof is valid for =rll k.) 

t Compare P,N. 4, 183, where we prove that 
v(c’+l) &nin (y(c’)+l, c-11, 

+) being the number of representable cltbsses exclusive of Ccm2 (the class consisfing of 0 only). 

511 



(ii) Next suppose that k < 2. Then plainly 8 = 0, + = 1, and we 
have to prove that any residue (mod XT) is representable by at most three 
k-th powers. We have pointed out already (in 0 1 . 4) that, when 
k = 1, two are sufficient. When k = 2 we must have 8 = 0, + = .I, 
8 = 2, and c = 3, so that our conclusion follows from Lemma 3. 

0 i m = 2, 8 = 0, then ya = 2 ; 

(ii) m = 2, 0 > 0, then ‘ye = a’+‘; 

(iii) ‘cir > 2, E = a-l, then ym = zP1 ; 

(iv) ‘GJ > 2, E = *(m-l), then yw = $(m’+‘- l), except in the 

case a=3, 8--O (when y-=2). 

See P.N, 4, Lemma 22. The exceptional case in (iv) is there omitted 
by inadvertence. It aIrises from the failure of 2 < c- 1, implicitlJr 
assumed, and true in general. 

LEMMA 8. If 

(i) k = 2@, 0 > 1, then r(k) = 2e+2; 

(ii> k = 2@3, 0 > 1, then F(k) = 284g: 

(iii) k = d(a-1) a> 2, 8 > 0, fhen r(k) = a%+1 ; 

(iv) k = &&(a-l), m > 2, 0 > 0, then I’(k) = #(m’+l-l). 

See P.N. 4, Theorems 6, 7, 9, 10. 

LEMMA 9. If 6 = (a- 1, k) and 

then I&,wI \( @-1)l/~* 

See P.N.4, Lemma 13. If 6 = I the sum vanishes. 

LEMMA HI?. If x,(p) is a chamcter (moda), K’ a K for dkh sf is 
did&i& wit71 the principal charncter xl, and 

- -  _- - -  - - - - - - .  - - - -_ I I___- - - - - - -  --P.-- ,+--.-+.----_-___L 

t The xK will not be oonfused with the xw of Q I, which do not occur again. 
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These propositions also are included in the statement or proof of 
P.N. 4, I-mnma Ii-L The nnmber of the K’ is E --I (EN. IV, Lemma 7). 

2. A Tit hm2etica.l ~sograssions. 

2 . 1. Xn this section we prove 

THEOREM 1. TIM n.ecesswy and su#%cient condition that every aritb 

ww!ical progression should corztnin an i@nity of numbers wh’t’c71~ a,re sums 
of s posl’t.ive k-t h pouxrs is 

s > r(k), 

except tidier2 k = 4, in ,which case it is 5 2 15. 

The materials for the proof aIre contained in P.N. 4. We suppose, 
first, that k # 4. 

(i) Suppose that ts 2 r(k). Since 5 2 y=, the congruence 

is soluble to any modulus d (for h 2 $ and therefore for all A), and 

therefore to any modulus Q. If x1, x2, .* l , x$ is a solution, then 

for every 972, so that the progression NQ-+n contains an infinity of 
numbers of the form required. 

(ii) Suppose thalt every arithmetical progression contains numbers 

representable by s k-th powers (and that k # 4). Then for any ZF, n there 

are numbers &IZ+~Z representable by s AAh powers, and the congruence 

is soluble. For each of the values n = 1, 2, . . . , ,9 the solution is 

necessarily a primitive one, since otherwise n would be divisible by 

d, and so by a++‘. A fortiori there is a primitive solution of the 

congruence 

for each of these values of 12, and since now n ranges through all residues 
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of the modulus we have lV(p, n) >r 0, and so s 2 & = y-. Since this 
ie true fur all w, we have s 2 r(k). 

The argument in (i) fails for k = 4 because yW and yW differ’ when 

w = 2. We have, in fact, y2 = 16, y; = 15, while 

for every other m. It is y& which is relevant in the argument (i) here, 
and every progression is permissible when s 2 X5. On the other hand, 
consider the progression 16m+ 15, No number of this is representable 
by fewer than 15 fourth powers, and s 2 15 is necessary. 

3. A theorem cone the case 6 = 0. 

3 . 1. Our main theorem in this section is 

THEOREM 2. If  k>:2, t9=0, d>I, then 

The principal difficulty lies in the representation of the residue 0 

(mod a), aid the essential lemma is 

LEMMA 11. If m > 2, 8 = 0, then the residue 0 hcts a representation 
by at most s IQ’S wheneaer 

If =l, a==-1, c= 

G = 2, “d = $(a-l), c = 3, 
2, and 0 is representable by 2 u/s. If 

and it is representable by 3. These cases (in 
which the main inequality is nugatory) are therefore trivial, and we may 

suppose that 6 > 2. 
Let N+l be the number of solutions of 

x = i xf E 0 (mod a) (0 \( xT < a), 
r=l 

One solution is given by xLtr _C 0 for all T, and so what we have to prove is 
that N > 0. Now Ze,(pX) has the value a-l if X E 0 and the value 

-1 if X +O. Hen& 
w-x 

ZS ;,Tu = c 2 e,tpm 
P p xr=o 

= tN+l)(a-1)-(d-N-1) = (N+l)p-ma, 

(3.11) 
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NOW 8 = (a-l, k) = q 

and so, by Lemma 9, 

= c (m- l)+ c (-1). 
d E yk xk g Yk 

Given II: + 0, there are just 6 y’s for which yk _c zk. Hence . 

(3.13) zpp,,I” = { l-+(a-l)}(a-l)- {m~-1-E(m-l)} 

= (e-l)a(a-1). 

From ( 3.12) and (3 . 13) we deduce 

(3.14) 2p*,,p< ‘((v-l)~~}~--2q &/a = (e-l)‘-fCJqm-l)* 

It then follows from (3 . 11) that N > 0 whenever 

d -73 > (e-1)s-1 &(a-l), 

and a fortiori when &-1 >, (e- l)s-l &, the inequality of the lemma. 

3 . 2. There is a companion result for residues other than 0. This is 
not required in the proof of any of our main theorems, but it is essential 

in the calculation of special values of F(k), and has a certain independent 

interest. 

LEMMA 12. Suppose that t3 = 0 and n * 0 (mod m)m Then n 72~s Q 

represetltation by at most s m’s whenever 

s> I, m > (e- l)W- ‘1. 

As in Lemma 11, we may suppose G > 2. V\/‘e have to prove that 
N ‘> 0, A7 being now the number of solutions of, 

X-n (moda), O<g,<a. 
Now 

(8.21) ~s;,,Gk-~P) = ZI =riilew {p(X-7t)) 
P p rt=O 

= c Ze,{p(X-n)}+ c r:e,{ptX-41 
x=+&p x$&n P 

z N(a-1)-(&-N) = Na-d. 
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But, by Lemma 10, 

S P,W = ~vx,.(p). 
Hence 

lb-d = CC* TX(p) d-v> = ~*T~xlp) e,(-np>, 
P P 

where T is the product of s T’S, X(p) the product of s x’s (and m a 
character), and the numb,er of terms in 2 * is (a- 1)“. The inner sum 
is - 1 if X (p) is the principal character, since n qk 0, and it ia the product 
of B x and a T otherwise; so that, by Lemma 10, its absolute value does 
not exceed l/a. Hence 

IN a-d 1 < (e- 1)” ds+l), 

and N> 0 if d> (e-1)” d8+l), the inequality of the lemma. 

Since (~-1)~ > s(s-2), we have as a corollary 

LEMMA 13. The result of Lemma 11 is true also for residues other 
than 0. 

We shall also require the trivial 

LEMMA 14. If x is integral and not less than 4, then 

(X- 1)2(X--f)lW) < x(2x - 1). 

3. 3. Proof of Theorem 2. Since 23 2 d+l> 2, we have + = 1, 
C= e+l. We begin by showing that we can make certain simplifying 
assumptions. 

First, we may suppose 8 > 2. For k = &, k = k/b = c Hence, 
if 6 < 2, we have, by Lemma 6, 

Next, we may suppose ko = 1, so that k = 6. For suppose the theorem 
proved in this case. Then, since k = 6>2, we have, by Lemma 6, 

Next, it follows from Lemma 3 that every residue (mod a), except 
perhaps 0, is representable by at most c-l = g = k a’s, and we have 
only to show that 0 is so representable. 

Finally, it follows from Lemma 5 that 0 is 80 representable when- 
ever d is even, and, in particular, whenever 8 is odd ; since we may then 
take d, = 2. We may therefore suppose that B is even and d is odd. I 
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To sum up, if the theorem i .s false for some k and lt~f, then a k and = 

(not necessarily the same) exist for wh ich 

(A) m > 2, 8 = 0, k, = 1, k = E, c = e+l ; 

(B) E is even, E > 4, d is odd ; 

(C) th.e r&&e 0 is not yepresmtable (mod Icr> by fewer thaft -i-l a~‘#= 

From these assumptions we deduce successively (D), (E), (F), (G) 
below. Since (G) contradicts (D), the theorem is then proved. 

3 . 41. (D) ‘GJ< 42+1), d < G-1 t  l 

Take s = g in Lemma Il. The result contradicts (C) unless 
m < (e- l)a(r-nw~* Since e4, by (B) * 7 Lemma 14 giveP 

JZ < &k-l) ; and then 

d Z (a-1)/e < 2e-1. 

3. 42. (E) There is an cxo, SUY a& such tkat $+I is &O an a~. 
First, the number of classes representable by two or fewer -Q’S is 

two at must; for otherwise we should have, by Lemma 4, 

p(c-1) > min {p(2)+c-3, c} = c, 

and all residues would be representable by c-l = 6 q’s, contrary to (C). 
Next, if no a: exists, no aO+l is an a~, and, in particular, l+l = 2 

is not an m, 80 that every *c~+l belongs to the same class as 2. It follows 

that ho+1 = 2ah for every a0 and some a& Incongruent m’s correspond 

to incongruent ~6’s and U; runs through the whole of Co with a~. Hence, 
by Lemma. 1, 

Z(q,+l)E2Eao, d~~u,~O; 

and this is impossible because dJ m- 1. 

3. 43. (F) ar gk 1 (mod a). 
If qf E 1, 2 is an q, bv (E) ; and so 1, 2, 22, 23, .*. are all Q’S, Now 

any number up to 2f+1 -i can be represented in the binary scale by at 

most e non-zero digits ; and, after (D), 

m < e(2e-11) < 2’+‘-2 
(since G 2 4). Hence 

snd zip G 0 is representable by at most g Q’ s, contrary to (C), 

f To avoid any misunderktanding, we repeat 

deductions from hyptheres which prove untenable 

(D)-(G) are not trw theorems ) but 
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3.43. (G) d>%-I. 
Tske a = ar in Lemma 2. Then a and l+a are Q’S, 80 that a”(1 +a) 

is an m for every rrt. Since d is odd, Lemma 2 gives 

0 I_ l+a-f=-a”+...+ad-~ = (l+a)+(l+a) a2+...+(1+a)ad-‘+ad--I. 

This is a representation of 0 by &(&3)+2 = &(d+l) Q&. Hence, 

by (CL 
*(d+l) > E, d > 2E-1. 

Finally, (G) contradicts (D) l Hence (A), (B), (C) are not 
simultaneouslv nossible : and this proves the theorem. 

The main difficulties here arise with residues (mod p) other4han 0. 
We denote by N[m], where m > 0, any number that is a sum of 

m kmth powers [positive or zero). The symbol is not a one-valued function 
0f m; m (together with k) determines a certain class of integers, and the 
symbol denotes an undetermined member of this class. An equation in 
N’s implies that any number that is of the form on the left of the equa- 

tion is also of the form on the right. 

4. A theorem concerning the case B> 0. 

4.1. THEOREM 3. If 8>0, d>2, then 

ym < k* 

4.2. LEMMA 15. N[m]N[n] = N[mn]. 

For N [m] N[n] = 21 zf iz yj = c (S#j)“i i=l j=l i,j 
LEMMA 16. For any n 

n E N[c] (mod a). 

This is trivial if n s 0 (mod a), since 0 is the sum of f 0%. If 
qt + 0 (mod ;IJ), let k’ = a, ‘and let c’, ah denote the number c and a 

typical aa for the index k’. Then, by Lemma 3, n can be expressed as a 

sum of at most c’-1 = g $8. Now an Q taken (mod a) is plainly an 

ai ; moreover, since the &s are incongruent (mod a) ( 5 1 .3), and since 
the number d is the same for k and 8 (for the prime ml, it follows that 

the set of 4 ip1 identical with the set of a0 considered to mod pr. Hence 

n is representnble (mod a) by not more than 8 c&s. 

4.3. We come rzow to the lemma containing the crucisl step in the 
proof l 
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LEMMA 17 t . If d > 2 then there is 5 u, not. a multiple of a, such 

that 

urn E N[a--11 (mod 7~~). 

Since d 2 3, there exist three k-th powers, P, & ,@ prime to m and 
incongruent (mod m ) l We define two positive integers a, b by 

a E a’ (mod d) (0 < a < d), 

b E pk (mod ma) (0 < b < aa). 

Since neither a nor b 
integers p, v such that 

is congruent to 0 or to 1 (mod a), there exist 

(Y-l)is+2 < b < VIZ-1 (0 < v < 4. 

Then Pm = a-j-m C a”+m (mod a2), 

where l<m\<a-2. 

Thus pm is representable (mod a2) as & sum of l+m < m-1 k-th powers, 
and similarly for yt3. The result of the lemma therefore holds (with 

U =p or u = V) unless p = v = ‘15, Now in this case, since a and b 
cannot both be m2 -1, one at least, say 5, must satisfy I 

so that d = a+~, where 2 < m < m-2. Then, h denoting any 
positive integer, 

-m= -hm+(hm-m) I_ hd+(hm-zr) (mod zz2). 

In this we take 3t = h,,, the least integer not less than a/~. Then -m 
is expressible (mod a2) as a sum of 

s??k =’ h,-+-(l~,m-a) 

k-fh powem, and the result of the lelnma (with 24 = -1) will certainly 
hold if it is true that S, < a-l for every WI in 2 ‘< m < a-2. Now 

--- .- --. _.. - . ̂ _ --- -. --- ------ - 

t In our original version the form of this lemma, was slightly different. The present 

form, which leads rather more simply to Theorem 3, was suggested to us by Mr. Ingham. 
We ace indebted to him also for the proof given here of the l&ma ; this represents a great 
gain in simplicity over the original. We have finally to thank Mr. Ingham also for detecting 
& number of minur errors in the paper as a whole, 
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?72(L- 1) < m-1. Hence 

If now *(a-l) < ~72 \( m-2, then sm < a--2+2 = m. If on the other 
hand 2 \( 77~ < 4(23-l), then sm \( +(a-I)+&(=-1) = a-l. In 
either case sm \( m- 1, snd the proof of the lemma is completed. 

~LEMMA 18. For any integer n 

32m E N [~(a- I)] (mod ~2). 

We choose II so that uv _I VL (mod n), u being the 2c of Lemma 17. 
Then 

nt;r~v.umG N[ 1 E l 2L’z3 (mod m2) (Lenlma 16) 

s N[e]N[a-I] I, N[&-I)] (mod a’) 

(Lemmas 17, 15) 

4 . 4. P7taof of Thkorem 3. For any ‘YL we have 

92 = N[~]+vz,a (Lemma 16) 

= N[e]+N[+-l)]+%a’ (Lemma 18) 

= N[~]+N[4’~~-1)]+~3N[e(a-l)]-+-~71,~~ (Lemma 18) 

-  . * * * * * *m*  

= N[e]+N[e(a-l)]+aN[e(a-l)]+...+aB-’N[e(a-l)]+n,+,ab+~ 

G ~[e+e(~--l)+~(~~-a>+...+e(a~-‘t38-~)] (mod p) 

s N [~a~] (mod p) l 

If 72 + 0 (mod p) the em8 k-th powers by which 12 is thus represented 
(mod p) cannot all be divisible by m, since + < k. Hence any TZ qk 0 
is representable (mod p) as a sum of at most E& a& The same thing 
is true of the residue 0, by Lemma 5 (since 1 < d < &e). Hence 

5. Determination of all CUSPS in which F(k) > k 

5 , 1. We use r, like m, to denote an odd prime ; there is no danger 

of confusion with the common notationt . . We distinguish six special 

t “t 8 are giV8ll by k 
determ ,ined by k and W. 

; w is a prime which may assume any value when k is given, and B 
is 
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classes of vallues of k, viz. : 

I. k = 2’ (9 > 1). 

II. k = 2%3 (9 > 1). 

III. k = 2(x-I) (4 > 0). 

IV. k = ~Tyr-1) (9 > 0). 

v. k=7r -1, 1: not belonging to my preceding r:laas. 

VI. k = *<T- l), k not belonginq to any preceding class. I 

It is easily verified that these classes are mutually exclusive. 

THEOREM 4. The values of I’(k) u;hen k belongs to a special class I 
are given by the formulae : 

I. r(k) = yz = 23+t = 4k > k+l. 

II. r(k)=Y~=P+“=$k>k+l. 

III, I’(k) = ya = ccr3+l > k+l. 

SV. r(k) = yr = *(r”‘“- 1) > k+ 1, except in tJw particular 
case k z 3 z J- . 3 (3-l), when I?(k) = k+l. 

7 PT. r(k) = y7F = r = k+l. 

VI. r(k) = yn = i&--l) = k. 

W3zm k does not belong to a special class, then 

The values of I’(k) in cases I-IV are given in Lemma 8, We suppose 
then that k&es not belong t.0 any of these classes. 

Let m be any prime. We shall prove that ypy < k, except when k 

belongs to class V and m = ST. There are -four cases to consider : 

0 i 23 =2,0=0. Herey,=y2=2<k,byLemma7. 

(ii) zis = 2, 0 > 0. Here G = 1, and ko is odd and greater than 3, 
since otherwise k would belong to class I, class II, or class III. Hence, 
by Lemma 7, 

YW = y2 = Pt2 = ak/k, < k. 

(iii) m> 2, 8 = 0. If &>l, then 

by Lemma tj* If kO 
d’= 1, then 6 = m 

= 1, d> 1, then y,< k by Theorem 2. If b = 1, 
-1, k = a-1; and this is case V, with r = m, 
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(iv) ‘~if > 2, 8 > 0. If k0 > 1, then, by Lemma 3, 

yTu\(c= 
&+1-l 
-“+1 < 2ae,+l\( d&,+1 = k-j-1, 

and so y- < k’. If & = I, then d > 2, since d = 1 or 2 makes k belong 
to class III or class IV. Hence rmk k, by Theorem 3. 

It remains only to observe that. ylr= n = k+l in case V, and 

yr = &(n-1) = 3c in case VI, by Lemma 7. With this the proof is 

completed. 

6. The numerical calculation of r(k). 

6 , 1. Table I gives the values of r(k) for k < 36, the special class, if 
any, to which k belongs, and (under the heading a) the least w (in 
case more than one exists) for which ym = r(k). 

The value of r(k) may be found for any k by a finite process of cal- 
culation. A routine method may be set out as follows. 

We observe first that r(k) > 3. Since r&k’) 2 r(k) and 
r(2”) = 2>+” > 8 when 9 2 2, ‘t 1 is necessary to prove this only when 
k is an odd prime r. In this case there are ‘IT - 1 n-th powers (mod G), 
at most (~-l)~+fi-l < G numbers are representable by one or two of 
them, and so y,(r) 2 3. 

We cannot prove that r(k) 2 4, though no case of l?(k) = 3 is known. 
Lemmas 11 and X3 show that y&. 3 provided that . 

w > (k 0 1)2(3--1)t@--2) = (km I)+ 

The number y2 is given for any k by Lemma 7, and, in particular, 
we know that for an even k > 3 we have y2 2 8, r(k)+ 2 8. If now no 
(odd) zz exists for which yla> Max (~2, 3), then I’(k) = Max (yz, ‘3). 

If, however, such m’s exist, they must satisfy 23r < (k-l)‘, they can 
be found by a finite search, and r(k) is equal to the greatest of the 
yp corresponding. 

A prime ‘t5 giving in this way F(k) = T,> Max (yz, 3) must further 
satisfy either (i) m 1 k, or (ii) m G 1 (mod 8j, where 8 1 k and 6 is not 
unity or a positive power of 3. For if such a m satisfies neither (i) nor 
(ii) we must have 8 = 0 and G = 2”, where a 2 0, in which case 

In c&w (ii) m belogs to the progression &+l ; it is fairly certain in 

practice that it will be the Zeust prime in its progression. 
An examination of the prime divisors of k and of the least primes in 

&he progressions ms+l generally suggests fairly strongly some numerical 

,t So that the coaditiun 8 = 0 for the applicability of Lemmas 11 sad 18 is satisfied. 
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value s for P(k). We have then to prove, first, that ym = s for the 

s&c&d L~J, and then that yla < s both for every prime divisor of k and 

for every m, in each of the progressions, for which 
l 

‘G3 < (E- p-qKs-2~~ 

If k is odd, however, we need consider only, in the progressions, primes 

satisfring the more favourable inequality Y 
25 \< (p- l)W-11, 

For in this case the aok are equal and. opposite in pairs, and 0 is repre- 
sentable by two of them, so that we may use Lemma 12 instead of 
Lemma 13. 

It is easy to compute r(k) with practicd certainty for values of k 
considerably larger than 36 ; but the necessity of examining primes of the 
order k4 makes a complete proof impracticable for those k dose F(k) 
happens to be small. 

6,2. An example : k = 34. We illustrate the process by proving 
that r(34) = 10. Here 72 = 8, by Lemma 7. It is improbable. that 
r(k) is so small as this, and fhe most likely values for the critical m 
are 17 and 103, the smallest prime in the progression 17m+l, the only 
progression that has to be considered. Since 103 < 172 = 289, we begin 
by examining m = 103. 

We denote bv Y, a typical number, other than 0, representable 
(mod 103) by just’ T Q’S ; v1 is an ‘e. Since d = 3, 0 is representable by 
three I&. Calculation gives 

vl 1, 46, 56. 

vq 2, 9, 47, 57, 92, 102. 

vs 3, 10, 35, 45, 48, 55, 58, 65, 93. 

v4 4, 8, 11, 18, 36, 49, 59, 66, 81, 91, 94, 101. 

u6 5, 12, 19, 24, 34, 37, 44, 50, 54, 6Q, 64, 67, 74, 82, 90, 95. 

p6 6, 7, 13, 17, 20, 25, 27, 38, 51, 61, ,68, 70, 75, 80, 83 96 100. 

v7 14, 21, 23, 26, 28, 33, 39, 43, 52, 53, 62, 63, 69, 71, 73, 76, 84, 97. 

v8 15, 16, 22, 29, 40, 72, 77, 79, 85, 89, 98, 99. 

vs 30, 32, 41, 42, 78, 86. 

YlfJ 31, 87, 88, 

These numbers exhaust the residues : hence ~103 = 10. 
It remains to verify that y= < 10 for the remaining primes 34m+l, 

and that y17 < 10. Taking m = 34m.+l, and s = 10 in Lemmas 11 

and 12, we have to verify that any residue (mod a), other than 0, ig 
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representable by fen *Q’S when 

(6.21) m \( (34- 1)2*10’(10-1) < 2380, 

and that 0 is similarly representable in the further range 

(6 . 22) 2381 \( m < (34- 1)2(10-‘)‘(zo-2) < 2614. 

The values of m satisfying (6 . 22) are 2381, 2551. For these d is 70 
and 75, bofh divisible by dl = 5. Hence in these cases, by Lemma 5, I 
0 is representable by five *m’s. 

The a’s of the (6 . range 21) are 1.37, 239, 307, 409, 443, 613, 647, 
919, 953, 1021, 1123, 1259, 1327, 1361, 1429, 1531, 1667, 1871, 1973, 
2143, 2347. 

We have fo show that any residue to any of these moduli is repre- 
sentable by at most feri 34-th powers, and calculation shows that this 
is possible with a good deal to spare. With the higher moduli it is not 
necessary to calculate more than about ten (~0’s. 

Finally, to prove that y17 < 10, we have fo show that all residues 
(mod 289) a re similarly representable ; and here again there is some- 
thing to spafe. 

6 . 3. It is natural to expect that r(k) tends to infinity with k. But 
so far are we from being able to prove this that (as we stated in $6 . I.) 

we cannot prove even 
lim l?(k) > 4 ; 

and these problems seem to be extremely difficult. Thus to pruve 
I’(k) > 4 for all, or all large, k, or, what is the same thing, to prove 

P(r) 2 4 for all, or all large, T, it is necessary to prove, for each r, that 
either yW (x) 2 4 or y= (TV) 2 4 for some prime m = 2mr+l. The first 
dternative is improbable for a given JT (since the number of Q’S is 

d I = r-1). The second would be established if we could show that, for 
any large n, a prime m = 2-mn+ 1 exists with d = am <d- I+, which 
is roughly the same as 2m < & Such a theorem, if true, must be very 
deep, and it is not easy fo find other ways of attacking fhe problem, 

6 . 4. This being so, it is worth while fo carry our numerical com- 
putations beyond the limits of Table 1, contenting ourselves wifh lower 
bounds for F(k) when the exact calculation becomes impracticable. In 
what follows we suppose that a> 2, and we use the following con- 

siderations to assign a lower bound for yW (where we cannot appeal to 
my more precise result). 

t For if d + dz + d3 < w there must exist some 

three an’s, 

residue representsbls by one, 
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We use N, Cd) to denote either tlhe number of distinct residues (mod p), 

other than 0, which are representable by s or fewer Q’S, or allay upper 
bound of this number. Here d has its usual meaning. If N,(d) were 

the exact number of residues, the notation would be inappropriate, 
since it would depend on k otherwise than through d ; but if will appear 

t.h@, by taking an appropriate upper bound, we can make it depend 0x1 
d and s only. Similarly we use u,(d) to denote an upper bound for the 

number of residues representable by cc Q’S and not by less+. We may 
plainly take 

Let P,(s) be the number of partitions of s into just r of 1, 2, 3, . . , 
repetitions being allowed and order counting. Then 

(6 .42) 

Let 

(6 .48) 

P,(s) = FE; ( ) 
(r < s), Py(a) = 0 (r > s): 0 

(Jr(s) = i PT(t) = fi PM = (;>. 
t=1 t=!l 

Finally, when d > 1, let D,(d) be aln upper bound for the number of 

combinations of d Q’S just T at ,a fime, order not counting, repetitions 
not being allowed, and any combination which contains a set of ~10’s 
whose sum is congruent to 0 (mod p) being rejectedg . Evidently 

D,(cE) = 0 when T > k ; alnd this is true also for r = d, since 2% e 0, by 

Lemma 1. And 

.(6 .44) D,(d) < ( d, 
r (1’ < d)- 

A little consideration shows that the number of residues which art’ 

representable by just s Q’S, and in which just r different q’s appear, is 

at most P,(s) D,(dj. Hence we may take 

y,(d) < d$ -c-(s) a(d), 
T=l 

It is evident that, if N,(d) < a@- 1, then yw 2 s+l. Hence (6 . 45) 
may be used to find a lower bound for y-. If d is even., however, we 

t Thus if - 1 is an %, erg+ I+ (-1) r8preSWtS a0 by three an’s, but this representation is 

to be rejected. 

z Pr (8) is the coefficient of 2’ in (z + z9 + x3 + +..)*. 

8 Without this provision the number of combinations would of course be 
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can do better than (6 . 45). For, if Cc = 2dl, the aa’s are of the type 

+ a,, + a27 -0-y + adl, - 

and, in estimating D (d), we can reject any combination in which a, and 
-a, both occur. This leads to the inequalities 

(6 9 46? Dr(4 < 0 
d(d-2)...(d-2Tm+2) (o < ‘r < d) 

p’t \ 1) 
D (d) 

r = 0 (7 > d,). 
l 

(6 l 47) 

d(d-2)...(d-22r+z) 
Tl n 

l 

We use (6.45) when d = 3, and (6 , 46) when d is even and greater 
than 3. It so happens that we do not find it necessary to consider odd 

values of d greater than 3. 
The values of N,(d), given by (6 . 45) and (6 . 46), are set auf in 

Table 2. If one of them is less than p, then a/T 2 s+l. 

6 . 5. Table 3 gives (1) the values of I’(k) when k belongs to a special 
class, (2) lower bounds for l?(k) in other cases, for 36 < k < 200. The 
special values are starred ; in a/l other cases we know, of course, that 

r(k) ,(,k. 
The lower bounds are found in four ways. 

(i) In the first place 

l?(k) 3, Max r(6). 
6(k 

When the lower bound is found in this way, we write k >r 6 (e.g. 45 > 9) 
in the k-column, 8 being the relevant divisor of k. 

(ii) If m is the least prime 3k+l or dk+l = 2&k+l, we can obtain 
B lower bound for yar, and so for I’(k), by the use of Table 2 and the 

argument of Q 6 . 4. In this case the relevant value of d is entered in 

the second column, It so happens that this d is, in fact, the least d, 

odd or even, for which dk+l is prime, except in the single case k = 62, 
when d = 5 and d = 6 both give primes, and d = 6 gives the better lower 
bound, In a larger table, of course, it might be necessary to consider 
odd d greater than 3. 

(iii) In one case, k = 197, when d = 18, m = 3547, we have, in 

order to show that I’(197) > 4, gone beyond the) principles of 5 6 .4 and 
resorted to calculationt . The tables then show that, * for k < 200. 
r(k) > 3, and that, except for 2, 3, 7, and 19, r(k) > 4. 
. . ..--.x---c -.--.P-.---.-IIA- --~---.--~cL_I-~+ 

t For which we are indebted to Mr. F. (3. Maunsell. The Q’S occur in equal and 
opposite pairs, half of them being 

1, 291, 447, 1162, 1163, 1177, 1468, 1548, 155% 
Thr residue 7 requirea five of these. 
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(iv) In two cases, k = 38 and k = 62, the best result is derived from 

the fact that y2 = 8 (Lemma 7). Here we have written 38 = 2 .19 and 

62 = 2 l 31 in the k-column. 

When the actual lower bound is given by (1) or (iv), we have still 
entered in the second column the appropriate d, or “ 2 b”, where b is 

a lower bound of it, so that it can be verified that (ii) does not give a 
better result Further refinements of the principles employed in 

(ii) appear to be practically ineffective. 

6 l 6, We have explored the possibilities I’(k) = 3, I’(k) = 4 in the 
range 2 < k < 3000; 0 ur results are that r(k) > 3 in all cases ; and 
r(k) > 4, except for k 
very improbably) k 

= 2, 3, 7, 19, for which it is 4, and possibly (but 

= 1163, 1637, 1861, 1997, 2053. 
We need only consider odd k, since y2 2 8 for even k. In the second 

it is easy to see that we can confine ourselves to proving that only these 
exceptions occur among prime k < 3000. Fur this result, together with 
the inequality r(kk’) > r(k), shows that r(k) > 3 for odd composite 

k < 3000 (indeed, k <. 2002), and I’ (k) > 4, unless k is divisible by two 
of 3, 7, 19. Now all products of two of these numbers, except 1g2 = 361, 
occur in Table 3 with a r(k) > 4. 1 II the case k = 361 we consider 
y19 (361), when ‘~34 = 1g3, CE = 18, snd the argument of 5 6 . 4 shows that 

ylg > 4, It follows that we need consider only @ze values of k. 
Considering now only primes below 3000, we calculate for each k the 

least d (necessarily even) for which dk+l is prime. We find 

d’< 12 for 200 < k i 227 ; 

d < 16 for 227 < k i 540, except for k = 227 (d = 24) and k = 457 
(d = 30) ; 

d < 22 for 540 < k i 1000 ; 

d < 26 for 1000 < k < lN2, except for k = 1163 (d = 32) ; 

d < 30 for 1302 i k < 2000, except for k = 1637 (d = 38), k = 1863 
(d=40), and k-1997 (d=44); 

d < 34 for 2000 i k < 2500, except for k = 2053 (d = 46) ; 

d ‘< 36 for 2500 k k < 3000. 

The sufficient condition for r(k) > 3 is 

which is 
N,(d) < a-1 = dk, 

(6 n 61) d’+3d+8 < 6k; 
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end that for r(k) > 4 is 

(6.62) d3+4da+20d+32 < 24k. 

The inequality (6 . 61) is satisfied in all cases with a good deal fo 
spare, and the limit 3000 could be extended considerably without exces- 
sive labour, The inequality (6 , 62) is satisfied by the upper bounds of 
d set out for the various ranges of k above. Thus I’(k) > 4, except in 

the exceptional cases, mwhich require detailed calculation. Mr. Maunsell 
has carried this out for k = 227 and k = 4*57 t , but beyond ‘this point the 
work becomes very heavy. 

TABLE 1, 

k 3 4 5 6 7 8 9 10 11 12 13 14 35 16 17 18 19 
PPP 

r'(k) 4 16 5 9 4 32 13 12 I1 16 6 14 15 64 6 27 4 

Clam IV I VI III - I TV IV VI II - VI VI I - XII - 

w 3 2 11 3 3 2 3 5 23 2 53 29 31 2 103 3 229< 

V 

k 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
-_f_ 

I'(k) 25 24 23 23 32 10 26 40 29 29 3l$ 5 128 33 IO 35 36 

class / III w v VI 11 - VI IV v  VI v  - 1 VI - VI v  
--- 

m 5 7 23 47 2 101 53 3 29 39 31 311 2 67 103 71 73 

TABLE 2 : Na (d). 
I  

4 5 6 7 8 9 10 11 12 13 14 I5 16 17 18 19 20 21 
-. ---1---- - _-__ 

3 30 45 G2 84 108 135 165 198 234 273 315 360 408 459 513 570 630 693 

4 40 W 82 112 144 180 220 264 3X2 364 420 480 544 612 684 760 840 

6 120 al0 336 504 740 990 1320 2052 
8 320 680 1288 

10 680 1682 
12 1288 

$ For k = 337, w = 3449, the au’6 are 

I, 78, 409, 543, 603, 621, 635, 1238, 1474, 1475, 1518, 2007, 

and the mm numbers with negative sign. The residue 21 require8 5. 
For k = 457, w = 13711, the Q’S are 

1, 702, 792, 1060, 1394, 3186, 2425, 3127, 3148, 3149, 3442, 3726, 510'7, 6167, 6543, 

and the same numb&with negative sign. The residue 52 requires 5. 

‘; There is a misprint, 30 for 31, in the value of r (30) given in the table of RN. 4, 
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k 

37 
38 =,2.39 

#33 = 79-1 
#40=41-l 
l 41 =+(83-l} 
*42=7(7-l) 
+43= :,(87-l) 
a44 =4(,89-l) 
45 > 9 

"46=47-l 
47 

+48=2~.3 
49 

"50 = g(loi -1) 
*51=;j103-11) 
*52=53-l 
%3 = 8 (107 - 1) 
"54 = 3"(3-1) 
%5 = ~ll(ll-1) 

#)36= g(l334j 
57 

%8= ;(117-I) 
*59 = 4 (119 - 1) 
+60=61-l 
61 
62=2*31 

*63=+(187-l) 
"64 = 26 
'65- - l(131-1) 
G6> II. 
67 

468 =&(137-l) 
+69=;(139-11) 
+70=&(141-I) 
71 

#72=73-l 
73 

+74 = ;(l49-1) 
*73 = ;(151-1) 
76 
77 > 11 

#78 = 91S(13-1) 
79 

*80=~(161-1) 

d 

2 
2 
4 
1 
G 

- 
4 

2 
2 
1 
2 
- 
--.- 

2 
4 
1 
2 
1 
G 
ii 
2 

2 
3 
4 
2 
2 
1 
8 
I 
4 
2 
2 
3 
6 

- 
4 
2 

r i k cl 

39 "$1 = $Y(3--l} 

38 #82=83-l 
39 “83 = ;(lm-lf 

41 84 > 42 
41 85 >17 
49 w6=g173-1) 
43 8% > 29 
44 *88=89-l 

313 "S9 = $(179-'1) 
47 %I0 = ;(lsl-l, 

36 31 > 13 

64 92 > 23 
310 93 
50 94 
51 +95=g(191-1) 
53 ‘t’36 = 3.2;) 

53 97 
81 "98 = ~(197-1) 
Go W=&(l9r,-1) 
56 #loo = 5"(5-1) 

& 11 101 
59 *102=103-1 
59 103 
61 "104 =;(20'3-1) 
27 #103= ?J211-I, 

28 +I06 = 107 -1 
63 107 
25G 108 > 54 

65 109 
311 "110 = 11(11-l) 
212 "111 =:(223-l) 
68 *11~=1~3-1 
G9 =113 =;(2!d7-I) 
71 x114 =g(azo-l,I 
25 115 > 23 
73 "116=;(233-1) 

&la 117 > 9 
74 I18 > 39‘ 
75 *119=&(239-l) 

312 +120=~(241-1) 
311 121 1 1x 
84 322 

2 13 223 > 41 

80 124 > 4 

- 

1 
2 

23 
212 

2 
23 

I 
2 
2 
G 

23 
4 

3 
2 

4 

2 
2 

2 
1 
2 
2 

24 
2 

26 
23 
2 
2 

26 
3 

34 
3 

121 
53 
8s 

249 
3G 
0G 

), 29 
SC3 
89 
90 
28 

223 
314 
214 
35 

128 
314 
98 
99 
125 
a0 
103 
28 
104 
105 
107 
28 
281 
25 
121 
111 
113 
113 
II4 

323 
IX 

313 
2 59 
119 
120 
311 
316 
241 
216 
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Cl 

#125 = *@ix-l, 

al26 = 127-1. 
127 

*12a = 2: 
129 > 43 

"180= 131-J 
*131= $(263-l] 

138 > 33 
133 

#134 =:(269-l) 
*135 =i(271--1) 
*136 = g7(17-1) 

1.87 
WI8 = 139- 1 

139 
#la0 =&(281-l) 
+141=+(283-l) 

142 
143 1 11 
144 > 72 1 

145 > 29 
*I46 =+(293-l) 
*147 = 47y7-1) 
*Ii48 = 149 - I 

149 
*I50 = 151-l 

151 
132 > 8 

%53 = g (307 - 1) 

154 
#155 = g(311-1) 
#15G = 13(13--l) 
157 

+15s +317-q 1 
*159 = #{319-l) 

160 > 32 
161 

"162=163-I 

2 
1 

4 

34 
1 
2 

3 
12 
2 

2 
-- 

6 

- 

I 
8 
1 

6 

33 
2 
3 
2 

6 

2 
2 

23 

6 
1 

r 

163 
164 > 41 

*165-&(331-l) 
al66 = 167-l 

167 
#168 =$(337-l) 

169 
170 > 10 
171 > 9 

*I72 = 173- 1 

#I73 = ; (34% - 1) 
“174 = ;(349-1) 

175 > 35 
“176 = 177-I 

177 > 59 
“178 = 179-l 

a179 =$(359-l) 
“180 = Ml- 1 

181 
182. 

“183 = &(367- 1) 

184 > 4t; 
185 > 37 

#186 T;= 3(373-l) 

187 > Ii 
188 > 4 

":89=$(379-l) 
#I90 = 191-l 
*191-383-I 
JL192 = 3.2" 
193 

%I4 = &(389--l) 

195 3 39 
196 > fL8 
197 

WI98 = 199-I 
199 

*2w =&(401--l) 

2 
1 
6 

- 
4 
2 

24 

23 
18 
1 
4 

2 

530 



(c) Goldbach’s Problem 





INTRODUCTION TO PAPERS ON GOLDBACH'S 
PROBLEM 

The main papers in this section are P.N. III (1922, 3) and EN. V (1924, 6). The 

other three papers are historical reviews and a preliminary announcement. 
In P.N. III and P.N. V Hardy and Littlewood deal with Goldbach’s Problem on 

the assumption that the following hypothesis is true. 

Hypothesis R. There exists & real number 0 < 3/4 such that all zeros of all L-series 
L(s, x> formed with Dirichlet characters lie in the half-plane o < 0. 

Hypothesis RI is weaker than the original Riemann hypothesis, but is asserted for 

a larger class of functions. It remains unproved today. Throughout P.K III and 
PX. V Hypothesis R is taken for granted. 

Let N;j(n) be the number of representations of the odd positive integer n as a sum 

of three primes. Let 
c3 = n (1+(w-V3), 

W 

where w runs through all odd primes. The authors prove that 

where p runs through all odd prime divisors of n. In particular it follows that 
N,(n) > 0 for large n. 

The proof runs on lines similar to those of the preceding sections, though new 

difficulties cropped up and had to be overcome. The generating function is the third 
power 

where w runs through all odd primes. 

The introduction of the factor logw is 
prime number theorem for arithmetical 

f(x) = 2 
W 

(log WP, 

a familiar device to make the use of the 
progression rii easier. The Farey dissection 

works as before; there are no minor arcs. If 

X=e -Y +z~iPlq 
? 

it follows from Mellin’s formula that, on a Farey arc around p/q, 

1 
x= = e 2~iPdq - 

27Ti s 
Y-T(s)w-8 as, 

2--ico 

and apart from negligible terms, f(x> can be expressed as a linear combinafion of 
integrals 2+iw 

1 

27ri s 
Y-T(s) --L’b~J x) & 

Lb x) 3 
2--im 

where x runs through all characters (primitive or not) mod q. The integrand is regular 
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for CT > U, except for a pole at 8 = 1 when x is the principal character, and is mero- 

morphic for all s. 
Hence Cauchy’s theorem can be applied so as to shift the path of integration to 

the line 0 = -& The residue at s = 1 gives the principal terms in the approxima- 

tion for f(x); the contributions resulting from the zeros of L(s, x> give simple poles 
in the strip 0 < 0 < 0. A careful estimate of their contribution to the value of the 
integral gives an approximation forf(x) on the Farey arc. Then the older techniques 

can be applied; the singular series, though troublesome, does not present serious 
difficulties. And the asymptotic formula is proved. 

In the rest of the paper, the authors apply their method heuristically to a large 
number of problems which are exceedingly difficult. Of their large number of con- 
jectures only one has so far been proved, namely by Linnik, who showed in his book 

The diqxrsion method for binury additive problems (Leningrad, 1961) that every large 
integer is a sum of two squares and a prime. The same result had been proved earlier 
by C. Hooley (Acta Math. 97 (l&R’), 189-HO) under the assumption of the generalized 
Riemann hypothesis. 

In P.N. V (1924, 6)-f the authors assume that Hypothesis R holds with 0 = +, 
and deduce that there are at most O(nB+E) even positive integers not exceeding n 
which are not the sum of 2 odd primes. The paper stands to P.N. III in the same 

relation as P.N. VI to the preceding papers on Waring’s problem. 
Since the time of Hardy and Littlewood much progress has been made in Gold- 

bath’s problem. 
L. Schnirelmann (Iswestija Donskowo Polytechn. Inst. (Novotscherkask) 14 (1930), 

3-28) proved the existence of a constant y such that every integer > I is the sum 
of at most y primes. I. M. Vinogradov (Rec. Math. Moscou, (2) 2 (1937), 179-95) 
proved that every large odd number is the sum of three odd primes, that is, he proved 
the Hardy-Littlewood theorem without the use of Hypothesis R. His proof is based 
on a clever introduction of an exponential sum, essentially transferring the sieve 

method to exponential level. U. V. Linnik (Rec. Math. [Math. Xbornik], N.S. 19 (61) 
(1946), 3-8) proved the result again. His proof reverts to the original Hardy-Little 
wood pattern, but instead of using Hypothesis R he obtains an estimate for the total 
number of zeros, in a particular region, of all the L-functions to a given modulus. 

For expositions of modern work on Goldbach’s problem, the reader is referred to: 

T. Estermann, Introduction to modern prime number theory (Cambridge Tract No. 41), 
Cambridge, 1952. 

L. K. Hua, Additive Primxahltheorie, Leipzig, 195% 

K. Prachar, PrimxahEverteiZung, Berlin-Gsttingen-Heidelberg, 1957. 
I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers (trans. 

K. F. Roth and A. Davenport), London, 1954, 
H. H. 

t An abstract appeared in Proc. London Math. Sot. (2) 22 (1924), xi. 

534 



Note on Mews Shah and Wilson’s puper entitled: c On acn 
em~*rical formula connected with Qoldbnch’s Theorem ‘. By G. He 
HARDY, M.A., Trinity College, and J. E. LITTLEWOOD, M.A., 
Trinity College. 

[.&&wed 22 January 1919: read 3 February 1919,] 

1. The formulae discussed by Messrs Shah and Wilson were 
obtained in the course of a series of researches which have occupied 
us at variOus times during the last two years, A full account of 
our tnethod will appear in due course elsewhere*; but it seems 
worth while to give here some indication of the genesis of these 
particular formulae, and others of the same character. We have 
added a few words about various questions which are suggested by 
Shah and Wilson’s discussion. 

2. Let 
The genesis uf the formulae. 

f(x) = ai (n) xn = ZA (n) e-y = P(y) 

and fK (x) = R (y) = QK (n) A (n) e-Y 

where A (nj is equal to log23 when n is a prime p, or a power of 33, 
and to zero otherwise, and 3~~ (n) is one of Dirichlet’s ‘characters to 
modulus q ‘$ Also let 

X = xpq 

where p is positive, less than q, and prime to g ; and suppose that 
x tends to unity by positive values. 

It is known that 

&K (Y) A (Y) = 0 (l.L), 
1 

unless xK is the ’ principal ’ character x1, in which case 

It follows that 

(2*1) 

and 
l (2 2) 

* Au outline of one of its most important qplimtions is contained in & paper 
entitled i A new solution of Waring’s Problem ‘, 
the Qzlar~rl~ ~aarnal of Muthenzatics. 

which will be published shortly ia 

t See Landau, Handbuclb, pp. 391 et seq. 

1919, 1 (with J. 
80@4 Society, 

E. 

1% 
Littlewood) 
24654. 

Proceedkg8 of the Cambridge Philo- 
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Now 

(23) f(x) = IZA(n)xn ernMiq 

Ifj is prime to q, we have* 

= 2 @@ai@ 2 A(n) x5 
j=l s= 4 

, : 

(W e a= -i A (fw = .&) Y XK (j)f, (x), 
u=l 

where Xx is the character conjugate to xx, and +(q) is the number 
of numbers less than and prime to q. It follows from (2.1) and 
(2.2) that 

If on the other hand i is not prime to y, the formula (2#4) is 
untrue, as its right-hand ‘side is zero. But in this case A (0~) = O 
unless TZ is a power of q, so that 

(2.6) - 

- 

From (%3), (M), and (2m6) it follows that 

. (2 7) 
where 

the summation extending over all values of j less than and prime 
to q. The sum which appears in (2.71) hk been evaluated by 
Jensen and Ramanujant, and its value is P(Q), the well-known 
arithmetical function”of q which is equal to zeio‘;nless Q is a product 
p1p2 ‘-’ p, of different primes, and then equal to (- 1)~. Thus 

(2’8) f(x)rV p(Q) l 
4$(&l -xr* 

3. The sum 

Gw w (n) = 2 A (m) A (m’), 
m+m’=It 

* Landau, IA., p+ 421. 

t J.L. W.V. Jensen, ‘Et nyt Udtryk for den talteoretiekeFunktion zp (n) = M(m)‘, 

Saertry k q f Bere tniqg om den 3 Skandinuviske Ma temutiker- Ko&s, Krist iania, 
1915 ; S. Ramsnujan, ‘On certain trigonometrical sums and their applicationti in the 
theory of numbers ‘, Trans. Camb, Phil. SW, vol. 22, 1918, pp. 259-276. 

$ If /& (g) is zero, this formula is fo be interpreted as meaning 
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which appears on the left-hand side of Shah and Wilson’s equation 
(Q, is the coefficient of x9& in the expansion of {f(x)]? And 

If(x)}2NI~~(~2~~~~~~ne-~p~iq, 

when x --Pi’q along a radius vector. Our general method ac- 
cordingly suggests to us to take 

fi (n) = n x $3 

{ 1 

2pPd$ 

where the summation extends over q = 1, 2, 3, . . . and all values 
of p less than and prime to q, as an approximation to o (IZ). Using 
Ramanujan’s notation, this sum may be written ,, 

(3’2) fi(n)=nX $; 2cq(n). 
I 1 

The series (3*2) can be summed in finite terms, We have 

(3-3) cq (n) = Z&(i$ ? 

the summation extending Over all common divisors 6 of q and rP; 
and it is easilv verified. either bv means of this formula or by means 
of the definition of c,(k) as a tAgonometrica1 sum, that 

whenever p and q’ are prime to one another. 
write 

where the product extends over all primes P, and 

We may therefore 

x ,=l+A,+A,,+Amz+...=l+Aw, 

since A, contains the factor p (q) and A+, A+, I . . are accordingly 
zero! 

If ‘R is not divisible by W, we have c, (n) = p (P) = - 1 and 

A 
1 1 

!w =-m=-((Pi 

while if 72 is divisible by w we have 

c,(n)=~(w)+w~(l)=a--1, 

A 
1 

&--’ 
Hence 

n(n)=nrr(l +L.l)nql-& 

* Ramanujan, L.C., p- 260. 
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where II’ applies to primes which divide 72 and II” to primes 
which do not. 

It is evident that fi (12) is zero if n is odd. On the other hand, 
if G+Z is even, we have 

where m now runs through all odd primes and p through odd 
prime divisors of n. 
L 

The formula w (4 - fi (4 
is formula (2) of Shah and Wilson’s paper*. 

The incorrectness uf Sylvester’s formula. 

4. It is easy to prove that if any formula of the type 

W) 0 (7%) - cl-l (12) 
be true, thelz C wuust be unitiy. In other words, our formula is the 
only formula of this type-which can possibly be correct. This 
may be shown as follows. 

Let 

where n runs through all even values; and let s - 1 = t. The ~&es 
is absolutely convergent if s > 2, t > 1. Replacing a (n) by its 
expression in terms of the prime divisors of 32, and splitting up 
f(s) into factors in the ordinary manner, we obtain 

f( > 
21-t R s j-J 

( 
2l+A~ (t) 

1-2-t ’ 

say, where A is the same constant as in Shah and Wilson’s paper, 
and P runs through all odd primes. 

Lt e 

and suppose that t-1. Then 

+ When n (n) = 0, the formula iti to be interpreted EBB meaning w (n) WI (n). 
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(4*3) f(s)44~(t)-2(1-2-“)~(t)+ =sJ-2* 4 - 

This is a consequence of our hypothesis : the corresponding 
consequence of the hypothesis (4.1) would be 

(4.31) f( > 
c 

SN- 
s-2’ 

On the other hand, it is easy to prove* that 

(W w (1) + 0 (2) + ,,. + 0 (7~) - $4; 

and from this to deduce that 

$(s)=$f=.$?y& 

when s+% This equation is inconsistent with (49) and (4*31), 
unless C = 1. 

It follows that Sylvester’s suggested formula is definitely 
erroneous, 

It is more difficult to make a definite statement about the 
formula given by Brun. The formula to which his argument 
naturally leads is Shah and Wilson’s formula (12); and this 
formnls, like Sylvester’s, is erroneous. But in fact Brun never 
enunciates this- formula explicitly. What he does is rather to 
advance reasons for supposing that soqne formula of the type (49) 
is true, and to determine C on the ground of empirical evidence?. 
The result to which he is led is cquivalcnt to that obtained by 
taking C = 1’5985/1 l 320:3 = 1*21.07 3, The reason for so substantial 
a dis&Dancy is in ef%ct that ex+ned in the last section of 
Shah and Wilson’s paper. 

Fwther resd ts. 

5. The method of 5 2 leads to a whole series of results con- 
cerning the number of decompositions of 12, into 3,4, or any number 
of primes. The results suggested by it are as follows. Suppose 

* Since 
1 

ZA (n) 2” - Ix 

as x-4, we have Izw (n) x”= (2x (n) xy w 
1 

(1 -x)2; 

and the desired result follows from Theorem 8 of & paper published by us in 1912 
(& Tauberian theorerm concerning power wries and Dirichlet’s series whose co&Gents 
8re positive ‘, Proc. London Math. SOL, ser. 2, vol. 13, pp. 174-192). This, though 
the shortest, is by no means the simplest proof, 

The formula (4-4) is substantially equivalent to Landau’s formula (10) in Shah 
snd Wilaon’a paper. 

j- Evidence connected not with Goldbach’s theorem itself but with a closely 
related problem concerning pairs of primes differing by 2. See 5 7. 

$ 145985 is km% constant, while 1*3203 is 2A, 
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that vr (n) is the number of expressions of n as the sum of Y primes 
Then if r is odd we have 

(5*11) UT (n) = 0 (C’) 

if D is even, and 

(5+12) 
2B 

vr (a> - @qj w-l n 
i 
(P - I)‘- (P - 1) 
---($y+I-- 

if n, is odd, p being an odd prime divisor of n, and 

where P runs through all odd primes. On the other hand, if r is 
even, we have 

(5%) Vp (n) = 0 (P) 

if ~2 is odd, and 

where 

(5#23) 

if ‘fi is even. The last formula reduces to (1) of Shah and Wilson’s 
paper when r = 2. 

We have not been able to find a rigorous proof, independent 
of all unproved hypotheses, of any of these formulae. But we are 
able to connect them in a most interesting manner with the famous 
’ Riemann hypothesis ’ concerning the zeros of Riemann’s function 
&). The Riemann hypothesis may be kated as follows : r(s) has 
no zeros whose real part is greater than 8. If this be so, it follows 
easily that all the zeros of c(s), other than the trivial zeros s = - 2, 
s=- 4, l .*, lie on the line c = R(s) = 4, It is natural to extend 
this hypothesis as follows: no one of the functions defined, when u > 1, 
by the series 

L (s) = c 9, 

possesses zeros whose real pavt is greater than 4. We may call this 
the extejj,ded Riemanrb hypothesis. This being so, what we can prove 
is this, that gy the extended Rientann hypothesis is true, then the 
formulae (5*11)-(5.23) are true *for all values of r greater than 4. 

The reasons for supposing the extended, hypothesis true are 
of the same nature as those for supposing the hypothesis itself 
true, It should be observed, however, that it is necessary, before 
we generalise the hypothesis, to modify the form in which it is 
usually stated ; for it is not proved (as it is for c(s) itself’) that 
L(s) can have no real zero between & and 1. 
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6. A modification of our method enables us to attack a closely 
related problem, that of the existence of pairs of primes differing 
by a constant even number k. 

We have 

CA (n) A (n + k) rm+k = k/r If(reie) I* ehkie de, 

where f(x) is the same function as in $1, and r is positive and less 
than unity. We divide the range of integration into a number of 
small arcs, cbrrelated in an appropriate manner with a certain 
number of the points e2+‘Q, and approximate to If(reie) I2 on each 
arc by means of the formula (2%). The r&nlt thus suggested is 
that 

where A has the same meaning as in 5 2 and p is an odd prime 
divisor of k. From this it would follow that 

w > C A(v)A(v+k)-2AnII 
u < ?A 

and that, if N&z) is the number of prime pairs less than n, whose 
difference is lc, then 

(6-2) 

This formula is of exactly the same form as (l), except that p is 
now a factor of k and not of n. In particular we should have 

(6’3) 
2An 

N2 @) - (logn)2 ’ 
and 

4Av-t 
N6 b) -  jiig Q  l 

We should therefore conclude that there are about two pairs of 
primes differing by 6 to every pair differing by 2. This conclusion 
is easily verified. In fact the numbers of pairs differing by 2, below 
the limits * 

100, 500, 1000, 2000, 3000, 4000, 5000, 
are 

9, 24, 35, 61, 81, 103, 125; 

while the nulnbers of pairs differing by 6 are 

16, 47, 73, 125, 168, 201, 241. 

* To be precise, the numbers of pairs (p, p’) such that p’=p + 2 and p’ does not 
exceed the limit in question. 
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The numbers of pairs differing by 4, which should be roughly the 
same as those of’ pairs differing by 2, are 

9, 26, 41, 63, 86, 107, 121. 

7. Brun, in his note already referred to, recognises the corre- 
spondence between the problem of $$ 2-4 and that of the prime- 
pairs dif’fering by 2, and realises the identity of the constants in- 
volved in the formulae ; but does not allude to the more general 
problem of prime-pairs differing by i?. He does not determine the 
fundamental constant A, attempting only to approximate to it 
empirically by means of a count of prime-pairs differing by 2 and 
less than 100000, made by Glaisher in 1878% The value of the 
constant thus obtained is, as was pointed out in § 4, seriously in 
error. The truth is that when we pass from (6*1), which, when 
Ic = 2, takes the form 

C R(v)R(v+2)^,2An, 
VC12 

to (6m3), the formula which present.s itself most naturally is not 
(69) but 

(W 

This formula is of course, in the long run, cquivalerltl tc, (6’3). 
But 

s 

?z 2! 3! 
l + logn + (logn)" + I.* 

t 
; 

and the second factor on the right-hand side is, for 12 = 100000, far 
from negligible. Thus (6*3) may be expected, for such values of 
n, to give results considerably too small. 

If we take the lower limit of integration in (7.1) to be 2, we 
find that the value of the right-hand side for 72 = 100000 is, to the 
nearest integer, 1249, whereas the actual value of LX&~) is, accord- 
ing to Glaisher, 1224:. The ratio is 1.02, and the agreement seems 
to be as good as can reasonably be expected. 

The calculation of prime-pairs has been carried further by 
Mrs Streatfeild, whose results are exhibited in the following table: 

* J. W. IL Glaisher, r An enumeration of prime-pairs ‘, MWX~I- 0f imthernatics, 
vol, 8, 1878, pp, 28-33, The number of pairs below 100000 is 1225. 

? The series is naturally divergent, and must be closed, after a finite number of 
terms, with an error term of lower order than the last term retained. 

+ Glaisher reckons 1 aB a prime and (1,3) a6 a prime-pair, making 1225 in all. -I- 
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h w) 
--- 

1224 

2159 

2992 

3801 

4562 

5328 

2A 
I 

* dx --- 
2 (log sj2 

Ratio 

-- 

1249 x*020 

2180 1 *UlO 

3035 1 G14 

38463 1’012 

4625 1’014 

5381 1’010 

8. In a later paper* Brun gives a more general formula relating 
to prime-pairs (p, p’) snch that p = ap’ + 2. This formula also 
involves an undetermined constant k. It is worth pointing out 
that our method is equally applicable to this and to still more 
general problems. Suppose, in the first place, that u (n) is the 
number of expressions of TZ in the form 

n = ap + +‘, 

where p and p’ are prim&. We may suwose without loss of 
generality that a and b have no common factor. 

The results suggested bv our method are CM follows. If n. has 
any factor in common with i and b, then 

zf(n)=o 1 I , _.--- (lo;4 2 ; 
and this is true even when n is prime to both LT and b, unless oyae 
of in, ct, 6 is even:. But if ‘n, a and b are coprime, and one of them 
even, then 

where A is the constant of 5 2, and the product is now extended 
over all odd primes which divide ‘yz or a or b. 

* ( Sur les nombres premiers de la forme q + b ‘, ArcGu for Mathmmztik, ~1. 
24, 1917, no. 14, 

f We might naturally include powers of primes. 
r These results are trivial. If 72 and a have a common factor, it divides bp’, 

and is therefore necessarily p’, which can thus assume but a finite number of values, 
If n, a, b are all odd, either p or p’ must necessarily be 2. 
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Similarly, suppose N(n) to be the number of pairs of solutions 
of the equation 

ap’ - bp = k 

such that p’< n. It is supposed that a and b have no common 
factor. Then 

unless k is prime to both a and b, and one of the three is even. 
If these conditions are satisfied 

where p is now an odd prime factor of k, a, or b. 
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Goldbach’s Theorem. 
By G. H. Hardy’). 

The famous problem of which I propose to speak tonight 

is probably as difficult as any of the unsolved problems of 

mathematics, and my lecture cannot be entirely easy. I must 

be content if I can give you some rough notion of the nature 

and of the history of the problem, and of the general ideas 

which have guided the mathematicians of the past and of the 

present ,in their efforts to find a solution, 

Every even number is the sum of two primes: 

this is ‘Goldbach’s Theorem’. I may perhaps begin by the 

trivial observation that, if ‘prime’ is to mean what it means in 

modern mathematics, the theorem is obviously false. It fails 

for 2, which is a prime, but not the sum of two, We do not 

nowadays call I a prime, for, if we do, the factorisation of 

a number into primes is not unique. We must therefore insert 

the words ‘greater than z’ in the enunciation of the 

theorem. 

The theorem is stated in Goldbach’s correspondense with 

Euler in the year 1742, It would seem that he had been 

anticipated by Descartes 2). It was conjectured independently 

by Waring a little later, and it is, I believe, in Waring’s 

Meditationes algebraicae (1770) that the conjecture 

appears first in print. Each of these authors appears to have 

observed that, if every even number (greater than 2) is the 

sum of two primes, then e very number (greater than 5) is 

‘) A lecture to the Mathematical Society of Copenhagen on 6. October 1921. 
‘) In these matters of history I am content to follow Prof. L. E. Dz’ckson’s 

History of the theory of numbers (Washington, xgrg, vol. x.pp.421 

et se 4.). Dickson however attributes to Descartes the assertion that 
‘every even number is a sum of I, 2, or 3 primes’, and here the word 

‘even’ should surely be deleted. 

1922, 1 Matemtisk Tidsakrift B, 1922, l-16. 545 
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the sum of three. You will see later why this apparently 
trivial remark should be interesting to me. 

The numerical evidence for the truth of the theorem is 
overwhelming. It has been verified up to 1000 by Cantor 
(iQ$--I8gs), to 2000 by Aubry (1896~-rgo3), to 10,000 by 
Haussner (1896) ; and further numerical data, concerning special 
numbers or numbers of specified forms, have been accumulated 
by Ripert ( Igo3), by Cunningham (rgo6), and by Shah and 
Wilson (1919). But most of the modern computations have 
been directed towards a more ambitious end, that of deter- 
mining or verifying some asymptotic formula for the number 
of decompositions into primes of a given even number 12. 

I denote by Y (1~) the number of ways in which n = ZN 
can be expressed as a sum of two primes, or the number of 
solutions of the equation 

72 = 2N=p-+pt* ( ) I 

According to Goldbach’s Theorem, v (72) > o if a > Z; and a 
very hasty survey of the evidence is enough to make two 
things clear. In the first place, a great deal more is true 
than is asserted by the theorem. Not merely is v(n) positive, 
but it is large when 72 is large, Secondly, while v (?t) tends 
to infinity with n, it does not do so in any very regular 
manner. The magnitude of v (n> does not depend merely on 
the magnitude of n, but also on’ its arithmetic form. 

It is important to observe that these conclusions are in 
complete agreement with the a priori judgement of common 
sense, We naturally argue thus. If wz < 72, and 7~ is large, the 
chance that nz is prime is approximately I : log 72. If then 
we write IZ in every possible way in the form 72 = m + m’, 
the chance that b o t h m and m’ are prime is approximately 
I : (log n)e. We should therefore expect the order of magnitude 
of v(n) to be 

(2) 

On the other hand, the arithmetical form of 72 is plainly 
also relevant, In the first place, it is obviously relevant 
whether n is odd or even: if n is odd there is no representation, 
unless 12 =p + 2, and then only one. It is not quite so 
obviously important to consider whether it is a multiple of 3* 
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We have however to exclude all cases in which either m 
or HZ’ is a multiple of 3. If 3 jlzl), the two sets of cases thus 

excluded are the same, while if 3 + n the effect of the double 
exclusion is cumulative. W should therefore. expect divisibility 
by 3 to increase v (72); and a similar argument applies to any 
other prime, so that Y (72) should be largest when n is com- 
posed of a large number of different small prime factors. All 
these rough expectations prove to be in complete accordance 
with the facts. 

Sylvester (1871) was the first mathematician to suggest an 
asymptotic formula for Y (n). Sylvester’s rule is stated in 
words, and when translated into symbols is as follows: 

(3) 

where n (7~1 is the number of primes not exceeding n, and the 
product extends over all primes p for which 3 ( p 5 72 and - - 
p t It- We know, though Sylvester did not, that 

(4) 

This is the famous ‘Primzahlsatz’, and we can use it to simplify 
(3). We also require a theorem of Mertens (1874)~ to the 
effect that 

where C is Euler’s constant. 
less deep than (4), shows that 

(5) 

This theorem, which lies much 

where 

Following Landau, I 

express the contrary. 

write 3 [ n’ for ‘N is divisible by $, and ‘3 + TZ’ to 
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the product extending now over all odd primes. We thus 
obtain the formule 

where p is an odd prime divisor of 72, and this we may 
reasonably call ‘Sylvester’s formula’, 

Sylvester’s formula is certainly wrong. It is correct, 
apparently, in its most obviously interesting parts, in its crude 
order of magnitude, and in the irregularly oscillating factor 
which depends upon the arithmetic structure of 72. It is the 
constant factor 4Re -X that cannot be correct. It is interesting 
to pause for a moment to consider how such. a negative result 
can be established. 

There is no mystery at all about the a v e rage value of 
v(z). It is quite easy to prove 1) that 

(8) 

If now we assume any asymptotic formula for v(n), we can 
test it by its compatibility with (8). We may assume a fur- 
mula of Sylvester’s type, but with an unspecified constant 
factor B; and we find, as the test of compatibility, that B--A. 
Thus the only possible form,ula of this type is 

y @’ = (log 7212 

-?-&L~ (E). 

PD 

(9) 

Sylvester’s formula must be wrong, if not in principle, then 
by a constant multiplier ~e--~ = I n 123 l l -a), The formula (9), 
on the other hand, seems almost certainly correct. 

Sylvester’s contribution to the problem passed unnoticed 
for nearly 50 years. I turn now to the writers, Merlin, Brun, 
and Stackel, who have attacked it recently, and particularly 
to Brun. The work of Mr Littlewood and myself belongs to 
a different circle of ideas, and I shall speak of it later, 

‘) The actual theorem is due to Landau (1900). 

“1 There is considerably more difficulty in testing the discrepancy by com- 

parison with the facts. Shah and Wilsov have given a very clear and 
interesting discussion of this point. 
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The writings of these three mathematicians have a striking 
common characteristic: they use elementary methods only. 

You may ask me what an ‘elementary’ method is, and I must 
explain precisely what I understand by this expression. I do 

not mean an easy or a trivial method; an elementary method 
may be quite desperately ingenious and subtle. I am using 

the word in a definite and technical sense, and in this 1 am 
only following the common usage of arithmeticians. I mean, 
by an elementary method, a method which makes no use of 
the notion of an analytic function. And the question that I 
wish to put to you is this: is it reasonable, in the present 
state of mathematical knowledge, to ho pe to o b tai n an 

elementary proof of Goldbach’s theorem? 

If I reply to this question in the negative, as I must and 
shall, if I say that I am compelled to regard all such efforts as 
foredoomed to failure, I trust that you will not misunderstand 

me. I cannot believe that the methods of Merlin and Brun are 
sufficiently powerful or sufficiently profound to lead to a solution 

of the problem. Rut I am very far from meaning that I regard 

their work as devoid of interest and value. There is much in 

Brun’s work in particular that seems to me very beautiful, 

and some of his theorems ought, I think, to find their way 

into every book on the theory of numbers. 

We have however to take account both of the history and 

the logical structure of our subject. Let us turn back then 

for a moment to its central theorem, the Trimzahlsatz’ or 
‘pfime number theorem’ expressed by the equation (4). It 
seems plain that this must be at any rate an easier theorem 

than Goldbach’s theorem. No elementary proof is known, and 

one may ask whether it is reasonable to expect one. Now 

we know that the theorem is roughly equivalent to a theorem 

about an analytic function, the theorem that Riemann’s Zeta- 
function 1) has no zeros on a certain line 2) A proof of such 

a theorem, not fundamentally dependent upon the ideas of 

the theory bf ftinctions, seems to me extraordinarily unlikely. 

It is rash to assert that a mathematical theorem ca n n o t be 
proved in a particular way; but one thing seems quite clear. 

We have certain views about the logic of the theory; we think 

549 



6 G. H. HARDY: 

that some theorems, as we say, ‘lie deep’, and others nearer’ 

to the surface. If  anyone produces an elementary proof of 

the prime number theorem, he will show that these views are 

wrong, that the subject does not hang together in the way 

we have supposed, and that it is time for the books to be 

cast aside and fur the theory to be rewritten. 

You are probably familiar with the general idea of the 

‘sieve’ or ‘crible’ of Eratosthenes. We write down all the 

integers 

up to x. We erase (or underline), first I ; then every even 

number after 2; then multiples of 3, except 3 itself; and so 
on, repeating the process for every p. I_- The process comes to 

an end when p exceeds IX, for then only primes are left. 

Suppose now 

that x is large and Y fixed, and that we use 
that p , ,  p , ,  ’ l l J pr are the first -Y primes, 

the sieve for 

these primes only. The number of numbers left is approxi- 

mately 

it is easy to see that the error in this enumeration is at most 

2r + Y., I f  71, (x) is the number of numbers, not exceeding X, 

and prime or not divisible by any of Y prime% then 

“r(x)NZli(l --;)m (9) 
1 

We have supposed so far that Y is fixed. The result would 

be much mare int,eresting if we could suppose that r is a 

function of x;. Let us assume provisionally that this is legi- 

timate, and take Y to be the largest prime not exceeding f>. 

We obtain 

by Mertens’ formula (5) This formula is false (so that our 
assumption was illegitimate), and it is significant that it is 
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wrong in just the same way as Sylvester’s formula (7). our 
failure may help to deepen our scepticism as to the results to 
be anticipated from the use of the principle of the sieve. 

The ‘sieve’ used by Merlin and Brun for Goldbach’s theorem 
(le crible de Merlin) is 0f.a slightly more complex kind. 
We form the table 

I, 2, 31 41 5, 6, 7, m l ., 72-I (m>,) 

n- L n--2, n-3, n-4, n- 5, n-6, n-7, l .  .  ,  
I  ( I d ) .  J *  I  

(  1 

Were 72 is an even number, and the table, read vertically, shows 
all possible decompositions 18 = PZ + m’ of 72 into positive 
integers. We now perform the process of Eratosthenes on 
both rows of the table, starting from the right of the lower 
row, and operating with the first Y primes. We consider a 
decomposition FE + m’ to be erased when either of its consti- 
tuents is erased. 

There are two cases to be considered for each prime p. 
If p 172, the erasures in the second row fall immediately below 
the corresponding erasures in the first, and the number of 
decompositions erased is approximateiy 7~ :p. If p + 72, the 
erasures never correspond, and their number is approximate- 
ly 2n :p, If then Ye (72) is the number of decompositions into 
numbers ~lil, m’ which are prime or not divisible by any of 
the first r primes, we have 

vp (72) - 72 n pj *n (dj. (12) 

P/nlp&, - 2+b P(P, - 

This formula is correct so long as Y is fixed. 
Let us assume once more that this formula is correct when 

p, is about J& , We obtain 

where the value z of fi is now excluded. But, if 3 ~2 p S iz, - - 
we have 

by Mertens’ formula (5 , We thus obtain 
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( 3) I 

and this is the formula to which Brun’s argument naturally 

leads’). The formula, like Sylvester’s, is wrong, and by a 

factor 4e-lc = I l 263 l l l .  It will be observed that Sylvester’s 
formula (7) is the geometric mean between (9) and (I 3). 

I have explained that I do not believe that a proof of 

Gdldbach’s theorem is likely to be found by methods such as 

these. Hut it is certainly possible to pr,ove s om e t hi n g in 
this sort of way, and what Brun has proved seems to me 

very interesting indeed. He has proved, for example that 

every large even number 72 can be expressed in the 

form tit + m’, where wz and WJ’ are numbers composed 

of at most g odd prime factors, and that the number 

of such decompositions is of order w (log7z)a at least. 

His method of proof is elementary enough, but a little com- 

plicated, and the idea which underlies it can probably be 

explained most clearly by reference to a simpler problem, 

The number of numbers not exceeding X, and prime or 

not divisible by any of the primes p,, p,,. l 1 ,p,, is (if p, < X) 

where [x] is the largest integer in X. This can be shown at 

once by the method of Eratosthenes, and it is an imediate 

deduction that 

where ,-1 is a constant* No very interesting consequences can 

be drawn from this; but Brun has shown that, if we are con- 

tent to allow the first term on the right of (I 5) to be multiplied 

by a constant less than T, we can materially reduce the order 

of the second, considering as a function of Y’. More precisely, 

he proves that 

I) The formulae (13) is not enhnciated explicitly by Brun. His procedure 

was rather to develop his argument until it leads to a formuIa o f th i s 

t y pe, and to attempt to determine the constant on other grounds. The 

determination of the only possible constant by averaging was effected in- 

dependently by WckeI, and by Mr. Littlewood and myself. 
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( 6) I 

Suppose now that p, is about x6, Then the first term is (by 
Mertens’ theorem) of order x : log x, while the second is of 
or&r A, Thus N is at least of order z : log z, If a number 
does not exceed z, and all of its prime factors are greater 
than &, the number of its prime factors is 5 at most. We 
are led to the theorem that the number of numbers less 
than z, and with five prime factors at most, is at 
least of the order x:logx. 

The theorem is trivial, for Tschebyschef proved (and by 
purely elementary methods) that the number of p rim es less 
than x is of this order of magnitude. I have chosen this tri- 
vial theorem, however, merely as a simple illustration, and 
Brun has proved much more, In the first place, he has ex- 
tended the argument to the numbers of an arbitrary arithme- 
tical progression mk + Zl). This theorem also is of course not 
new, for we know, from the work of de la Vallke Poussin, 
that any such progression contains the prescribed amount of 
primes. The method, on the other hand, is in this case most 
interesting, for there is no elementary proof of any of the 
theorems concerning the primes of an arithmetical progression. 
What is still more important is that Rrun has been able to 
treat the ‘crible de Merlin’ in the same kind of way, and to 
deduce the very striking and beautiful theorem that I enunciated 
a moment ago; a theorem, I may add, which Mr, Littlewood 
and I are unable to prove analytically, with the much more 
powerful machinery at uur command. 

It seems clear however that, if we are to attack the main 
problem with any prospect of success, the methods of the 
theory of functions are indispensable; and I shall now attempt 
to explain the method by which Mr. Littlewood and I have 
attacked it. The general lines of the argument are obvious 
and inevitable enough; the difficulties lie in carrying it through 
to its conclusion. 

We write 

9( 1 x = ;T;B + x3 + x5 + l l ’ z cxp, 1 7) I 

1 
1 The uni nteresting 

naturally excluded. 

case in which K and 2 have a common factor being 
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SO that ~~(72) is the number of representations of 72 as a sum 
of y primes I). We have 

( 9) I 

by Cauchy’s theorem, the path of integration C being the 

circle 1 x 1 =R, where o<R<l. We take 

R = 1 - -!- . (20) 
72 

We do not base our analysis, however, on the actual formulae 
that I have written, It is more convenient to use the formulae 

where the summation applies to all sets p,, p,, l l l ; p, whose 
sum is n. Goldbach’s theorem asserts that v,(7t) (or, what is 
the same thing, that N2 (~2)) is positive for 72 = 4, 6, m  l l . Our 
object is the more comprehensive one of finding an asymptotic 
formula for v&); and it is easy to show that, if we can find 
such a formula for .N,(fz), we can deduce one for v,(n) by 
division by (log 72)’ 2). 

Our fundamental idea is the same as that which has guided 
us in our work on Waring’s problem. The unit circle is a 
barrier of singularities for f(x); we may say, roughly, thatf(x) 
becomes large when x approaches the circle. There are how- 
ever certain special points of the circle in whose neighbour- 
hood f(x) is largest, and whose contributions to the integral 
(23) are of dominating importance. These points are the ‘ra- 
tional points A& k’, for which 

L V&Z) has no connection with the vr (n) of (12). 

2, If o < b < I, we have (I - b) log PZ < logp < log n for neaily all the 

primes in question, 
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It is obvious, for example, that the point O, I, for which x = I, 
must be most important of all ; for f(x) is a series with posi- 
tive coefficients, and increases most rapidly when z is positive. 
In general, one may expect the importance of the point I!Z, k 
to diminish as k increases; and in fact 

( 5) 2 

where p(k) and cp(k) are the well known arithmetical functions 
of Mtibius and Euler I), if x = Xxlr,k and X - + I by positive 
values. 

Suppose that a formula of the type of (25) has been proved 
to hold in the neighbourhood of every point I& k, The natural 
procedure is then as follows, We divide the circle C into a 
large number of small arcs &, each associated with a parti- 
cular point k, k. We substitute for f(x), in the part of the 
integral (23) which is taken along &, k, the approximation 

derived from (25); we evaluate the resulting integrals ; and we 

thus obtain an approximation for N,(z) in the form of an in- 
finite series. This series, which we call the singular series, 
can happily be summed in finite form. 

The analysis to which this process leads is intricate and 
difficult. It will be best that I should begin by stating what 
we can prove. In the first place we have, for reasons which I 
will appear later, to assume the truth of an unproved hypo- 
thesis. The celebrated hypothesis of Riemann may be stated 
asfollows: the real part of a zero of the Zeta.function 
does not exceed 3, Our hypothesis is a natural extension 
of this. The theory of the distribution of primes depends, in 
general, on the theory of c(s). Their distribution in an arith- 
metical progression mR + Z, where l is prime to k, depends 
upon a number of associated functions denoted generically by 
L(s). Thus when k = 4 there are two such functions, defined 
respectively by 

L,(s) = rs + 3-s+ y+ .  .  l , -I;, (s) =- I-S - 3-“-f- 5+ .  .  l . (26) 

‘) p(k) = (- ~)m it k is the product of nt different primes, p(k) = o other- 
wise; q(k) is the number of numbers less than and prime to K. 
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The first is (I -2--9<(s), but the second is a new transcendant. 
There are cp@) such functions associated with a given k. 

The most natural generalisation of Riemann’s hypothesis is 
HYPOTHESIS R. The real part or a zero ofL(s) does 

not exceed ;2. 
We do not actually need quite the full force of this hypo- 

thesis, but I shall be content to state it in its simplest and 
most striking form. 

Our main theorem is then a follows: If hypothesis R 
is true, then every largel) odd number is the sum of 
three odd primes. The number Y&Z) of representa- 
tions is given asymptotically by the formula 

where 

The product in (27) extends over the odd prime 
divisors of B, and that in (28) over all odd primes. 

The complete proof of this theorem, 
concerni ng representations of numbers 
number of primes, will appear shortly in the A c t a Ma the- 

and of similar theorems 
by four or any larger 

m at ic a, At the moment I shall attempt to explain to you only 
(I) how the final formula 
(2) why it should be nece 

arises, 
ssary to assume hypothesis R, 

(3) why our method succeeds for three or more primes, but 
fails for two. 

I shall not take these questions in the order in which I 
have stated them: I begin with the second. You will remember 
that it is necessary to approximate to the function f(x) in the 
neighbourhood of the point k, R. Taking first the simplest 
case, suppose that h = 0, k = I, xh, k = I. 

We write x = P-Y, and use the well known formula 

e--Y L & y-” r (s)ds 
J 

( 9) 2 

of Mellin. From this we deduce 

‘) That is, every such number from a certain point onwards. 
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which is substantially (though not exactly) 

W) ‘50 S 
(3 > I 

The integrals are taken along a line parallel to the imaginary 
axis and passing to the right of the point s = I. 

The subject of integration has poles when s = I, when s 
is zero or a negative integer, and at all the complex zeros of 
C(S), which we denote generally by p- If we assume Riemann’s 
hypothesis, every p has the real part +, It is natural to sup- 
pose that, if we move the path of integration further and 
further to the left, and apply Cauchy’s theorem, we shali ex- 
press f(x) in the form of an infinite series, in which the most 
important terms will be the terms corresponding to the residues 
for I and p. If we denote these terms by 

I 
-- + 2 

A P -1 
3’ ! * 3P 

(3 ) 2 

then the term cortesponding to p is of order y- i when y is 
small, and we may hope that the order of the series will be 
much the same. In this case we shall prove that f(z) NJ+, 
which is the simplest case of (25), and tltat the order of mag- 
nitude of the error is not notably greater than that of J!- g. 
It Is evident that our estimate of the error will depend es- 
sentially on our assumption. 

Passing now to the general case, I denote by A(B) the 
arithmetical function of 72 which is equal to log n when n is 
prime and otherwise to zero. We have now 

and we obtain 

(33) 

(34) 
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14 G. H. HARDY: 

Thus f(x) is expressed as the sum of a finite number of func- 
tions, each of which plainly depends on the distribution 
of primes in an arithmetical progression ntk j-Z. We 
are thus led to make an assumption, analogous to the hypo- 
thesis of Riemann, about all the functions L(S) on which this 
distribution depends; in other words, we are led to hypothesis 
R. Unless we make some such assumption our difficulties, al- 
ready considerable, will be terribly increased. 

We therefore assume hypothesis X. We now write X-e-’ 
and express f(x), by means of the formulae (33) and (34), in 
the form of an integral 

--I* 
2m s 

Y-$ r(s) Z(s)ds, (35) 

where Z(s) is a linear combination of the logarithmic derivatives 
L’(S) : L(S) of the L-functions associated with modulus K. The 
dominant term of f(x), in the neighbourhood of z~,~., is the 
residue of the integrand for s = I, and a simple calctilation 
shows that this is the function which appears on the right 
hand side of (25). 

We now return to the integral (23, and consider the se- 
parate contributions of the arcs &,k, If we substitute for f(x), 
on El*, k, the approximation given by (~5)~ and transform the 
integral by the substitutions 

(37) 

The path’ of integration is now a segment of a straight line, 
parallel to the imaginary axis in the plane of Y, and passing 
to the right of the origin. 

We can substitute for this segment the complete straight 
line of which it is part, the error involved in this approxima- 
tion proving to be unimportant. The integral can then be 
evaluated in finite terms, and (37) assumes the form 

(38) 

We have fimlly to sum with respect to h and k, and we ob- 
tain the formula 
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ilv, (72) - _ 
72’--’ 

( 

” s 
Y- I)! ’ 

where 

and h, in (4r), is less than and prime to k. 
The series S, the ‘singular series’, is the series on which 

the solution of all these problems depends. It can, as I said 

before, be summed in finite termsl). I f  Y and n are of oppo- 

site parity, then S = O. If  they are of the same parity, then 

s = zc, m Lep-- -- I)‘+ (- qyp- I) ~_--_ - -- , 
(p- t)’ - (- I)’ i 

where 

Tf Y- 3, 
of log 12 

we are led to (27), and if Y _I 2 to (g), the powers 
which appear in these formulae being introduced in 

the passage from iv to V; and there are similar formulae for 

c I- 0’ - 
II( 

I 
) 

. 
r- 

(P - I)’ 

(4 ) 2 

\ 
(431 

every value of r. 

There is unfortunately a vital difference between the case 

r = 2, which corresponds to Goldbach’s theorem, and all the 

rest. We have to fill in the skeleton which I have presented 

to you, and to transform it into an accurate proof; and in 

doing this we find ourselves compelled to suppose that r> 2. 

It only remains that I should explain to you shortly the reason 

for this regrettable limitation 2). 

Our work depends upon a system of approximate formulae 

for f(x), - each validbnear a particcllar point of the unit circle. Tt 

consi der the point z - - I. will be sufficient fur my purpose to 
If x = e--y, and y  is positive, our formula for@) is of the form 

‘> The summation is a simple but entertaining exercise in elementary alge- 

bra, which I must be content to take for granted. 

‘) The explanation which follows must be taken merely as a first approxi- 
mation to the truth. 
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where E may be any positive number. Thus (f(x))’ consist of 
two parts, a term y-r, which is exactly known, and an error 
term whose order is, so far as our analysis shows, not less 
than O(y-4 ‘); and each df these terms gives rise to a corre- 
sponding term in the final formula. The contribution of the 
dominant term can be found precisely, and is of order ~t+-l. 
The contribution of the error term can only be estimated in a 
cruder manner, and the best that we can say about it is that 
it is of order 0(7&). This error must, if our approximation is 
to succeed, be smaller than the dominant term; and this requires 
that P- I >i-r or r>Z. In fact I have done rather more 
than justice to our method, It would appear, from what I have 
stated, that we stand on the very margin of success. But. 
there are further complications in the analysis, and we fail bJ 
a power 72). 

I implied, when I was discussing the methods of Merlin 
and Rrun, that it was hardly reasonable to suppose that they 
could possibly succeed. You may naturally ask me what I 
think of the prospects of our own, and the question is one to 
which I find it rather difficult to reply. You must make me, 
for the moment, a present of hypothesis R, I presume that 
the hypothesis of Riemann will some day be proved. Hypo- 
thesis i? will, I am sure, be proved within a week from then, 
and the proofs will be substantially the same. There is nothing 
whatever to suggest that, in these respects, one L-function 
behaves unlike another. 

Apart from this I would reply that, the hypothesis once 
proved or granted, I see no particular reason why our method 
should not succeed. It seems to me adequate for the problem; 
the ideas which underlie it are not too easy and lie sufficiently 
deep. It fails in detail, and not in principle, even as it is; the 
failure is not a failure of the method, but of the analytical 
powers of Mr. Littlewood and myself. The method seems to 
embody the essential features of the problem, and leads, 
naturally and inevitably, to what is plainly the real result. I 
believe that, when the problem is solved, it will be solved in 
some such way as this. 
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SOME PROBLEMS OF 'PARTITIO NUMERORUM'; III: ON THE 
EXPRESSION OF A NUMBER AS A SUM OF PRIMES. 

BY 

G, H. HARDY and J. IL LITTLEWOOD. 
New College, Trinity (2011 ege, 

OXFOI~D. CAISII~RIDGE. 

I. Introductim. 

I. I. It was asserted by GOLDBACH, in a letter to EULER dated 7 June, 

1742, that every even number 2m is the sum of iuw odd primes, and this propmi- 

tion has generally been described as ‘Goldbach’s Theorem’, There is no reasonable 

doubt that the theorem is correct, and that the number of representations is 

large when ‘yn is large; but all attempts to obtain a proof have been completely 

unsuccessful. Indeed it has never been shown that every nunlber (or every 

large number, any number, that is to say, from a certain point onwards) is tile 

sum of IO primes, or of I ooo ooo; and t*he problem was quite recently classified 

as a>mong those ‘beim gegenwktigen Stande der Wissenscbaft unangreifbar? 

In this memoir we attack the problem with the aid of our new transcen- 

dental method in ‘additiver ZablentheorX8 We do not solve it: we do not 

1 E. LANDAU, ‘Geliiste und ungelijate Probleme aus der Theorie der Primzahlverteilung und 
der Riemannachen Zetafunktion’, Proceedi~~gs af fhe $fth I~te~~&tional Congwss of Mathenzaticians, 

Cambridge, 1912, vol. I, pp. 93- x08 (p. 105). This address was reprinted in the Jahresbwicht 

der Lkutschen Xxth.- T%-einigwag, vol. 2 I (rgn), pp. 208-228,~ 

* We give here a complete list of memoirs concerned with the various applications of 
this method. 

G. EL HARDY. 

I. ‘Asymptotic formulae in combinatory analysis’, Conaptes rendus dt4 qua tri&l~e 

Cong& des ma thematiciens Scandinavcs h Stockltoltig, 19 16, pp. 45-53, 
2. ‘On the expression of a number as the sum 0.f any number of squares, and in 

particular of five or seven’, Boceediwgs of the hWiona1 Academy of Sciences, vol. 4 (r918), 
pp* x89-193. 

1922, 3 (with J. E. Littlewood) Acta Mathematics, 44, l-70. 561 



2 G. H. Hardy and J. E. Littlewood. 

even prove that any number is the sum of I oooooo primes. In order to prove 

anything, we have to assume the trutb of an unproved hypothesis, and, even 

on this hypothesis, we are unable to prove Goldbach’s Theorem itself. We show, 

however, that the problem is nof ‘unangreifbar’, and bring it info contact with 

the recognized met!hods of the Analytic Theory of Numbers. 

3. ‘Some famous problems of the Theory of Numbers, and in particular Waring’s 

Problem’ (Oxford, Clarendon Press, Igzo, pp. r-34). 
4 ‘On the representation of a number as the sum of any number of squares, and 

in particular of five’, T9-ansactions of the American MutJzematical Society, voI. 2 I (1920), pp. 
255-284, 

5 ‘Note on Ramanujan’s trigonometrical 8um cq (n)‘, Proceedings of the Cambridge 
Philosophical Society, vol. 20 (Igzr), pp. 263-271, 

G. H. HARDY and J. E. .LITTTZWOOD. 

I, ‘A new aolution of Waring’s Problem’, Quarterly Jouwal of pwe and applied 
mathematics, ~01, 48 (I919), pp. 272-293. 

2. ‘Pu’ote on Mestirs. Shah and Wilson’s paper entitled: On an empirical formula 
connected with Goldbach’s Theorem’, Proceedings of the Cambridge Philosoplticnl Society, 

vol. 19 (19rs>, pp* 245-254* 
3. ‘Some problems of ‘Partitio numerorum’; I: A new solution of Waring’s Pro- 

blem’, h’nchrichten zton dw K GeseEZschaft de9- Wissenschaften zu Giiftingen (Igzo), pp. 33-54, 
4 ‘Some problems of ‘Partitio numerorum’; II: Proof that any large number is the 

sum of at most 21 biquadrates’, ikkfhemntz’sche Zeitschrift, vol. g ( ~zI), pp x4-27, 

G. II, HARDY and S, RAMANJJAN, 

1. ‘Une formule nsymptotique pour le nombre des partitions de pa’, Cotiaptes y*endus 
de Z’Acaddmie des Sciences, 2 Jan. 1917. 

2, ‘Asymptotic formulae in combinatory analysis’, Proceedings of the Londou Mathew 
atical Society, ser. 2, vol. 17 (IgIg), pp. 75-115. 

3. ‘On the coefficients in the expansions of certain modular functions’, Proceediqlgs 
of t7ae Royal Society of London (A), vol. 95 (rgr8), pp. 344-155. 

I. ‘Zur Hardy-Litt~lewood’sc~~en Losung des Waringschen Problems’, X~r7z~i(*lzte9~ 
von der II. Gesellschaft der Wissensc7iafiepz zu Giittingen (~gz I), pp. 88-p. 

L. J. MORDHLT,. 

I. ‘On the repreuontationa of numbers as the sum of an odd number of 
Transactions of the l Cambg-idge Philusophicul Society, vol. 23 (1919)~ pp. 361-372. 

squares’, 

A, OSTROWSKI. 

1. ‘Bemerkungen zur Hardy-Littlewood’schen Liisun g des Waringschen Problems’, 
Mathematische Zeitschrift, vol. g (IgzI), pp. ~8-34~ 

S. RAMANJJAN. 

hers’, 
1. ‘On certain trigono metrical auma and their applications 
Triwucztions of the Cam bridge Philosophical Society, vol. 22 (19 

N. M. SHAH and B. M. WILBON. 

theory of 
qg--76. 

1. ‘On an empirical formula connected with Goldbach’a Theorem’, P9*oceedings of 
the Camb?*idge Philosophical society, vol. 19 (IgIg), pp. 238-244, 
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Psrtitio numerorum. III: On the expression of a number as 8 sum of prirms. 3 

Our main result mav be stated as follows: ;f a certain hypothesis (a natural 

generalisation of Riemank hypothesis concerning the zeros of his Zeta-function) 

is true, then every large odd number n is the sum of three odd primea; and the 

number of representations is given asymptotically by 

(I. II) 
- 
N3(n)NC3~--~~~((~~‘)(“‘“), 

0 n 
IJ --3p+3 

where +J runs through all odd prime divisors of n , md 

(I. IZ) c 3 = 11 I + @-x~j 
( 1 

’ 

the product extending over all odd primes 23’. 

Hypothesis R. 

I. 2. We proceed to explain more closely the nature of ollr hypothesis. 

Suppose that q is a positive integer, and that 

is the number of numbers less than q and prime to q. We denote by 

x(n)==x&) (k=I,z,...:h) 

one of the h Dirichlet’s ‘characters’ to modulus p I: xr is the ‘principal’ character. 

By x we denote the complex number conjugate to x: X is a character. 

By .L(q x) we denote the function defined for G > I by 

L(s) = L(a + it) = us, x> 

Unless the contrary is stated the modulus is p, We write 

L(s) = L(s, X) ’ 

Ry 
e=p+iy 

------.---_ _--__.._ -. _ _ ._.. - -_- - . _----- - -- _----. -- -. . - -- - - --- -.------ 
’ Our notation, so far as the theory of L-functions ie concerned, is that of Landau’s 

Hadhdt der Lehve van de?* Vwteilung des- l+imzahlen, vol. I, book 2, pp. 391 et seq., except that 
we use q for his k, k for his X, and a’ for a typical prime instead of r). ,4s regards the ‘Farey 
dissection’, we adhere to the notation of our papers 3 and 4* 

We do not profess to give a colnplete summarv of the relevant parts of the theory of 

the L-functions; but our references to Landau shouldwbe safficient to enable a reader to find 
for himself everything that is wanted. 
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we denote a typical zero of L(s), those for which y = o, p-< o being excluded. -= 
We call these the non-irivlral zeros. We write N(T) for the number of e’ s of 

L(s) fot which o < y-< T. -- -- -=: 
The natural extension of Riemann’s hypot.hesis is 

HYPOTHESIS R*. Every e has 28 real pari less than or equal lo I? 
2 

Wo shall not have to use the full force of this hypothesis. What we shall 

in fact assume is 

HYPOTHESIS R. There is a number 0 < 3 such that 
4 

p&o 

for every e 0f every L(s) . 

The assumption of this hypothesis is fundamental in all our work; all the 

repeat it, in stating the 

of the memoir, SO /ur as they are novel, depend 

conditions of our theorems. 

upon it “; and we shall not 

We suppose that 0 has its smallest possible value. In any case 0 S- l 

- -  2 

For, if e is a complex zero of L(s), 4 is one of L(a). Hence I - @ is one of .- 
-W -s), and so, by the functional equation 3, one of L(s). 

Further notatiw and terminology. 

1. 3. We use the following notation throughout the memoir. 

A is a positive absolute constant wherever it occurs, but not the same 

constant at different occurrences. B is a positive constant depending on the 

single parameter r. O’s refer to the limit process n-3 ao, the constants which 

they involve being of the type B, and O’S are uniform in all parameters except r, 

a’ is a prime. p (which will only occur in connection with n) is an odd 

prime divisor of n. p is an integer. If Q =I, p= o; otherwise 

o<p<q3 (p,q)=r* 

(m, n) is, tile greatest common factor of ‘yn and n, By m n we mean that rh is 

divisible by m; by m -, n the contrary. 

/r(n), fl (n) have the meanings customary in the Theory of Numbers. Thus 

A(n) is lug a if n = ~m and zero otherwise: /l(n) is (- I)~ if n is a product of 
. . -- ---- - -----._ ---- 

1 The hppothesia must be stated in this way because 

(a) it has not been proved that no I&) has real zeros between f and I, 

(h) the L-functions a@ociated with inqjrimitive (uneigentlich) characters have zeros on the line Q = 0. 
? Naturally mmy of the results stated incidentally do not depend upon the hypothesis. 
3 Landau, p, 489. All references to ‘Landau’ are to his Had12tc~, unless the contrary is stated, 
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k: different prime factors, and zero otherwise, The fundamental function with 

which we are concerned is 

b 31) f(x) = 2 log ‘GI XT 
a’ 

To simplify our formulae we write 

Also 

If ;ck is primitive, 

(1. 33) 

This sum has the sbsolute value 2 V(r. 

The Farey d i~~ecfht. 

I. 4. We denote by 1’ the circle 

(1. 41) 
1 - -- 

I I X =e-H-e 12. 

We divide 1’ into arcs & which we call Farey arcs, in the following manner. 

We form the Farey’s series uf order 

(I* 42) N=[l/n,], ’ 

the first and last terms being 0 and -?m We suppose that 
I I 

‘& is a term of t*he 

series, and $ and ‘4 the adjacent terms to the left and right, and denote by 
Q cl 

& (q > I) the intervals 

by jo,l and jl,l the intervals (0, &--) and (I---&-~ 1) l These intervals just 
__ _- - -----. .- --. -- --- - -- . -- - 

1 %&d = 0 if (n&,4) > I. 

’ Landau, p. 49~~ I ’ 
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fill up the interval (0, I), and the length of each of the parts into which jpB is 

divided by 2 is less than f-. and not less thall z-m If now the intervals & 
P qN zpN 

are considered as intervals of variation of 
0 

Fzj where 0 = arg x, and the two 

extreme intervals joined into one, weobtain the desired dissection of r into arcs&*? 

When we are studying the arc &, we write 

(1, 43) 

-2pxi 

X = e q X = e&)X= e,(p)e-‘, 

(1. 44) Y =$?+iu. 

The whole of our work turns on the behaviour of f(x) as Iz I- 1, v - 0, and 

we shall suppose throughout that o < 17 _<_ 5. When =1; varies on &, X varies -- 2 

on a congruent arc &,q, and 

0 
i 

zpz =- argx-- 
Q 1 

varies (in the inverse direction) over an interval - +9tp,4 20 ~I&. Plainly 8,, q 

and O&, q are less than - 2fl and not less than --% so that 
qN ClN 

&q = 
A 

Max (t&q9 &,J < -  l 

0 

In all cases Y-8 = (q + id)-” has its principal value 

exp (-8 log (q + io)), 

wherein (since r is positive) 

1x<310g(.)il+iO)<f7c. -- 
2 2 

By N,(n) we denote the number of representations of n by a sum of r primes, 
attention being paid to order, and repetitions of the same prime being allowed, 

so t*hat 

r The distinction between major and minor arc8, fundamental ilm our work on Waring’s 
Problem, does not arise here. 
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(1. 47) 
1 

2 0 Yf- n xn = (f(X))? 
n- 2 

Finally S, is the sing&r series 

T 
(1. 4%) Q I,*= c,(-- ?a). 

3. Prdiminary lemmas. 

2. I. Lemma I. If p=%(Y)>0 then 

(2. II) f(x) = fJX) + f&L 

where 

(2. 12) fJx) = &d(?i)P-2 log a(x*H3+ xa3+ *- -), 
k, nl > I ti 

(2* 14) 

(2. 16) IC I 24 /c ---’ z-- h 
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8 . G. El. Hardy and J. E. Littlewuod. 

We have 

= 2 e* (pi) 2 d4(lq + j) e-(Zq+j) y  

1 <s’< z-0 -- -- q,(q,j)-1 -- -- -_ 

2+p3 

=r,eq(pj)&qlq -I-j)& / I'-*r(s)(Ep+pdS, 
I 

i 2 2 ' -'& 

2 +,;a, 

= I 
2 '2% 2 cl 

Y-T(s) Z(s) as, 

2--icD 

where 

Since (q;j) = I, we have 1 

and so 

where 

Since Xk(j) = o if (q, j) > I, the condition (q, j) = I may be omitted or retainecl 

at our discretion, 

Thus” 
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Again, if k > I we have1 

GC 
j-1 m-1 

If jjk is a primitive character, 

IQ I 
Vp 

k _ . ..-• 

h 

If x is imprimitive, it belongs to & = $3 where d > I l Then Yk ‘m) has the c 

period &, and 

The inner sum is zero. Hence Cl, = o, and the proof of the lemma is completGP 

2, 2. Lemma 2. We have 

(2. 21) 

We have 

But 

If,(x)1 < A(log (q+1))& 

< A log (q + I) log q 2 Ix I”‘< A(Iog (q + I))~ &j2r 
r-l r=l 

< A(log (q + I))A log ; <A (log (q + I,,+* 
___-_- --- .-~- ,._- -. _- --- _ 

l L:\ndau, p. 485. Th.le result iis stated there o~Iy for R yriluitive character, but tile proof 
is valid also for an imprimitive character when (p, q) = I l 

a Landau, pp. 4% 489, 4~ 
s See the additions1 note at the end. 

569 



10 

Also 

G. H. Hardy and J. E. Littlewood. 

and so 

From these two results the lemma follows. 

2. 3. Lemma 3. We have 

(2. 31) 

where 

the ~‘8, b’s, b’s and t’s are constants depending upon Q and X, Q is o ov 1, 

(2. 32) 

and 

6 E I L 

(2. 33) ozb<A log (q+x). 

AH these results are classical except the last2 

The precise definition of b is rather complicated and does not concern US. 

We need only observe that b does not exceed the number of different primes 

that divide 41$ and so satisfies (2. 33). 

2. 41. Lemma 4. If o<y& then 
-2 

where 

@k 

1 Landau, pp. 509, 510, 519. 
1 Land2ku, p, 5 11 (footnote). 
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(2. 414) 6 = arc tan rl m 
PI 

We have, from (2. 13) and (2. 14), 

2+im 

(2. 415) f( 1 2x = I 2nz i' 
Y-~I‘(s)Z(s)da 

2---&l 

say. But 1 

where 

R 

[f(a)>, denoting general1 y the residue of J(s) for s = O. 

Now z 

L’(s) --- = 
L(s) 1% 

n? c Ev log flu 
& +z 

c EV log a;, --- --- 
v - 

1 tip-"v +z 
v-1 

a'l-" - EY 
V 

I 

4 

8+a 

1 

-I 
L(I-8) 

pe 

-- 2 2 1 

---, 

- L( I-8) 

where & is the divisor of q to which 3~ belongs, i: is the number of primes which 

divide Q but not Q, a,, aa, . . . are the primes in question, and Ed is a root of 

unity. Hence, if 0 = - I-9 we have 
4 -- -A 

1 This application of Cauchy’s Theorem may be justified on the lines of the classical 
proof of the ‘explicit forlllulae’ for #(z) and X(X): see Landau, pp, 333-368. In this case the 

proof is much easier, since Y D-8 r(s) tends to zero, when 1 t 13 a, like an expon.ential ?lrl. 
Compare ppm 134- 135 of our memoir ‘Contributions to the theory of the Riemann Zeta-function 
and the theory of the distribution of primes’, Acta Mathemuticu, vol. 41 (1917)~ pp. rxg-Ig6. 

a Landau, p. 517~ 



Again, if s = - I+it, Y=y+iO, we have 
4 

1 Y-8 1 = 1 Y I4 ex%p (” arc tan t) 3 

1 Y-“I‘(s)I<AI YI:(ltl+z)-:,,p(- ~~:-3rc tan!.-y)l+ 
I 

1 

<A,YIi --2 It I 
10gtltl + 2) 

e--- d 1 t 1’ Y 

and SO 

(2. 418) 

2. 42. T;TTe now consider R. Since 

z( 
--A..-- + r 

I =o 
S-,0 e 

(s=o), 

we have 

.F A,(b + b)- (b- b) (A, + A, log Y) + C,(O) + &(\I) log I’, 

where each of the C’s has one of two absolute constant values, according to the 

value of c1, Since 

w<-b<~, o.<.b<A log(q+I)> Ilog PI<AIog ‘<Al;-:, -- --- r 1 Ii 
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From (2. 419, (2. 416), (2. 4r8), (2. 421) and (z 15) we deduce 

13 

1 1 b I+ I;- l “+I$r:), 

(2. 423) 

Combining (2. 422) and (2. 423) with (2. II) and (2. ZI), we obta,in the result of 
Lemma 4, 

2. 5. Lemma 5. If q > I and xrc is a primitive (and therefore non-principal I) 

dhmter, then 

( 2. jr) 

2ohere 

(2. VI) 1 C(I) I= xq- “IL(o) 1 (Q = I), 

(2. 524 
Further 

pd(I)~=zq-qL’(o)( (e=o). 

(2. 53) 

rind 

I - Cl < 9i (e) < Cl , _ __- =7 - 

This lemma is merely a collection of results which will be used in the proof 

of Lemmas 6 and 7* They are of very unequal depth. The formula (2. 51) is 

classical.2 The two next are immediate deductions from the functional equation 

for L(s)? The inequalities (z. 53) follow from the functional equation and tlhe c 
_ -. - -_-- -~ -._- ~ ------ -. -. _ ---._ 

1 Landau, p, 480. 
i! Landau, p, 507. 
’ Landau, pp. 496, 4g7* 
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absence (for primitive x) of factors I - E,,G;S from L. Finally (2. 54) is due 

to GRONWALL.~ 

2. 61. ibuna 6. I/ M(T) Z’R the number of zeros q of L (s) for which 

o<T-qyJ<T+1, --- -- - -_ -- -- _-- 
then 

(2. 611) M(T)<A(log (q+I))A log(T+z). 

The e’s of an imprimitive L(s) are those of a certain primitive L(s) corres- 

ponding to modulus &, where & ( q, together with the zeros (other than s = o) 

of certain functions 

where 

I I &y = L a,lq* 
__--.-----1--1_4- __---L.---.--. - ---- _ ---------Pp..-- - 

l T. H. GRONWALL, ‘Sur les &ries de Dirichlet correspondant A des caract&res complexes’, 
Rendico~~f~ de1 C%mZo Matemat& di Palemno, vol. 35 (lgq), pp. 145-159. Gronwall proves that 

for every complex x, and states that the same is true for meal x if hypothesis B (or a n~.~uh 
less stringent hypothesis) is satisfied. LAXTDAU (‘nber die Xlassenzahl imagingr-quadratischer 
Zahlkijrper’, Giittinger Nuchrichten, x918, pp. 28j- 295 (p. 286, f .  n. 2)) has, however, observed 
that, in the case of a real x, Gronwatl’s argument leads only to the slightiy less precise 
ineqnaIi ty 

Landau also gives a proof (due to HIWKE) that 

for the special character ( > 
3 12 associated with the f  undamell t,al d iscri tninnnt - q. 

The first results in this direction are due to Landau himself (‘uber das Xchtverschwin- 
den der Dirichletschen Reihen, welche koqlexen Charakteren entsprechen’, Math. AWK&Z, 
vol. 70 (x911), pp. 69-78). Landau there proves that 

for cotnplex x. 
It is easily proved (see 11, 75 of Landau’s lab quoted nmnloir) that 

1 w> I < A (log a>‘, 
so that any of these results gives us more than all that we require. 
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The number of /dv’s is less than A log (q + I), and each Ev has a set of zeros, 

on tT= O, at equal distances 

2 2% 2% ~- 
log ai > log(q) l)’ 

The contribution of these zeros to M(T) is therefore less-than A (log (q + I))‘; 

and we need consider only a primitive (and therefore, if g > I, non-principal) L(s). 

We observe : 

(a) that CI is t-he same for L(s) and L(s); 

(b) that L( ) s and z(s) are conjugate for real s, so that the b corresponding to 

E(s) is 6, the conjugate of the b of L(s); 

(c) that the typical e of z(s) may he taken to he either c or (in virtue of t.he 

functional equat.ion) I -e, so that 

is real. 

Bearing these remarks in mind, suppose first tlhat 0 = I. We have then, 

from (2. 51) and (2. ~zI), 

since 

Thus 

(1-f) (I-&) = r. 

(2. Grz) (2%(b)+XI< A log (q-t r). 

On the ot#her hand, if a = o, we have, from (2. 51) and (z, ~zz), 

and (2. 61,) follows as before. 

2. 62. Again, by (2. 31) 

(z+ 621) 
L’(I) 
LII)=bfb 
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16 G. 11. Hhdy and J. E. Littlewood. 

for every non-principal character (whether primitive or not). In particular, when 
x is primitive, WC have, by (2. 62d, (2. jq), and (2. 33)9 

(2. 622) A(log(q+1))A. 

Combining (2. GIZ) and (2. 622) we see that 

S < A (log (q + I))A 

ItIl(b A (log (q+ I.))4 

2. ~3~ If now q > J , and 3~ is primitive (so tha,t b = o) , and s = z + i T, we 

have, by (2. XI), (2. x3), and (2. 624): 

<A+Alog (q+G+A (log(q+I))A+A log (ITl+z) 

< A (log (q + d)A log !ITl+ z), 

Every term on the left hand side is greater than A, and t’he number of terms 

is not less than M( 1’). Hence we obtain the result of the lemma. We have 
excluded the case q = I, when the result is of course classicaL 

2. 71. Lemmu 7. We have 

(2. 71’) Jlw4 (1% tq+ I))4 

Suppose first that x is non-principal. Then, by (2. 621) and (2. 54), 
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Pslrtitio numerorum. HI: On the expression of a number as a sum of primes. 17 

We write 

(2. 7x3) z=z,+z,* 

where Z, is extended over the zeros for which I - @~!R(q) $0 and Z, Over 

fhose for which R(q) = O, Now Z, = X’, where X’ is the S corresponding to a 

primitive Z(s) for modulus &, where Q j q. Hence, by (2. 623), 

(2a 714) 
12 I 

1 < A (log (Qt I))A < A (log (q + xp* 

Again, the Q’S of Z, are the zeros (other than s = o) of 

II (I-$+ 

v v 

the &Q being divisors of g and zV an m-th root of unity, where m=rp(&) <ql; 
1. 

so that the number of &s is less than A log q and 

where either ctiV = o or 

Let us denote by gv a zero (other than s = o) of I - ev~F8, by & a ey for which 

le I v --I, < -- and by erry a ev for which (gv I> I. Then 

Any ey is of the form 

27ci(m + tow) ’ 
ev = logflv -’ 

where n2 is an integer. Hence the number of, zeros & is less than A log aV or 

than A log (q+ I); and the absolute value of the corresponding term in our sum 

is less than 

(2. 716) 
A < A log 6 

lel I I mv <Aq log (q-t 1); 

l For (Landau, p. 482) ey = X(P;), where X is a character to modulus Q. 
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18 

so that 

(2* 717) 

RISO 

(2. 718) 

G. H. Hardy and J. El, Littlewood. 

I I 
2 < 4 (log (a + w 
Q’V 

< A (log aJe 3 $ < A (log cq + I))? 
m-1 

Rem (2. 715), (2. 717) and (2. 718) we deduce 

and from (2. 71x), (2. 714) and (2. 7x9) the result of the lemma. 

2. 72. We have assumed that x is not a principal character: For the 

principal character (mod. q) we have1 

Since a=o, E=I, we have 

b-x = _-~.- - 
8 

Ibl<A log(q+I)+IZ(~-~--~+~~l. 
I 

This correeponds to (2. 712), and from this point the proof proceeds as before. 



Partitio numerorum. 311: On the expression of a number as a sum of primes. 

2. %I. Lemma 8. If o < q( 5 then -- 2 

19 

(2e 811) 

where 

(2. 812) 

f I  ) X= 
111 (Ix) ‘k-H- + i CI,GIc + P, 

k-1 

Gk= 2 r(e) Y--, 

Qk 

(2. 813) (PI<Al/~(log(p+l))A(q+?-:+,Y(:d-:), 

(2. 814) d = arc tan 3 4 
PI 

This is an immediate corollary of Lemmas 4 and 7. 

2. 02. Lemma g. If o <r_<;f then 
2 

(2. 821) f(x>=W@, 

where 

(2. 822) 

(2, 823) 

(2. 824) 

We have 

where Z, extends over $s for which 1~ 11 r j -- 

h 2 1 we have 

I ? 

those for which Iyl< P a 

11 YkPexp (y arc tan 5) 

- (+ arc tan !$j 
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20 G. H. Hardy and J. E, Littlewood. 

(since 1 YI < A and, by hypothesis R, p(o>. The number M(T) of q’s for which 

1 yl lies between T and T + I (T _>_ O) is less than A (log (q + I))~ log (T + z), by 

(2. 611). Hence 

III 1 1 Y @-‘i e-sly1 < A (log (q + r))A 2 (n + I,“-; log (n + 2) ewdn -- -- 
n -I 0 

< A (log tq + 1,)~8-@-’ log (; + 2) 3 

(2. 826) &ll’(e) Y-1 < A (log (q * I)yy yl-%I-@-~ log ; + 2 l 

(  1 

2. 83. Again, once more by (2. ~II), 2 
2 

has at most A (log (q + x))A terms. 

We write 

(2. 831) z2= z,, + 222’ I 

z 221 
applying to zeros for which I - 0.2 pT_ 0, and 2 212 to those flor wFic)r p = o. 

and in 2, f, IT 
7 

(2. 832) p, * 
I 

Again, in Z, 2, 
I 

1 Y-@I= f Y I-Pexp ‘y arc tan R) < A I Y 1-P; 
t 

(e) I< A. Hence 

~<~IYi-~~211~(e)l<~IYl-~~~~~<A(log(q+I))~(YJ-~. I t 

IYI<A and 

-I<Aqlog(q+I), 
Id 

by (2. 716); so that 

(2+ 833) 

Mz * 2 la, < 4 (log (a + IHA* I 

From (2. 829, (2. 826), (2. 831), (2. 832), and (2. 833), we obtain 



Partitio wmerorum, III: On the expression of a number as a sum of primes, 21 

say; and from (2. 8x), (z. 812), (2. 8r3), (2. 821), (z 822) and (2. 834) we deduce 

that is to say (2. 823). 

2. g. Lemma IO. We have 

(20 91) 

We have in fact 1 

h. = cp(q) > Aq (log q)-4 

rp(q) > (I -a> e-G--3P 
1% 1% Q 

(q > qo (4)) 

for every positive d, C being Euler’~ constank 

3. Proof of the main theorems. 

Approximation to u,(n) by the singulccr series. 

3. IX. Theorem A. If r is an integer, r > 3, and -- 

so that 

(30 114 

then 

nr-1 
( 

r--I+(d) 
) 

nr-1 

(3- 113) Yr (n) = ---- s, + 0 
(r -I)! 

n 4 (log nJB m (G+, 
l 

-_I_ 

l Landau, p. 217, 
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22 G. H. Hardy aud J. E, Littlewood. 

where 

It is to be understood, here and in all that follows, that O’s refer to the 

limit-process n - 00 , and that their constants are functions of r alone. 

If 7~2, we have 

the path of integration being the circle Ix\= e--EI, where H = $ SO that 

Using the Fmey dissection of order IV = [l&J, we have 

say. Now 

I~-cp’I~I~I(If”-ll+If’-2~I+***+l~1’-11) 

< B(I@fy + prpr-‘ll)* 

Also fX-~I=e~“<A. Hence 
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3. 12. We have r/=H=A 
?a 

and q-< I/i, and so, by (2. 8~23)~ G 

where 6 7 = arc fan -. 
loI 

We must now distinguish two cases. If [Oi< y, we have --- -- 

and 

Tf on the other hand 17 < 10 1 $8p,p, we have 

Thus (3, 123) holds in &her case. Also 0) 1: and --- 2 

(3* *24) IQ,I<Ane+:(logn)A 

3. 13. Now, remembering that r- > 3, we have == 

a, 

J 

l 

< Bh-(r-l} 
l1 

( . f  + ,4)2)- 2 r-1) d,g 

0 

< Bh-(r-1) nr--2; 
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by (3. 124) and (2. 91). 

3. 14. Again, if arg x = q, we have 

A 
<--log -I-- <Anlogn. 

I- x I I ( 1 I- x I I 

Similarly 

Hence 

r-1+(&“) 
<Bn 4 (log n)C 
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From (3. x6), (3, r17), (3# Irg), (3. 131) and (3e 141) We d&ce 

(38 142) Y&t) = pJq(-np)lp,* + o(,_, +(@-J(log n,s), 

where Zp,* is defined by (3. 11s). 

3a 5 In hh* we write X = e- y, dX e- e-53 Y, so that Y varies on the 

straight line from q+ iO,,, to q- S&, Then, by (Z 822) and (3. II@, 

?I + $,q 

Now 

(3* 154 

l 

t  

M  
I  q+p 

Ypq J 

Z Y-‘@dY + 0 
(J 

‘lq+ iO~-rdtj 

+I+ iOp,p rl --ia 4l 

?p-l 
=27&---+o 

(r - I)! 
(jq+ iuI-‘do), 

OP 

0, = Min (Op,q, &q) =>- -I- l 

Pa 

-2qN 

From (3, qr), (3, x52) and (3. 153), we deduce 
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26 G, H. Hardy and J. E. LiMewood. 

Since 7+3 and O>zv zr<r--I--I=<=~--I~ ; and from (3. 142), -- =2 2 4 
(3. 154), and (3. 155) we obtain 

n’--1 r 

(3* 156) Y,(n) = -~ El (4) 

(r- I)! 21 1 (P(4) 
e,(- np) + O(n~-l+(@-~+h~ n,B) 

I4 !? 

3. 16. In order to complete the proof of Theorem A, we have merely to 

show that the finite series in (3. 156) may be replaced by the infinite series &. Now 

and ~r<r---I+ Hence this error may be absorbed in the second term 

of (3. 156), and the proof of the theorem is completed. 

Summation of the singular series. 

3. 21. Lemma x If 

u?hew n is a positive integer and the summation extend,c over all posilive v&es of p 
less than and prime to q, p = o being included when q = I, bzlt not otherwise, then 

(39 24 

(3a 213) 

if (q, q’) = I; and 

cq c-n> = c,(n); 

%Pt n ( ) = cq (n) Cq’ (4 

(34 214) 

where d is a common divisor of q and 12, 

The terms in p and g - p are conjugate. Hence c,(n) is real. As c,(n) 

and c&-n) are conjugate we obtain (3. 212)? 

-~--_-_______- -- -- - 

1 The argutwmt fails if y = I or q = 2; but c,(n) = c,(-ok) = I, c2(n) = cs( - 91.) = - I. 

586 
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Again 

cq(4 C@(n) = Zexp ( 
P# 

where 

P = pq’ + $q* 

Whon p assumes a set of rp(q) values, positive, prime to Q, and incongruent to 

modulus q, and p’ a similar set of values for modulus q’, . thera P assumes a set 

of cp(q) rp(a’) = rp (4Qr) values, plainly all positive, prime to QQ’ and incongruent t#o 

modulus q$. Hence we obtain (3. 213). 

Finally, it is plain that 

which is zero unless q 1 n and then equal to Q. Hence, if we write 

and therefore 

by tbo well-known inversion formula of M6bius.l This is (3, 214)~~ 

3, 22. hmma 12. Suppose that r > 2 and - - 

Then 

(3* 222) S -* r -0 

1 Landau, p. 577* 

a The formula (3* 2x4) is proved ~~'RAMANJJAK ('Qn certain trigonometrical sums and t,heir 
appIications in the theory of numbers, + Tmns. Camb. Phd. Sot., vol, 22 (IgIg), pp. 259-276 (p. 260)). 
It had already been given for n = z by LAX'DAU (Ihdbuch (Igoy), p* 572: Landau refers to it as 
a known result), and in the general case by JEXSEN (‘Et ngt Udtryk for den talteoretiske Funk- 

tion z p(n) = M(n)‘, Den 3. Sk~difiaviske Ma fematikey-Kongms, K&iatzia 1914 Kristiania (191 j), 

p, 145). Ramanujan makes a large nulnber of very beautiful applications of the su~ns in ques- 
tion, and they may well be associated with his nalne. 



28 G. H. Hardy and J. E. Littlewood. 

ij n and r are of opposite parity. But if TZ and r are of like parity then 

(39 2231 
I 4s 

-g+ (- I,‘#-I) 
r =zcJ 

P 
-I)‘-(-# 

where p is an odd prime divisor of n and 

(3* 224) 

Let 

cq(- n) = A,. 

Then 

if (qt q’) = I; and therefore (on the same hypothesis) 

sines A&, 963, l ’ l vanish in virtue of the factor pt (q) . 

3m 234 If +n, we have 

p(a) = - x, rp(ti) = W--r, ta(n)-!l(ti)=--r, 

(3. 231) A 
I3 

= W I  

( -  TP l 

w -  9’ 

If on the other hand ti/ n, we have 

(3- 232) A 
(- 1)’ 

a= 
(a - i)r-l’ 

l Since 1 c&2) I(2 6, where 6 1 n, we have C&I) = O(I) when n is fixed and q-m. Also 

by Lemma TO, ~$4) > Aq (log qjeA, Hence the series and products concerned are absolutely 
convergent. 
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Hence 

(3a 233) 

If 7i is even and r is odd, the first factor vanishes in virtue of the factor 

for which ti = 2; if n is odd and r even, the second factor vanishes similarly. 

Thus S, = o whenever n and r are of opposite parity. 

Jf 12 and r are of like parity, the factor corresponding to G = z js in any 

case z; and 

S r C 2fi I---- 
( 

(- r)r 

(a- IN 

(p - I)'+(- 1P(p - I) 

1)” @ (P - I)’ - (- ar 

-9 

a-3 
1 

as stated in the lemma. 

Proof of the final formulae. 

3. 3. Theorem B. Sttppose that r _>_ 3. -- Then, if n and r are of unlike parity, 

(39 31) 3% 1 n) = O(nT-l), 

But if n and r a.re of like purily then 

(5 34 
zcy 

9+(n) co ~ nT-1 - 
n( 

(P I)'+(-I)'(P - I)# -~ 
(r-1)! (P 

- 1y-(- I)' ' 
P 

1 

where p is an odd prime divisor of n and 

(3* 33) 
CID 

c n( 
(- I)’ 

r s I - ------~--- . 

e-3 
(a’- IY 1 

This follows immediately from Theorem A and Lemma 12.~ 

3. 4. Lemma 13. If r > 3 and ~YL and r ure of like purity, then = 

for nl n,(r>+ - _-~----. 

v,(n) > Bnr-l, 

l3esults equivalent to these are stated in equations (5, II)-(5. zz) of our note 2, but 
iricorrectly, a factor 

(log n>- 

being omitted in each, owing to a momentary confusion between V&Z) and A$(?&). The ~~(12) 

of z is the N,(n) of this memoir. 
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This lemma is required for the proof of Theorem C, If r is even 

If r is odd 

n( 
(P - rp-p++ -- 

(P - I)‘+ I: i n( 

(P --I>'-p OQ ti 
> - 

(P - 1)’ 1 n( 
> I------ 

(a-1)3 = ) 
A 

’ 
a-3 

In either case the conclusion follows from 13. 32). 

3. 5. Theorem C. I/ r) 3 and n und r are of like parity, then 

We observe first that 

VVrite now 

(3. 5d 9% 
1 r1 = Y, t 3’ r, N r = N’, + N”, , 

where Y$ and N’, include all terms of the summations for which 

Then plainly 

(3m 513) v’,(n) L (I - 6>’ (log njr Nfr(n). - 

But q.(n) > Bnr- 1 for nzn,(r), by Lemtia 13; and so 

for every positive 8. 
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am (3. 54, (3m 54, (39 513), and (3. 514) we deduce c 

(I -dy (log ~z)~(N~--N”,)<z(~- u”,<(log 7a)rNrr - 

( I - 6)’ (log 7-q N, < - Y,- + oh,) < (log njr Nr, - 

As 6 is arbibary, t,his proves (3. 51). 

3. 6. Theorem D. Ewry large odd number n is ihe sum 01 three odd p imes, 

The asymptotic formula for the number of representations M,(n) is 

(3+ 61) 

where p is a prime divisor of n and 

n” 
N3b) cv cqofl TT( 

(P --I)@--) 
pe-- 

-3P-I-3 ’ 1 

This is an almost immediate corollary of Theorems B and C These theo- 

rems give the corresponding formula for N,(n). If not all the primes are odd, 

two must be z and ‘YL -4 a prime. The number of lsuch representat-ions is one , 

at most. 

Theorem E. Every large even number n is the sum of four odd primes (of 

which one may be assign ta.1 

sentations is 

The asymptotic formula fur the lotal number of repe- 

(3m 63) 
n3 

N,(n) cv% -- --HP”--3P-t 3) 
3 4(log n>” 

where p is an odd prime divisor o/ n and 

(34 64) 

m 
C 

I 
4 

zzz 
n( 

I - - -  l 

a-3 
(a- I )4  

1 

This is a corollary of the same two theorems. We hnve only ta observe 

that the number of representations by four primes which are not all odd is 

plainly O(az). There are evidently similar theorems for any greater value of r, 
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4. Remarks on 9Goldbach9s Theoremf. 

4* I. Our method fails when r = z l It does not fail in principle, for it 

leads to a definite result which appears to be correct; but we cannot overcome 

the difficulties of the proof, even if we assume tbat @ = 4. The best upper 
2 

1 

bound that we can determine for the error is too large by (roughly) a power n4. 

The formula to which our method leads is contained in the following 

Conjecture A. Every large ellegh number is the sum of two odd primes. T?de 

asymptotic formula for the number of representatives is 

(49 11) N,(n) CKJ 2C 

where p is an odd prime divisor of n, and 

(4. 12) 

We add a few words as to the history of tJhis formula, and the empirical 

evidence for its truIW 

The first definite formulation of a result of this character appears to be 

due to SYLVESTER", who, in a short abstract published in the Proceedings of 

London Mathematical Society in 1871, suggested that 

where 

Since 

Jp.I..I.)=n (I-(+2) n (+4I (I-$ a<G a<& ti<G -- .--- --- -~ 
1 As regards the earlier history of ‘Goldbach’s Theorem’, flee L. E. DICKSON, E&tory of 

the Theory of Nambem, vol. I (Washington IgIg), pp. 42x-425. 
a S. J. SYLVESTER, ‘On the partition of an even number into two primes’, Proc. Lotdon 

Muth. Sm., ser. I, vd. 4 (187 I), pp* 4-6 (Math. Pupem, vol. 2, pp. Tog- 7 11). See also ‘On the 
Goldbach-Euler Theorem regarding prime numbers’, Nature, vol. 5s (1896~7), pp. 196-197, 269 
(Math. Papers, vol. 4, pp. 734-737)4 

We owe our knowledge of Sylvester’s notes on the subject to Mr. B. M. WITAON OE Trinity 
College, Cambridge. See, in connection with all that follows, Shah and Wilson, I, and Hardy 
and Littlewood, 2. 
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and 1 

where C is Euler’s constant, (4. 13) is equivalent to 

and contradicts (4. II), the two formulae differing by a factor z e-C= I: , 123 ,  .  l 

We prove in 4. 2 that (4+ XI) is the only formula of the kind that can possibly 

be correct, so that Sylvester’s formula is erroneous. But Sylvester was the first 

to identify the factor 

to which the irregularities of N,(n) are due. There is no sufficient evidence to 

show how he was led to his result. 

A quite different formula was suggested by ST;~CKEL~ in 1896, viz., 

N,(n) cv-- n --II(&)* ilog n)e 

This formula does not introduce the factor (4. 16), and does not give anything 

like so good an approximation to the facts; it was in any case shown to be 

incorrect, by LANDAU 3 in rgoo. 

In IgrS there appeared an uncompleted essay on Goldbach’s Theorem by 

MERLTN." MERLIN does not give a complete asymptotic formula, but recognises 

(like Sylvester before him) the importance of the factor (4. 16). . 
About the same time the problem was attacked by BRUNT. The formula 

to which Brun’s argument naturally leads is 

l Landau, p. 218. 
a P. ST~CKET~, ‘ober Goldbach’s empirisches Theorem : Cede grade Zahl kann als Summe 

van zwei Primzahlen dargestellt werden’, Giittingw Nachrichten, x896, pp. zgz-zgg. 
* E. LAXDAU, ‘ober die zahlentheoretische Funktion co (rt) und ihre Beziehung zum Gold- 

bachschen Satz’, Gtittingw Ndwichten, fgoo, pp. 177-186. 
4 3. MERLIN, ‘Un travail sur lee nombres premiers’, Bulletin des sciences mn thdm aiiques, 

vol. 39 (xgq), pp. 121-136. 

’ V. BRUN, ‘uber das Goldbachsche Gesetz und die Anzahl de,r Prirnzahlpaare’, Archiv fez 
Muthematik (Christiania), vol. 34, part 2 (x915), no. 8, pp. I -x5. The formula (4. 18) is not actually 
formulated by Brun: see the discussion by Shah and Wilson, I, and Hardy and Littlewood, 2. 

See also a second paper by the same author, ‘Sur les non&es premiers de la forme ap+ b’, 

ibid., part. 4 (IgIrj, no. 14, pp. r-g; and the postscript to this memoir. 
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(40 17) 

where 

N,(n)cuzHnn 
P 

This is easily shown to be equivalent to 

(4- 18) N,(n) cv 8 e--2Y c, 

and differs from (4. II) by a factor 4e-2C= I .263 . . . The argument of 4. z 
will show that this formula, like Sylvester’s, is incorrect. 

Finally, in 1916 STXCKEL 1 returned to the subject in a series of memoirs 

published in the Sitxungsberichte der Heidelberger Akademie der Wissen~chajten, 

which we have until very recently been unable to cons&. Some further remarks 

concerning these memoirs will be found in our final postscript. 

4. 2. We proceed to justGfy our assertion that the formulae (4. 15) ancl 

(4* 18) cannot be correct. 

Theorem F. Suppose it to be true fhaP 

(4. 21) 

if 

and 

(4m 4 

if n is Q&L Then 

(49 23) 

P N,(n) m  A ---E---n (2) 

(lug 7Q2 p p - 2 

n = 2a pa plal . . . (a > 0, a, a’, l l l > 01, 

A=zC,= 

l P. STACKEL, ‘Die D~rstellung der geracien Zahlen als Summen van zwei Yrimzahlen’, 8 
August 1916; ‘Die Lfickenzahlen r-ter Stufe und die Darstellnng der geraden Zahlen als Sum- 
men und Differenzen ungerader Primzahlen’, I. Teil 27 Dezember 1917, II, Teil 19 Januar 1918, 
111. Teil rg Juli rgr8. 

’ Throughout 4, z A is the same contitant, 
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Write 

(49 24) iii(n)= AnTI[ (E) (n even), a(n) =o (7~ odd). 
P 

Then, by (4. 21) and Theorem C, now valid in virtue of (4m ZI), 

it being understood that, when n is odd; this formula means 

Further let 

these series being absolutely convergent if w(s) > 2, D?(u) > 1. Then 

C 
AZ 

2 -au 
P 

--au 
P 

I-tZct’U (P -I)@'- I). l . 

00 

+ ’ ’ (p -  2) (p’ -  2) rn .  I  

say. Suppose now that U- I, and let 

N 

a-- I)2 I 
= - 

I 
z-. 

(a -p--1 c, 

Hence 
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On the other hand, when AZ- I, 

and so1 

It is an elementary deduction z that 

lvhen s-z; and hence” that (under the hypotheses (4. 21) and (4. 22)) 

(4m 29) J( 1 s N-I. 
s-2 

Comparing (4. 27) and (4. 29), we obtain the result of thf 

4. 3, The fact that both Sylvester’s ancl Brun’s 

erroneous constant factor, and that tOhis factor is in each 

of the number s-c, is not so remarkable as it may seem. 

In the first place we observe that any formulu in 

dedwed from considerations of probability, is likely to be 

theorem. 

formulae contain an 

case a simple function 

the theory of primes, 

erroneous in just this 

Wag. Consider, for example, the problem ‘what is the chance that a large number 

n should be prime?’ We know tha.t the answer is that, the c!lance is approxim- 

ately -I-. 
log n 

Now the chance that n should not he divisible by any prime less t#han a 

fixed number x is asymptotically equivalent to 

n (1-s); 
a’<X 

l We here use Theorem 8 of our paper ‘Tauberitin theorems concerning power series and 
Dirichlet’s series whose coefficients are positive’, Pnx London Math* Sot., ser. 2, vol. 13, pp, 
174~-rgz* This is the quickest proof, but by no nleans the most eIementary. The formula 
(4. 28) is equivalent to the formula 

used by Landau in his note quoted on p. 33, 
2 For general theorems including those used here as very special cases, see EC. KNOPP, 

‘Divergenzcharactere gewisser Dirichlet’scher Reihen’, Actn Maihemnticn, vol. 34, 1909, pp. IQ- 
q (e. g, Satz 111, p. 176)~ 
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and it would be natural to infer1 that the chance required is asymptotically 

equivalent to 

But B 

and our inference is incorrect, to the extent of a factor w-c. 

It is true that Brun’s argument is not stated in terms of probabilities 3, 

but it involves a heuristic passsge to the limit of exactly t#he same character 

as that in the argument we have just quoted. Brun finds first (by ,zn ingenious 

use of the ‘sieve of Eratosthenes’) an asymptotic formula for the number of 

representations of n as the sum of two numbers, neither divisible by any fixed 

number of primes. This formula is correct and the proof valid. So is the first 

stage in the argument above; it rests on an enumeration of cases, and all refe- 

rence to ‘probability’ * is easily eliminated. It is in the passage to the limit 

that error is introduced, and the nature of the error is the same in one case 

as in the other. 

4. 4. SHAH a,nd WILSON have tested Conjecture A extensively by comparison 

with the empirical data collected by CANTOR, AUBRY, HAUSSNER, and RXPEBT. 

We reprint their table of resu1t.s; but some preliminary remarks are required. 

In the first place it is essential, in a numerical test, to work with a formula 

N&2), such as (4. II), and not with one for p,(n), such as (4. ~5)~ In our 

analysis, on the other band, it is v,(n) which presents itself first, and the formula 

for N,(n) is secondary. In order to derive the asymptotic formula for &(n), 

we write 

v2(n) = 2 log G log a’ cv (log 7.~)~ N&) l 

The factor (log YZ)~ is certainly in error to an order log n, and it is more natural5 

to replace v&2) by 

((lq %I2 - 2 log n + l ) N, (n). 
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For the asymptotic formula, naturally, it is indifferent which substitution 

we adopt. But, for purposes of verification within the limits of calculation, it is 

by no means indifferent, for the term in log n is by no means of negligible 

importance; and it will be found that is makes a vital difference in the plausibility 

of the results, Bearing these considerations in mind, Shah and Wilson worked, 

not with the formula (4+ II), but with the modified formula 

Failure to make allowances of this kind has been responsible for a good 

deal of misapprehension in the past. Thus (as is pointed out by Shah and 

Wilson l) Sylvester’s erroneous formula gives, for values of n within the limits 

of Table T,’ decidedly belter results than those obtained from the ww~~dified 

formula (4. II). 

There is another point of less importance. The function which presents 

it-self most naturally in our analysis is not 

f(x) = 2 log 23xa 

b t U 

The corresponding numerical functions are not v,(n) and N,(n), but 

(so that Q2(n) is the number of decompositions of n into two primes OT two powers 

of primes). Here again, N,(n) and Q,(n) are asymptotically equivalent; the diffe- 

rence between them is indeed of lower ordtlr than errors which we are neglecting 

in any case; but there is sometJhing to be said for taking the latt,er as the basis 

for comparison, when (as is inevitable) the values of n+ are not very large. 

In the table the decompositions into primes, and powers of primes, are 

reckoned separately; but it is the total which is compared with I. The value 

of the constant 2 C, is I .3203. It will be seen that the correspondence between 

the calculated and actual values is excellent. 

l 2. c., p. 242. 
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12 

30 = 243.5 6+4 =IO 22 

32 = za 4+7 =I1 8 

34 = 2. I7 7+6 =x3 9 
36 = z2 l 3z 8+8 =I6 17 

210 = 2-3-547 

214 = 2.107 

216 = 9. 33 

256 = z8 

2,048 = 2” 

2,250 = 2 l 32, 53 

2,304 = 9.3’ 

2,306 = 2. I 153 

2,320 = 2.3.5.7.11 

3,888 = z4. 3’ 

3,898 = 2 l 1949 

3,990 = 2.3+7.rg 

4,096 = 2’” 

4,996 = 2’: l ‘249 

4,998 = 2 ‘ 3 , 7” ,417 

5,000 = z3. s4 

42 + 0 = 42 

I7 + 0 = I7 

28 + 0 = 28 

16 + 3 = 19 

50 + 17 = 67 

I74 + 26 = 200 

x34 + 8 = x42 

67 + 20 = 87 

228 + 16 = 244 

49 

16 

32 

17 

63 

179 

136 

69 

244 

186, + 24 = 210 

gg + 6 = 105 

328 + 20 = 348 

104 + 5 = 109 

q24 + 16 = 140 

228 + 20 = 308 

rjo + 26= 176 

197 

99 

342 

I02 

x*9 

305 

I57 

8,190 = 2 4 32. 5.7 ,r3 

8,192 = 2’” 

8,194 = 2 , 17 ,241 

10,008 = 2?, 3? 139 

10,010=2.$7.1x.13 

10,014 = 2,3. 1669 
- 

30,030 =2.3.~.7.11.13 

36,960=2:‘.3.5.7.~ 

39,270 = 2m3.~.7*11.17 

41,580 = 22 .3”.5.7.rr 

50,026 = 2.25013 

50,144 = 25 I 1567 

170,166 = 2 - 3.79 ’ 359 

170,170 = 2.5.7,II.I3,X7 

170,172 = 22, 3”. 29, 163 

578 + 26 = 604 

150 -+ 32 = r82 

192 + IO = 202 

- 

388 + 30 = 418 

384 -I- 36 = 420 

408 + 8 = 4x6 

1,800 + 54 = 1854 

1,956 + 38 = 1994, 

2,152 + 36 = 2188 

2,~40 + 44 = 2184 

702+8 ~710 

60: -t 32 = 706 

3,734 + 46 = 3780 

3,784 --I- 8 = 3792 

3,732 + 48 = 3780 

597 

171 

219 

396 

384 

396 
--- 

1795 

1937 

2213 

2125 

692 

694 

3762 

3841 

3866 
-- 

Table I. 
- 

0 * 45 

I .38 

I a44 

0 * 94 
-- 

0 .85 

I.07 

o. 88 

I l IO 
-- 

I .06 

I. II 

I .04 

I .26 

I . 00 
.--~ 

I .06 

I .06 

I  l 02 

I .06 
-- 

I m I8 

x .OI 

I I2 
-.~ 

I .OI 

I .06 

0.92 
-- 

x .06 

I IO9 

I A5 
-- 

I .03 

I x3 

0 .99 

I .03 

I .03 

I l 02 
-- 

I ,oo 

0 s 90 

0.98 
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0 ther probl 

5 I. This last section is frankly conjectural, and is not to be judged by 

the same standards as $5 r-3. 

The problems to which we have applied our method may be divided roughly 

into three classes. The typical problem of the first class is Waring’s Problem. 

Our solution of this problem is not yet its conclusive as we should desire, and 

we have not, exhausted the possibilities of our method, even when allowance is 

made for still unpublished work; WC; cannot at present, prove, for example, that 

every large number is the sum of 7 cubes or 16 biquadrntes. But our proofs, 

so far as t-hey go, are complete. 

The typical problem of the second claPs is that, considered in $5 r-3. The 

arguments by which we prove our results are rigorms, but the results depend 

upon the unproved hypothesis R. 

There is a third class of problems, of which Goldbach’s Problflm is typical. 

Here we are unable (with or without Hypothesis R) to offer anything approaching 

to a rigorous proof. What our method yields is a formula, and one which seems 

to stand the test of comparison with the facts. In this concluding section we 

propose to state a number of further formulae of the same kind, Our apology 

for doing so must be (I) that no similar formulae have been suggested before, I 
and that the process by which they are deduced has at any rate a8 certain 

algebraical interest, and (2) that it seems to us very desirable that, (in default 

of proof) the formulae should be checked, and that we hope that some of the 

many mathematicians interested in the computative side of the theory of numbers 

may find them worthy of their attention. 

Conjugate problems: the problem of prime-pairs. 

5. 2. The problems to which our method is applicable group themselves in 

pairs in an interesting manner which will be most easily understood hy an example. 

In Goldbach’s Problem we have to study the integral 

where 
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The formal transfol’mations of this integral to which we are led may be stated 

shortly as follows. We divide up the range of integration into a large num- 

ber of pieces by mea’ns of the Farey arcs &,q, + varying over the interval 

2 p:‘G (----- 0 
\ 2FX 

q - p’q’ 
-~ -t 

4 
OP4l when x varies over &,,*. We then replace f(x) by the 

appropriate approximation 

,11(q) I P (59 
(P(4) ----=- Y&f MP) log --.- ( 1 

‘p(4) I 
X n 

4) -CP-E by u, and the integral 
Q 

(5 22) 

bY . 

(59 23) 

a3 

n ep (- n p) 
s 

,l-iw 

----? 
(I - zwy 

dw = z 7r;nep (- np). 

-Xi 

We are thus led to the singular series S,. 

Now suppose that, instead of the integral (5. zr), we consider the integral 

(5 24) 

23-c 

J(R) = -& 
27c .i‘ 

f (R&) f (Re-“w) ekiwd& 

0 

where now II: is a fixed positive integer. 

ekiu 
----- 

(;-iu) (; + iujdZl 

Instead of (5. 22), we have now 

e,(k 
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We are thus led to suppose that 

(5 25) J(R) CA2 P (d 
2 a 1 --- 2 e, (kp) 

cf(P) 
1 -- 

when B-e Ta, ?&--+ob, 

The series here (which we call for the moment S’,) is the singular series 8, 

with -- k in the place of n. On the other hand 

if both G and G + k are prime, and ati = o otherwise. Hence we obtain 

-- 
Here R-e It, but the result is easily extended to the case of continuous ap- 

proach to the limit, I, and we deduce’ 

And from this it would be an easy deduction that the number of prime pairs 

differing by II:, and less than a large number n, is asymptotically equivalent to 

We are thus led to the following 

Conjecture B. There are infinitely mnny prime pairs 

for every even k. If P,(n) is the number o# @-s less than n., then 

where C, is the constant of 5 4 und p is an odd prime divisor of k. 
-- - --~~ 

1 We appenl again here ta the Tauberian theorem referred to at the end of 4* 2 (f. II. I). 
This time, of course, there ia no question of an alternative argument. 

2 Kate that S’, = o if k it3 odd, RB it should be. 
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It will be observed that the analysis connected with Conjectures A and R, 

which deal respect-ively with the equations 

n-a+& d=a+k, 

is substadially the same. It is pairs of problems connected in this manner that 

we call conjugate problems I 

Numerical verifications. 

5. 31~ For k- 2, 4, 6 we obtain 

(5 313) 

Thus there should be approximately equal numbers 

by 4, but abo& twice as rr~any differing by 6 

below the limits 

of prime-pairs differing by z artd 

The actual numbers of pairs, 

IOO, 500, 1000, 2000, 3000, 4000, 5000 
are 

The correspondence is as accrrrate as could be desired. 

5, 32, The first formula (5. 311) has been verified much more systematic- 

ally. A little ca(d,ion has to be exercised in undertaking such a verificafion. 

The formula (s* 26) is equivalent;, when k: = 2, to 

and, \&en we pass from this formula to one for the number of prime-pairs, the 

formula which arises most naturally is not (5. 311) but2 
--_-p-p 

1 This formula follow from (5, 321) in exactly the salne way that 

x(x) cv Li x 
follows fronl 
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(5 322) 

CL H. Hardy and J. E. Littlewood. 

n 1 
P,(n) cv 2 c, 

dX 
-- 
(log s)L; 

indeed it is not unreasonable to expect this approximation to be a really good 

one, and much better than the formulae of 4, 4. The formula (5, 322) is nat- 

urally equivalent to (5. 311). But 

n 

s 

dX - .-- =-- 
(log x)" (b;?a)y ( 

r+2cp+ _.._. 31--+.., ,l 
Iog 9% (log ny 1 

and the second factor on the right hand side is (for such values of n as we 

have to consider) far from negligible. It is for this reason that Brun, when he 

attempted to deduce a value of the constant in (5. 311) from the statistical 

results, was led to a value seriously in error. 

We therefore take the formula (5* 322) as our basis for comparison, choosing _. 
the lower limit to be 2. For our statistics as to the actual number of prime- 

pairs we are indebted to (u) a count up to ~oo,ooo made by GLAISRER in 1878 z 

and (b) a much xnore extensive count made for us recently by Mrs. G. A, 

STREATRMLD. The results obtained by Mrs. Streaffeild are as follows. 

--_--__._,- - .--_ ----_..-_ ---___. -- -.----_ 
I 

n 

’ dx 

2c2 (log7 

i 1 

Ratio 

‘2 

100000 

200000 

1224 1246,3 

2159 1 2179.5 

I ,018 

1 l 009 

300000 ( 2992 / 30354 ! I,Olj 

3846 l 1 

I 
400GOO 

500000 

600300 

/“ooooo 

800000 

~00000 

T000000 

1 3801 
I 

4562 

5328 
GO58 

6763 

7469 

8164 

4625.6 

5381 ’ 5 

6118.7 

6840 . 2 

7548 ’ 6 

8245 .6 

I .012 

I .oq 

I .OIO 

I 010 

I .OII 

I .or1 

1.010 
--- _-.- . . ..-. - ---.-- . .._ 

_ --.--_ ,---- _ 

1 The series is of course divergent,, and must be regarded as closed after a finite Ilumber 
of terms, with an error term of lower or&x than the last term retained. 

* J. ‘w, L. thAISHEEt, ‘An enu tnwntion of priule-pairs’, Messenger of Mtrthematics, vol. 8 
(1878), pp. 28-33, Glaisher counts (I, 3) as a pair, SO that his figure exceeds Our8 by I. 
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5. 33, Similar reasoning leads us to the following more general resu 

Conjecture C. If a, b are fixed positive integers and (a, b) = I, and N(n 
the number of represenkdions of n in the fork 

then 

n=m+ba’, 

N(n) 

unless @,a)=~, (n, b)=1, and one und only one of n, a, b is wed But if 

these conditions are satisfied then 

2c 
N(n) cv -J 

ab 

where C, is the constant of 6 4, and the product extends over all odd primes p which 

divide n; a, or 6. 

Conjecture D. If (a, b) = I md P(n) is ihe number of puirs of solutions of 

such that a’ < n, then 

unless (h7, a> = I, (k, b) = I, and just one of E, a, b is even. But if these conditions 

are satisfied then 

where p is un odd prime factor of E, a, or b. 

It should be clear that the theorems proved in $5 r-3 must be capable of 
a similar generalisation. Thus we might investigate the number of representa- 

tions of n in the form 

n =aa+bd+cd’; 

and here proof would be possible, though only with the assumption of hypo- 

thesis R. We have not performed the actual calculations. 

l This is trivial. If M and a have a common factor, it divides bti’, send must therefore 

be a’, which is thus restricted to a finite nulnber of values. If ut, a, b are all odd, G or P” 

must be 2. 
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Primes of the forms rn” + I, urna + bm +- c. 

5. 41~ Of the four problems mentioned by Landau in his Cambridge address, 

two were Goldbach’s problem and the problem of the prime-pairs. The third 

was that of the existence of un infinity of primes of the form m2 + I. i 

Our method is applicable to this problem also. We have now to consider 

the integral. 

where f(x) is the same function as before and 

3(x) = ix”‘2. 
m-1 

The approximation for 3(X) =3(Rewiv) on & is 

where 

- 
and sP>P is the conjugate of SPlp: and we find, as an approximation for J(R), 

We replace the ntegral here by 

1 
I -- 

\n 

~ -.._ _------ _~_..~ -- 
l The fourth was that of the existence of a, prime between T?’ and (n + I)~ for every ?a > o. 
The problem of prilnes awl2 + bm +c ~nust not be confused with the much sin~pler (though 

still difficult) problelu of primes included in the definite quadratic form ax2 + zlxv + c$ in Tao 
indspenden t varitcbies, This problein, of course, was solved in the classical researches of LIE LA 
VAT~T,&E POUSSIN. Our method naturally leads to de la Vall&e Poussin’s results, and the formal veri- 
fication of them in this manner is not without interest, Here, however, our method is plainly 
not the right one, md could lead at best to a proof encumbered with an unnecessary hypothesis 
and far more difficult than the accepted proof. 
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and we are led to the formula 

where S is the eingular series 

s- @bp,,r,(--1)). 
p *v-P(9) t 

Repeating the arguments of 5 5. 2, we conclude that the wmber P(n) of primes 

of the form m2 + I and less than n is given asymptotically by 

(5 413) 

- 
ha 

P(n) cv ----FL 
log n 

5. 42. The singular series (5. 412) msy be summed by the method of 5 3. 2. 

Writing 

S=zAq= I + A, -I- A, + #“, 

there is no difficulty in proving that APqr = A,A,~ if (Q, q’) = x. Hence we 

write 1 

B=lIIIxa, 

where 

k =I+A,+&+q.*=I+A,. 

If a’=2, A,=o, x~=I. If ti>~,~ 

and 

_-- -  -__--P 
- - -  

l Even this is a formal process, for (5* 412) is not absolutely convergentU. 
LJ See DTRICHLET-DEDEKIND, Vodesunpn iibev ZnhEe~~fheorie, ed, 4 (1894)~ pp. 293 et seq. 
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Thus finally we are led to 

Conjecture E. There are infinitely many primes of the form rn” -t I. The 

nu.mber P(n) of such primes less than n is given asymptotically by 

where 

v - 
P(n) co C -n-3 

log ?a 

c 
W 

= 

I I  

e-3 

I -- 

a---I 

-I 
( )I m’ 

5. 43. Generalising the analysis of 8s 5. 41, 5, 42, we arrive at 

Conjecture F, Suppose thai a, b: c are inlhgers and a is positive; that (a, E, c) = I. ; 

that a +- b and c are not both even; and that D = b2 - qac is not a square. Then 

there are infinitely m.any primes of th.e form am2 + bm -+ c, The nzJmber P(n) of 

such primes less than n is given asymptotically by 

where p is a wmmun odd prime divisur of a and b, E is I if a + b is odd awl 2 

if a -+ b is even, and 

It is instructive here to observe the genesis of the exceptional cases. If 

(a, b, c) = d > I, there can obviously be at most one prime of the form required. 

In this case xa vanishes for every a for which m 1 d, Jf a + b and c are both 

even, am2 + bm + c is always even: in this case x2 vanishes. If D = kB, then 

and 

4a(anz2 + bm t- C) = (ZU~ + b)2 - kB, 

qua’= (zam + b)‘- k2 

involves zam + bf k I4a, which can be satisfied by at most, a finite number of 

values of ‘ytz. In this case no factor 3~~ vanishes, but t,he product (5. 4321) 

diverges to zero, 

5, 44. The conjugate problem is that of the expression of a number n 

in the form 

(5 441) n= am2+bm+H. 
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Here we are led to 

Conjecture G, Suppose that a and b are integers, and a > o, and let N(n) 

be the number of representations of n in the form ame + bm + a. Then if n, a, b 

have a commun fuctor, or if n and a -+ b are both even, 01’ if b2 + qan is a square, then 

(5 442) N(n) v-- 
t 1 J!- ’ 

=’ logn 

In cl11 other cases 

where p is u cunamon odd prime divisor of a and b, and E is I if a + b is o&l and 

z if a -+ 6 is even. 

The following are particularly interesting special cases of this proposition. 

Conjecture H. Every large number n is either a square or the sllrn of a prime 

a12d a square. The number N(n) of representations is given asymptotically by 

(5 444) 

There does not seem to be anything in mathematical literature corresponding 

to this conjecture: probably because the idea that every number is a square, 

or the sum of a prime and a square, is refuted (even if I is counted as a prime) 

by such immediate examples as 34 and 58. But t#he problem of the representa- 

tion of an odd number in the form ‘t3 + zm2 has received some attention; ancl 

it has been verified that the only odd numbers less than gooo, and not of the 

form desired, are 5 777 and 5 9932 

Conjecture 1. Every large odd nqlmber n is the slim of a prime and the dwble 

01 a squure. The number iV (n) of representations is g&n usymFtoticaEEy by 

1 By STERY and his pupil in 1856. See Dickson’s History (referred t,o on p. 32) p. 424. 
The tables constructed by Stern were preserved in the library of H,urwitz, and have been very 
kindly placed at our disposal by Mr. G. Pblya. These manuscripts also contain a table of 
deconlpositions of primes q = 4 m + 3 into sums q =p + z p’, where JI and p’ are primes of the 
form 4 m + I, extending as far as g = zog83. The conjecture that such a decomposition is always 
possible (I being counted as a prime) was made by Lagrange in 1775 (see Dickson, 2. c., pa 424) 

609 



50 G. II. Hardy and J. E. Littlewood. 

5 45 We may equally work out the number of representations of 7~ as 

the sum of a prime and any number of squares. Thus, for example, we find 

Conjecture J. The numbers of representations of n in the foms 

a,re given asymptotically by the formu.lue 

(5 450 

where: 

(5, 454 N(n) L’v Ti Cdn” n 1 
(P - d”(p + I) -- 

2 ps - p’ + 1 1 ’ 

Here p is an odd prime divisola of n, and represeniations which differ only in the 

sign or order uf the numbers m, , m,, . . . are counted as distinct. 

The last pair of formulae ehould be capable of rigorous proof. 

Prublems with cubes. 

5. 5. The corresponding problems with cubes have, so far a$ we are aware, 

never deen formulated. The problem which suggests itself first is that of the 

existence of an infinity of primes of the form ?n3 + z or, more generally, ms + k, 

where k is any number other tflan a (posit-ive or negative) cube. 

Here again our method may be used, but the algebraical transformations, 

depending, as obviously they must, on the theory of cubic residuacity, are 

naturally a little more complex. As there is in any case no question of proof, 

we content ourselves with stating a few of the results which are suggested. 

Conjecture K. If k: is any fixed wmber other than a (positive or negative) 

cube, then there are in finitely many primes of the form mg + k. 

of such pGmes less than n is given asymptotically by 

1 

The number P(n) 

610 



Part.itio nulmerorum. III: On the expression of a number as 3 sum of priuws. 51 

where 

and (-k), 
I 

is equal to x or to - 3 according as -k is or is not a cubic residue of a’. 

Conjecture L. Every large number n is eitlher a cube or the sum uf a prime 

and a (positive) cube. The number N (n> of representations is given asymptotic&y by 

the range of v&es of a beinq defined us in K. 

Conjecture M. If k is’any fixed number other thun zero, there are infinitdy 

many primes of the form ES + ms -+ k, where 1 and m are buth positive. The number 

p(n) of such primes less than n, every prime being counted m=&iply according to 

its number of representations, is given asymptotically by 

where p and 23’ are odd primes of the form 3r + 1, pj k, a, k, and 

A 
A-Z 

n’ =-.--. 
a(*- I) 

;f - k is a cubic residue of G, 

in the conirary cuse. The pus&e sign is to be chosen if 

E 

( 1 

2 - -3cci 
C es = e P co 3 

crl = a + be being that complex prime factor 01 ti fur which a I_- - I:, b G o (mod. 3) ; 

the negative in the contrary event. And A and B are defined by 

A-za--b,3B=b,qa=A8+z7BL. 
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In purticulur, when k = I, the number of primes l3 + m3 + I is given asym.p- 

totically by 

primes susceptible of multiple representdon being count& mdiiply. 

Conjecture N. There are infinite1 y many primes of the form k3 -I- I3 t m3, 6 
where k, 1, m are all positive. The number P(n) uj such primes less than n, prime.s 

susceptible uf multiple representdun being cuu~ted mdtz’ply, is given asymptotically by 

where ti is a prime of the form 3m + r , and A has the meaning explained under MI 

Triplets and other seque rices of primes. 

5. 61. It is plain that the numbers a, ‘C;I t 2, a+ 4 cannot all be prime, 

for at least one of the three is divisible by 3. But it is possible t#hat 

G, G + 2, G + 6 or ‘E;I, G + 4, a+ G should all be prime. It is natural to enquire 

whether our method is applicable in principle to the investigation of the 

distribution of triplets and longer sequences. 

The general *case raises 

distribution of primes, and 

We write 

very interesting questions as to the density of the * 
it will be convenient to begin by discussing them. 

so that Q(X) = e([~]) is the greatest number of primes that occurs indefinitely 

often in a sequence n-+-r, n+z, l l , 72 + [x) of [x] consecutive integers. Tile 

existence of an infinity of primes shows that e(x)>1 for X> I, and nothing -- 
more than this is known; but of course Conjecture B involves e(x)) z for x23. - 
It is plain that the determination of a lower bound for e(x) is a problem of 

exceptional depth. 

The problem of tin upper bound has gceatep possibilities. We proceed to 

prove, by a simple extension of an argument due to Legendrel, 
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Theorem G. If E > o then 

Q(x) < (1 fE)e-“log%g; (x> x0 =X&F)), 
c/ 

where C is Euler’s con&ant. More generdly, if N (z, n) is the number of the integers 

72+1, n-+-z, l .  . ,  n + [x] that uw not divisible by any prime less than or equal to 

log x, then 

a(x) = rim N(x, n> < (I + e) C-C---L--.- (x> X,,(E)). 
78 ---F) 00 log log x 

It is well-known that the number of the integers r, 3-, . , ., [yl, not divisible 

by any one of the primes p,, p2, . . l , p,, is 

where the i-th summation is taken over all combinations of the Y primes i at, 

a time. Since the number of terms in the total summation is zv, this is 

We now take pl, p2, . o m, pV to be the first P primes, write n +x alld TL 

successively for TJ, subtract,, and take the upper limit of the difference as n- 00, 

We obtain 

as y-m. 1 If we take y = log x, and p, to be the greatest prime not less than y, 

we have 

Y<p,(logx, P=o - (&g,) 3 

o(x) < (I +E)e-C--x- 
log log x 

(x > x0 (d) J 

the desired result. 
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An examination of the primes less than ZOO suggests forcibly that 

e(x) 54x) (x>- 2). - 

But although the methods we are about to explairl lend to striking conjec- 

tural lower bounds, they throw no light OII the problem of an upper bound. 

We have not succeeded in proving, even with our additional hypothesis, more 

than the tielementary@ Theorem G. We pass on therefore to our main topic. 

5. 62. We consider now the problem of the occurrence of groups of primes 

of the form 

72, M-a,, n ta,, . . . . n-ta,, 

where a;,a,, . . ..a. are distinct positive integers. We write for brevitv L 

Then, if (h, k)= I, we have 

If P f =2+(f), r-1, 
Q 

o - 0, and O is sufficiently small in comparison wit.h 

I:- r, then 
n 

f( re ) --iv w /(a) w *-qe--iO ? 

n Ad ,11 (q) --. 
- Y(9) 

Let us assume for the moment that 

if +==pl+O, r-1, 
Q’ 

and 0 ia sufficiently small. Then our method leads us to write 
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2x 

I ' - 

2 x 
.i ( 

f 
m--1 ,,i(,,Y) f(&P)e""i'Pdrp 

0 

on replacing the integral by one extended from - 7~ to YL Thus (5. 621) 

suggests that 

(5 624 

where gm is determined by the recurrence formula 

From tollis recurrence formula we obtain without difficulty 

where ql. runs through all positive integral values, 13.). through all positive values 

less than and prime to qj-; and Q is the number such that 

p Pi P3 Pm QC9, -j- q2 -++ -;P (P, Q> = I l 

If we sum with respect to the p’s, we obtain a result which we shall write in 

the form 

We shall see presently that the multiple series (5. 6251) is absolutely con- 

vergent. 

l?or greater precision of statement we now introduce a definite hvpothcsis. c 
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Hypothesis X. If woo, and r--+1, then I_ 

where S, is given by (5. 625) and (5. 6251). 

Our deductions from this hypothesis will be made rigorously, and we sl~all 

describe the results as Thcorem,s 2L I, X 2, a . + 
,=j. G3, From (5. 626) it follotlJs, by the argument of 4, 2; that 

as x-m, where tlw Eejt-hand side denotes the number of groups of m -+ I primes 

31, n-+-n,, . . 0, Wl-U~~ of which all the members are less thau =t:. 

We proceed to evaluate S,,. In t.he first place we observe that A(ql, p2,. .,, q,,> 

is zero if any 4 has a square factor. Next we have 

provided (q,, Q/J = I for all values of r and s. For, if we write 

so that ilr = 4,. q’,., and suppose that pr and p’, run through complete set,s of 

residues prime to 8,. (or q’l.) and incongruent to modllluS pl, (or q’).), tJhen c,. runs 

through a similar set of residues for mudulus iI,.* Also @, Q’) = I and so 
(PQ’ + P(C), QQ’) = I, Hence, since 

y p,- I) P’ --j--E P&l+ P’Q 
&c-Q Q’ Q& I 

7 

the Q associated with 2: is Q&L Since ~(qq’) = y(q)y(q’) if (q, p’) 
l .  l = 1, (5 632) * 

follows a6 once. 

Assuming then the absolute convergence, more conveniently established 
later, of the series and tile pruduet, we have 
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and where 2 is extended Over all A’ s 
1’ 

in which r of the nz places are fiiled by 

G’S and the remaining nz -r by 1’s. 

Our next step is ta evaluate the A’s correspor 

Ql =a, qy== I(?*> I), pf-= o(r> I 

ding to a prime a. Writing 

place, sa,y the first, is filled 

,$-a, 

and so 

When r > I places, say the first rs are filled by G’S, we have similarly 

where the $5 run through the numbers r , 2, . , 0, a- I:, and & is determined by 

Clearly 

Q - - jo~o (mod. a)), s=a( p -I-!= o (mod. aj) . 

Hence 
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Now 

is evickntly a fwction of a, u,, . . +, ur which is unaltered by a permutation of 

a,, ’ ’ l 1 a,. We denote it (dropping the reference to ti) by B,&, a,, . . ., clJ, 

the suffix nz being used to recall that a,, a,, . , ,, ar, or rather the n’s that 

replace them in the general case, are selected from a,, a,, . l . , a,. 

Then 

Here we are supposing r > 2. We shall adopt t,he convention B,,Ja,) = o. 

5. 64. We now digress forea moment to establish the absolute convergence 

of our product and multiple series. We have 

(5 641) m(k) = a-- I (~1 k), m(k) = -- I (a-;-k)* 

Hence, when rl~ is large, every CG occurring in (5. 635), (5. 636), or (5. 637) 

is equal to - I 2 It follows that 

and so, since A (ql, q2, . . .) is the product of A’s each invulving only a single 

prime a, that the multiple series and the product in (5. 633) are absolutely ” 
convergent. 

5. 65. Returning now to X(G), we have, for r > I, G 

the result being true for r= I in virtue of (5* 635) and our convention as to 

B, (a,) l Hence 

l It is here that we use the condition a, j=n,. 

618 



Partitio numerorum. III: On the expression of a number as a sum of primes. 59 

= Y m- -C?&, 

say, where 

the summation being taken over all combinations (without reference t.o order) 

of U1, 9. ., a, taken r at a time. 

Now 

(5.653) L+1-(1-x) L= 1 -x-(~-x)g+x~~~+xc~~a,))(~+xcti(am++-l+x) 
P-1 

?n 

=x(1 -  x) + x2( I+ ca(G72+1)) n ( I  + xcf&)> l 

r-1 

Also 

Here 2’ denotes a sum taken over the combinations of a,, a=, . . . , ant, F--- I: at 

a time; and the equation holds even for r = nz + I if we interpret Cm++1 as zero,. 

Hence, by (5. 637)s 

C m fl,r = CwI,+ 

and therefore 

r-2 
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Using (5. 65r), (5. 653), and (6. 654), and observing that x(1-x) =--&x2, we 

obtain 

(5 655) X,,tr(N - (I--x> X?n(~) = X’(I + C&&7$+1)) jj (I + xw(ar)) - 
r-1 

To this recurrence formula we add the value of X&Z) for m = I, via. 

5, 66. We can now deduce an exceedingly simple formula for X,,(G), viz. 

where 

(5. 662) 

is the nwnber of distinct residues of o, a,, a, j m . . , a, (mod, a)+ 

This is readily proved by induction. Let us denote the right1 hand side of 

(j. 661) by XL; and let us consider first the case m, = I a 

If a,zo (mod. a) we have ~=a:, c&,) =GC--r; if a,+ we have ‘I/---Z, 

cd(aJ ==--I. In either case X1 = X’, l 

Mow suppose the result true for m,, and consider. XPILtl. There are three 

On the other hand I + ~(a,,+l) = a, ~(a,--~)~ +l) = c&Q; the right hand side 

of (5* 655) vanishes; and so 

X mt1= (1 -- x) x, = (I - x) X’, = X’,+1 l 

( ) ii -- 
%+1 -- 1’17 -a -b for some r&m. Here again ‘I’~+~ = vm. On the one 

hand we have, as before, Xlrn+l = (I - x)X’,. On the other 

I: + W(~,,+I) = 0, x t xcd(a,,--a,+I) = I - I w(o) = 0; 
a -1 

the right baud side of (5, 665) vanishe6, and Xm+l= X’,+l AXIS before. 
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(iii) anz++, u.~++,(r~m). Here vllLtf= u,+ I = Y + I. Also all the c’s 

concerned are equal to -I. Hence 

X m+l -(I -X)Xm=--~x2(r-x)m=x(I-x)m+1, 

or, since X, =X’,, 

X m+l = (1 -xx). (I -Xl”(I + (,I) - 1)x) t x( I - xp+l 

= ( I- x)m++ + ux) = X1,+1. 

This completes the proof. 

We now restate our conclusions in a more svmmetrical form. 

Theorem X I.~ Let b,? b,, l . ., b, be m distinct&gers, 

the number of gruups n + b, ,, -+ b,, . . . . . r, 

and P(x; b,, b,, l . . , b,,) d 
n + b,,, between I and x anct con,sisting 

wholly of primes. Then 

(59 663) P(x) cv G(b,, b,, . . ., b,) L&,(a) 

wh.en x- 00 , where 

Y = u(m; b,, b,, . . l , bm) is the number of distinct residues of b,, b,, . . , , b,, to mo- 

dulus a, and 

Further 

(59 665) 

where 

(5 666) 

(50 667) 

and A is the product of the differences of the b’s, 

G(b,, b,, ’ + ‘J bm) = CmWb,, b,, . . .j &J 

l To avoid my possible misunderstanding, we repeat that these theorerm are consequences 
of Hypothesis X. 
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The change from o, a,, . . l , am to b,, b,, . , ‘, & is obtained by writing 
n-b, for n and m for m+ I, The expression of G as the product of the con- 

stant C, (depending only on ml and the finite expression H follows immediatelv c 
from the fact that Y =m if Gjd, ti>m. 

5* 67* There are plainly many directions in which it would be possible to 

extend these investigations. We may ask, for example, whether there are 

indefinitely recurring pairs, triplets, or longer sequences of primes subject to 

further restrictions, such as that of belonging to specified quadratic forms. We 

have considered one problem of this character only, which is interesting in that 

it combines those contemplated in Conjectures B and IL Is there an infinity 

of pairs of primes of the forms VP + I, mB + 3 ? The result suggested is as follows. 

Conjecture P. There are infinitely many prime pair& of the form ms + I, m2 + 3. 

The number of such peek less than n is given asymptotically by 

where ly is o, 2, or 4 according ~118 neither, one, or both of - I and - 3 are qwhztic 
residws of a. 

Numericul verifications. 

5. 68. A number of our conjectures have been tested numerically by Mrs. 

STREATFEILD, Dr. A. E. WPSTERN, and Mr. 0. WESTEBN. We &ate here a few 

of their results, reserving a fuller discussion of them for publication elsewhere. 

The first of these numerical tests apply to conjectures E and P. In applying 

such tests we work (for rewona similar to those explained in 4 I 4 and 5 .32) not 
with the actual formnlae stated in the mmciations of those conjectures, but 

with the asymptotically equivalent formulae 

n 

(5* 682) 3 
Q (N m - C 

s 

dx 
2 

CW”CLi,VG. 
G(log xy 4 

The number of primes less than ~UOOOOO and of t,he prime form ms+ I is 

301~ The number given by (se 681) is 302.6. The ratio is x . 005, and the agree- 

ment is all that could be desired. 

The number of prime-pairs rtl* + I and fn8 + 3, both of whose members are 

less than g~oooo~, is 57. The value given by (5* 682) is 48.9. The ratio is 
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l 858. The numbers concerned are naturally rather small, but the result is perhaps 

a little disappointing. 

A more systematic test has been applied to the formulae for trip1et.s and 

quadruplets of primes, the particular groups considered being 

ti, a’+~, a+6; a, a-+4, ti+6; 

ti, a-+-z, a't6, a+B; fl, a+4, a’+6, a’+m. 

Tbe t.wo kinds of triplet-s should occur with the Pame frequency. On the other 

hand there should be twice as many qtiadruplets of the second type as of the 

first. For o, 2, 6, 8 have 4 distinct residues to modulus 5 and o, 4, 6, IO but 

3, while for all other moduli the number of residues is the same; ati the rakio 

5-3: 5-4 is 2. The actual results are shown in the following table. 

Triplets. 
-- ~-----.~- -- ~-. -.- - I 

X F’&;0,2,6!/ ~C&j&) / Ratio p,kQ,4*6) Ea tio 

IO5 260 270. 78 I *of+1 249 I ,087 

2.105 1 417 44om71 I f ’ 057 425 I I ’ 037 I 

3 l lo5 566 589 * 89 I .042 588 1 .m3 

4. TO” 718 727*43 4 I-013 748 0 ’ 972 

5. IO” 833 857. IO I * 029 88x 0 ’ 973 

6. IO” 950 986.92 1 l 033 X008 0 * 973 

7* JO” 1073 IIOO. 16 I. 025 1x33 0.971 

8. Id 1195 1zq rn 64 I ,017 1231 0.988 

9. LO” 1295 1327.97 I ,025 1331 Q ’ 998 

IOU 1398 1437 59 ’ I .028 1443 o-996 

--~--- 

Lt: P, (2; o, 2,6,8) 

TO” 38 

2 1 IO” 52 

3.d j 70 

4, IO5 87 

5. IO” 103 

6.10’ 117 

7, IO” 133 

8.10~ I41 

9 l IO” I56 
IO6 x66 

40 ’ 41 

61. 18 

78.62 

94 l 28 

108.75 

122 l 36 

I35 ’ 29 

‘47 l 69 

159.64 

I71 l 22 

Quadruplets. 
_-~~~- 

Ibti0 IPdx; 0,4,6, x0)/ 27 Cd L;i, (LX) 

/ - 

I* 177 

I . 123 

I ti 084 

1 ,056 

I a045 

I l OT7 

f 1 047 

I ,023 
. 

I.031 -- 

I24 T22. 35 

160 157 l 24 

I94 188.55 

219 217.50 

239 244.7’ 

263 270 l 59 

285 295 ’ 39 

299 3x9 l 29 

316 342 l 42 

f ,063 
1 80 So. 82 

-----_ 
Rdh 

J .OIO 

0 - 987 

0 * 983 

0 l 972 

0 - 993 

I .024 

r ,029 

1.036 

I : 068 

I l 084 
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Here C, and C, are the constants of Theorem X I:. The results are on the w\~ole 

very satisfactory, t,hough there is a curious deficiency of quadruplets of the 

second type between Sooooo and ~oooooo. 

5. 691. We return to the problems connected with the function 

Q(X) = lim (A+ + x)-x(n)). We shall adhere to the notation of Theorem X I, 
n -m 

and shall suppose in addition that x is integral and that o < b, < b, < a e m < @le. 

It follows from Theorem X I t-hat, if H(b,, b,, , , , , b,)+ o, groups: tb,, n + b,, w . l , 

n + b, consisting wholly of primes continually recur, and we shall say, when 

this happens, that b,, b2, . . . , b, is a possibZe m-group of b’s, We say also that 

the n, -+- b,, . . . , n -+ b, is an nt-group of primes, If, in a possible group, rrz = g(x), 

where x = b,,- b, + I, we shall call the group, either of primes or of ti’s, a maxi- 

mum group. A set of x consecutive positive integers we call ar 

and we say that the group n + b,, . , ,, dn + b,,, is coniained i92 the ( 

sequence b, T- c < bm, and that its Zen@ is b,,, - b, + I l 

Theorem X 2. If b,, b,, . S .) b,, have a missing residue (mod 

G <- m, theyA these b’s form a possible group. - 
This is an immediate consequence of Theorem X I, since Y ~a- 

x-sequence; 

b l?b - b, + I)- 

a) for each 

I for G> ‘172. 

Theorem X 3. Let M (x, n) be, the number of distinct ir~tegers Ci , c,, . . l , C~U, I 
in the interval n < c <n -+- x, which are not divisible by any prime less thaw 01’ 

equal to 

e(x) -e(x) -t & -t 1 f [ 1 
eL (x) = Max M (x, n). 

04 

Then 

eA4 = e(x)- 

Let e(x, p) be the number obtained in place of g,(x) when the Q(X) that 

occurs in the definition of el(x) is replaced by pt. Clearly we have 

(5* 694 

and 

e(x, ,” -- 1) ke(x, 111) > g(x) - Z 
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Further, 

(5 $13) 

implies 

e(x, 4 = e(+ 

For let d,, d,, . c ., & be an increasing set of positive integers with the properties 

(characteristic of a set of z = e(x, /l) such integers) that (a) there is an ~2 such 

that n+d,, l l ‘, n + d, are not divisible by any prime less than or equal to \l, 

and (b) d,-d,+&x. Then n+d,, ,.,, -_ .- n + d, form a ‘possible’ group of b’s, 

since they lack the residue o for every prime less than or equal to Z. Hence 

e(x) > z = - - p(x, p), and so, by (5. Ggd e(x> = e(x, p>* 
Next we observe that a(x, jl) = e(x) for !L = x, since t,he inequality z< 1’1 is 

clearly satisfied in this case. Let now /lo be the least !I, greater than or equal 

to e(x), for which &, /lo) = e(x)* Then @)_Fu~~x. We have then 

and so 

by (5, 6913). Thus 

,I%iQh PO- 
X 

- 1) < e(x,po) + -- + I =&) + x + I ._I [ I PO [1 PO 

<e(x)+ $-) + I =&c). -_ - [ I 
Hence 

e(x) = eb PJ 2. e(x, e(x>j = &) l 

But it is evident that e,(x) )e(x), and therefore cl(x) = e(x). 

It follows from the theorem that, in a maximum group of primes of length 

x, the remaining numbers of the x-sequence are all divisible by primes less than or 

equal Jto $(x). We shall see presently that (on hypothesis X) c(x)<e(x) + log x 

for large values of x. 

5. 692. We consider now the problem of a lower bound for e(x). 

denote the s-th prime. 

Theorem X 4. Let r = r(n) be defined, fur every value of n, by 

Let p8 

Then. pr+l p PM, . . . p pt+n is ‘a possible n-group of b’s. 
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For the primes less than or equal to n are pi, p,, . l . , JIM and the b’s lack 

the residue o for each of them. 

From Theorem X 4 we deduce at once 

Theorem X 5+ If x = pr+n - pr+l + I, pr <n < p,+l, then 

As 8 numerical exampk, let n = 76501. we have 177525 = 76493, p7526 = 76507. 

Hence 

r = 7525, n + r = 84026, p7E+T = 1076503 

Thus 

X = 1076503 - 76507 + 1 = 999997 l 

e(Ioooooo) > 7650x. - 

We may compare this with the numbers of primes in the first, second, and third 

millions, viz. 

78498 170433 1 67885 l 

Theorem X 5 provides a lower limit for Q(X) when x has a certain form: 

we proceed to consider the case when x is unrestricted. 

Theorem X 6. We have 

for sufficiently barge values of x. 

When rye is large 

P ( 
m log log nz 

W& =m(logm+ loglogm)-m+O 
- l log 77% 1 

Let 

Then we have, by straightforward calculations, 

Take n = p,. Then 
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prrt+r = y I- -- ( 1,; y+qQi:;y)2) 

x = p?z+r - Pr+l + I < pnfr - pr 

=jy I----- ( 2 +o(‘qgy)2)<y-;&=z, 1% Y 

when y is large. Thus 

e(z)‘e(s)~n=p,=-y---- + 0 Y (log 1% Y>’ 
- 

log Y (4 Y>” ( - (1% YP 1 

Since y is arbitrary, so is x, and the theorem is proved. 

5. 693. We conclude our discussion of e(x) with an account of one or two 

par titular cases. For a given x it is, of course, theoretically possible to deter- 

mine the maximum number of integers in an x-sequence that are not divisible 

by any prime less than x. On hypothesis X, this number is a(x). Thus 

L. AUBRY l has shown that 30 consecutive odd integers cannot contain more than 

15 primes (or more than 15 numbers not divisible by 2, 3, 5, or 7). Thus 

e(5g) 515. On the other hand if we take, in Theorem X 5, n = 15, r = 6, we 

see that the 15 primes from 17 to 73 give a possible group of Vs. Hence, on 

hypothesis X, 

e(59) Ze(57j = e(73 - 17 + 1) -> 15 ; E 

and so e(sg)- 15~ The value of rr(5g) is 17. 

Similarly a 35-sequence cannot contain more than IO numbers not divisible 

bv 2, 3, or 5, but the 10 primes from 13 to 47, and therefore the numbers o, 4, 

6; IO, 16, 18, 24, 28, 30, 34, form a possible IO-group of b’s, so that e(35) = IO = 

=z(35)-1. A. striking example of a maximum prime group n + b,, . . . , n t b,,, 

corresponding to this group of b’s, is provided by 7a = 113143. 

The best example of a close approach by e(x) to sz(x) occurs when x = g7* 

Consider the 24 primes from 17 to 113. They are a possibls group of b’s if they 

have a missing residue for each prime less than 24. We have only to test 17, 

19, 23, and we find that 17 lacks the residue 8, Ig lacks I and II, and 23 lacks 

3, 12, 16, and zz. Hence on hypothesis X, e(g7) t. 24. On the other hand it - 

l I,. Em DICKSON, 2. c., vol. I, p. 355. 
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may be shown that a 97-sequence cannot contain 25 numbers not divisible by 

2, 39 jt 7, IL or 13. Let us denote the range n< x < n + 96 by R,. There - - 
is one and only one value of n, not greater than z.3.5.7= 210, for which 

R,, contains 25 numbers not divisible by 2, 3, 5, or 7, viz. nf = 101. If then 

ni 2.3.5.7 . II, a.nd R, contains 25 numbers not divisible by z, 3, 5, 7, or II, n 

must be one of the numbers IOI + ZIO ry1 (m = I), x, l . ., IO); and on examination 

it proves that we may exclude all cases but ry1= IO. Repeating the argument 

we see that, if 76-z. - x.5.7. II. 13, and R, contains 25 numbers not divisible by 

2, 3t j, 7, 11, Or 13, then n must. be one of the numbers 12 = 2201: + 2310~9 

(m-0,x, l *,12). All these turn out to be impossible and, since any R, may 

be reduced (mod. 2.3 l .  .  13)~ it follows that no R, can contain more than 24 

numbers not divisible by a prime less fhan or equal to 13. A fortiori it follows 

that e(97)z 24, and so (on hypothesis X) e(g7) = 24. Since z(g7) = 25, the dif- 

ference e - 7~ is here unity. Beyond x = 97 it would seem that Q(X) falls further 

below n(x), at least within any range in which calculation is pract*icable. 

Conclusiun. 

5. 7. We trust that it will not be supposed t#hat we attach any exaggerated 

importance to the speculations which we have set out, in this last section. We 

have not forgotten that, in pure mathematics, and in the Theory of Numbers in 

particular, ‘it is only proof that counts’. It is quite possible, in the light of 

the history of the subject, that the whole of our speculations may be ill founded. 

Such evidence as there is points, for what it is worth, in the opposite direct.ion, 

In any case it may be useful that, finding ourselves in possession of an apparently 

fruitful method, we should develop some of its consequences to the full, even 

where accurate investigation is beyond our powers. 

Postscript, 

(I). Prof. Landau has calleda our attention to the following passage in the 

Habilitutionsschrijt of PILTZ (‘Uber die Hgufigkeit der Primzahlen in arithmetischen 

Progressionen und iiber verwandte Gesetze’, Jena, 1884)) pp. 46-47: - 

‘Ferner tviederholen sich gewisse Gruppierungen der Primzahlen mit gewisser 

Regelmtissigkeit, so ist z. B. die durchscbnittliche Htiufigkeit der Gruppen van 
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je 2 Primzahlen, die in gegebenem Abstand aufeinanderfolgen, fur die ungef&hre 

GrSsse x der Primzahlen, proportional 5, 
v I 

wobei allcrdings dieser Ausdruck je 

nach dem gegebenen Abstand mit verschiedenen const.anten Faktoren behaftet 

ist, die H&ufigkeit einer Gruppe van 3 Prim&den proportional -$ und so 
(1 > 

fort. rn .  l l Die n&here Ausfiihrung dieser und andrer Gesetzc . . , werde ich ein 

andres Ma1 folgen lassen.’ 

All of this is of course in perfect agreement with the results suggested in 

our concluding section. 

(2). We must add a few words concerning the memoirs of Stackel referred 

to on p. 34. These have only become accessible to us during the print- 

ing of the present memoir, and it is not possible for us even now to give any 

satisfactory summary of their contents; but Stgckel considers the problem of 

‘prime-groups’ in much detail, and it is clear that he has anticipated some at 

any rate of the speculations of 5 .6. The method of Stgckel, like that of Brun, 

rests on the use of the sieve of Eratosthenes, followed by a heuristic passage 

to the limit; but StZckel’s problem is much more general, and he has gone much 

further than Brun in the determination of the constants in the asymptotic for- 

mulae. It seems to be the principal advantage of our transcendental method, 

considered merely as a machine! for the production of heuristic formulae, that 

these constants are determined naturally in the course of t-he analysis. 

(3). We should also refer to a later memoir of Brun (‘Le crible d’Eratos- 

th&rle et le th6ori:me <de Goldbach’, Videnskapsselska~ets Skrijter, Mat.-naturv. 

Klasse, Kristiania, 1920, No. 3). Brun proves, by elementary methods, (I) that 

every large even number is the sum of two numbers, each composed of at most 

9 prime factors, (2) that the number of prime-pairs a, a + 2, less than X, cannot 

exceed a constant multiple of x (log x)-~. 

Brun’s work enables us to make a substantial improvement in the elemen- 

tary theorem G. Using the inequalities proved on pp. 32-34 of his memoir, we 

can show that 

e(x)< &- log x’ 

(4). Prof. Landau has pointed out fo us an error on p. 9. It is not neces- 

sarily true that Ck= o when ok is imprimitive: our argument is only valid when 

& is divisible by every prime factor of 4. 

The inequality (2. 16) is however correct. Suppose first that q = & (A > o). 

Our argument then holds unless Q= I; in this case xk is the principal character and 
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This inequality is then eady generalised to all values of Q. If p-q1 g,, where 

(919 92) = I, then every 3~ (mod. q) is the product of a ;G~ (mod. q,) and a x, (mod. 

p& and it is easily proved that 

<q&=vy. = 

The conclusion now follows by induction. 

CORRECTIONS 

p. 5,jootmte 2. Read: p. 492. 

p. 64. On the third line of § 5.691, for bm read bm. 

1~. 67. The statement on the last hne but one, that the primes from 17 to 113 lack the r&due 

8 (mod 17), is incorrect since 59 - 8 (mod 17). 

COMMENTS 

Lemma 11 and footnote on p. 27. There is a simple closed expression for c&), namely 

which escaped the notice of both Ramanujan and Hardy, and was discovered by Holder in 1936. 
See Hardy and Wright (4th ed.), p. 238. 

Recent researches of Tur6n (in course of publication) have enabled him to prove some of 
Hardy and Littlewood’s results under consideraMy weaker hypotheses. 
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The series in question is 

Here qr runs through all positive integral vahles, and JIM through all such 

valuea less than and prime to qr, and Q is the denominator of 

g +E+...+F = $, 
IrL 

expressed in its lowest berms. The arithmetical function x(q) is de- 
filied by 

x(q) 
= p(q) 

9w 
s 

where w  assumes all prime V&M, and Y is -the number of distinct resi- 
dues of the group of numbers 0, ctl, a2, .*., a,)& to modulus ‘is. It is plain 
that v = ~t+l from a certain point onwards. 

The series is of very great interest, for it is the series on lvhich the 
asymptotic distribution of groups of primes 

X922, 8 (with J, E. Littlewood) proceeding8 of the LW &fath- 
maatiml Lsdety, (2) 20, xxx. 631 
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SOME PROBLEMS OF “PARTIT NUMERORUM” (V) : A FURTHER 
CONTRIBUTION TO THE STUDY OF GOLDBACH’S PROBLEM 

By G. H. HARDY and 3, E. LITTLEWOOD . 
1 

[Received November 20Gh, 1922,-Read December 14th, 1922.J 

1 l 1, This paper is a sequel to the third of the series.* We proved 

there that if tt certain hypothesis, which we called Hypothesis R*, and 
which is a natural generalisation of the hypothesis oE Riemann concerning. 

the zeros of i(s), is true, then ervery large odd mmber is the m m  of thee 
p 7i772es ; and we determined an asymptkc formula for the number of such 
representations. But our analysis broke down when the number of primes 
considered is less than three, and we were unable to make any rigorous. 

contribution to the study of Goldbach’s Problem itself. 
In the present paper we prove (still, naturally, on the assumption of’ 

Hypothesis R’) that almost alt eveIt 1z2mbel*s af*e ~~~~1~s of t,ulo pl%~~es, that 
is to say that the number of numbers less than 32, for l&ich “ Goldbach’s 
Theorem ” is false, is o(u) when 7~ is large. We prove, in fact, consider- 
ably more, but this is the essential result. 

1 . 2. We reed the termidogy of P. N. 3, in so far as it is relevant, 
here. t Our fundamental hypothesis 1 is 

L(s) = CXCrn) 
m” ’ 

* G. H. Hardy and J. E. Littlewood, ‘I Some problems of ‘ Partitio Numerorum ’ (III) : 
On the expression of a number as a sum of primes ’ ‘, Acta M&hentatica, Vol. 44 (1922), 
pp. l--70. We refer to this memoir as P. N. 3, The analysis which it contains has been 
considerably simplified by Landau Fib Zur Additive Primzahltheorie “, Rend. di Palemzo 

Vol. 46 (1922), pp. 349-3561, 
+ We have modified the notation of P. N. 3, since we prefer now to denote a typical prime, 

as is usual, by p. What were there p, q are now 3t, k ; what was there h is now q (k) ; and 

what was there Q is now 4. 
1 In P. N. 3 we did not actually use Hypothesis R #? but a slightly less drastic hypothesis 

(Hypothesis R) which proved sufficient for our purpose. 

1924, 6 (with J. E. Littlewood) Proceeding8 of the Ltmdon M&he- 
matical Society, (2) 22, 46-56. 
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We write p for & prime, 

f(x) = Elogpx~ (‘x1 <I), 

(f 1 ( 1 x a= G v&J (nt) x7’&, 

v(?G) = u&z) = c logy logp’, 
p +pc= m 

F(x) = 2X(m) x” = EmS(m) xHc, 

where S(m) = ck(-p$, 

c],,(- nt> = 2 e-2h*ailk = C ek(- hm). 
h h 

Here ‘jib = I, 2, 3, +.., k = 1, 2, 3, , ,,, and 1~ is positive, less than k, 

and prime to k, except when k I_ 1, when /A = 0, c~(-H~~) = 1 and A, = 1. 
S(m) is the “ singular series “, and its sum is given by* 

S(m) = 0 (m odd), 

St > m =2cII ;=; 
(4 

(m even), 

where P is an odd prime divisor of ~72, and 

c ( 
1 

=- q---q* 
P23 > 

We use the machinery of the Cc Farey dissection “, explained in our 
memoirs on Waring’s Problem. The circle I? to which it is applied is 

defined by 
I I X = e-H = e-w, 

and the “ Fprey arcs ” sre denoted by &,I; or (. The dissection is of order 

37 = [&I, 

and there is, in this problem, no distinction of “ major ” atid ” minor” 

arcs, 

When we are studying the arc &, k, we write , 

X = sk(h)ewY, Y = -A- +,i8, 
72 

- 01, \( 0 < 80, 

* For the formal summation of the singular series see P. N, 3, pp. 26-29. 
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where o0 and 0; lie between 2r/kN and T/MT. The function which affords 
an approximation to f(z) on &, 7, is 

We write further 

where 

so that 

F = F(x) = Cmx” C Afi(m) = 
m k 

Finally, we write 
S(722) = s, (N + s, b0 , 

F = 27?2S(772) xn= = ~772&(772) X”‘+- ~772s&2) X”‘, 

where the suffix 1 limits ?C to the range k < U, and the suffix 2 to the 
range k > v.* Then 

F 1= C F,,k, F,= C Fhka 
k<v,h ’ k’>v, h ’ 

2. Prelimilzary lemmas. 

2 I 1, In all that follows A denotes an absolute constant, and O’s and 
o’s are uniform in all parameters that occur, except E. 

LEMMA 1. -0?2 &, ks 

* =f+ =fw+h,k = 0 (grj(log ,l)d). 

See P. N, 8, pa 23, equation (3. 124), and take @ = +. 

LEMMA %--If x = 1x1@ = c-~+~, so ihat x lies on r, then, 

$If(X) I” dw = O(72 1Og 72). 

See P. N. 3, p. 24. 

* Y is au integer as yet undetermhed. We ultimately take Y = [a$ 
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LEMMA 3.- We have 

From P. N. 3, p. 23 (bottom), with r = 3, w-e have 

Hence 

C 1+j%M,An C ’ 
J 

1 (log WA 7 < An c - < A72 c - 
% k h 

( 1 $(k) k $dk) ic k 
< An(log n) Al 

LEMMA J.-We have 

c 
5 

~ p-+212 a0 = O(nC+y 

fur every pmitiae E. 

= A&+A I&, 
say. But 

by Lemmas 1 and 2 ; and 

I& < AnG(log 72)A C 

t 
1 y5 1 a de = 0 (,,e(log +) = o(?zs+E), 

by Lemmas 1 and 3 ; whence the conch&n. 

2.2. LEMMA 5. - If k > 1, Ip( > O,* ctnd k = klk,, where 
(k,, nz) = 1, then 

IAk(m>l < AykhC)A. 
I 2 

* So tuat 7~ has no repeitted factor (is puaddjrei). Otherwise Ak (m) = 0, 
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But, if k = I@,, where the p’s are primes, then* 

I cd-y) 1 = II (ps-1) < II ps = k,, 
P,b P, I fn 

whence the result of the lemma. 

) S,(m) 1 < A (log WC)~ d (772) v, 

whence d(m) is the number of divisors of m. 

By Lemma 5, . 

the summation extending over those values of k for which k > U, 

]dWI > 0. 
Suppose that q, r2, -* ., rt are the prime divisors of m, and that 

s = Ilki is a typical qedrntfrei divisor of ~72 ; and consider those tel*ms 
of C for which 

6 is fixed and k, varies. The contribution of these terms is less than 

c (log SkaJA < A(log mJA c (1~~s kdA 
2 3 

%> v Sk 2 s 7c,>v/6 k 2 

(loa dA < A(log m)A -0 
V 

Hence 
2 (log MA 

k c A (log ,m> 
A (1% dA c 1, 

1 2 v S I?)L 

which proves the lemma. 

2.3. LEMMA L-If x = lx ] ei”, us in Lemma 2, thea 

5 27F 1 F,(x) 1 2 do = 0 
0 ( 

n3(log >@A V) * 

* See P. N, 3, pa 28 (bottom). 
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For Fa(x) = %nS&n)x”, and SO 

2rr 
(2.31) 1 F,(s) 1 2 dctl = 

0 
AC (nzi3&1~))~ 1 x la,lz 

- o 
- ( 

(log 4”’ 
v2 

x 17z2(log ?I&)” ( d(7lt))2 15 p), 

by Lemma 6. But 

c 
5% < a 

(d(??Z) ) a = 0 

c 112 (log ?r&>” (do)t)) 
IIt < 12 

and so 
( 

A since /x/(1-- 
72 ) 

(2. 32) lzd (log 7?z)A (d(??zqa 1 x 2H1 = 0 ( n3 (log 92)” )  l 

The lemma follows from (2. 31) and (2, 32). 

LEMMA &--We have 

This is trivial, since 

Fh, k- +;,H = (;$)2 (s(ze,c-lr,)+) 

xed- h) 
I--xe&-h,j”- 

( 

= O(I). 

* In fact the sum is 0 (TZ (log +). See S. Ramanujan, “ Some form&e in the aaalytic- 

theory of numbers ’ ‘, Messenger of Mitthematics, Vol. 45 (1916), pp* 81-84. 
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Hence 

de 
(?&-“+ea)o < An 

8 (log k)* 
kP g 

c 

2.4. LEMMA 10. -&ppose that x lies on &, k ami t?mt & 1~ is a Fwey f  
UTC &$&vent from &. Then 

P%KI < 
A72 (log K)A 
(IzK--HP’ 

where 

and 

Suppose first that the arcs &, &,K are not adjacent in the dissection. 
Then 

and SO 

IF if, K 

since ka < P < 12. 

this case 1 hK-kH 
ana so 

I I>Al h H 0 --- 
k K 

Z A IhK--HI 
kK 9 

< A (log K)A kaKa &z(log K) A - - 
Ka (hK-kkHJa < (hK-kHj2’ 

The argument fails when the arcs are adjacent. In 
= 1. As x ie outside the arc &,Kt IwI> A/KN; 

)FH,BI<A~K’Nl<Ala(logIi’)“= $2 

The msult of the lemma is therefore true in any case. 

2 l 5. LEMMA 11.-&d 

G = z lFH,KI, 

whlers the sign E implies a summation over thse pairs uf values (H, K), 
I. 

* So that G is a function of ?z rend k, as well $6 of x and Y. 
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&t&t from (ha, k),$w which K < v.* Th]erz 

1 c 
J th, k 

G2d0 = 0 (n; (lug ~t)~ $1. 

Since G is a sum of less than v2 terms, we have 

by Lemma 10. Hence 

< A+ (log 12)~ v2 C C 
1 

H, x It, k k(hK-kHj4’ 

lvhere now the inner summation is defined by 

k \( N, Vb k) # 4, K), 

and the outer summation by K \( V, But 

c 1 1 
x1 c 1 

h, Ii k(hK-kHJ4 = r4 k k k /7 kH\ 
4 

?- 

A 
<-+ 

X4 
k -j;<A+Alog?~; 

7c 

and so c c 
I 

H,K h,k k(hK--kH)’ < A” ““” 

c Ga d0 < Ad (lug 92)* v2 . A V’ log ti < An (log n)A v4, 
th, k 

the result of the lemma. 

3.1. THEOREM A ,-If Hypothesis EL* is true, then 

5 (v(m)-Q(m))” = o(Tb~+E) 
1 

for ewypositive E. 

639 



1922.1 SoME PROBLEMS OF “PARTITIO NUMERORUM " (v). 54 

It is sufficient* to prove thatl 

C ( Y(~IL)-R(w~))~ 1 x 12m = O(&+@), 

when ] x.1 = tiAH, or that 

Now 2r,fa-Fladw= C If-Fl’d@ 
0 6 

and 

by Lemma 4. It is therefore sufficient to prove that 

(3 l 11) C 
J t 

j jb2-F12 de = O(n-j. 

3.2. Since F = Fl +FQ, we have 

(3. 21) C ]y!+ Fj2d0< AC J !t ~+2-Fl~2d8+A~ I&\%; 
t t 

and 

(3 . 22) C 
A (log dA 

k 
IFz[‘dO < An3(log n) va, 

by Lemma 7. Next 

according as k < Y or k > V, the range of summation indicated by C being 
defined as in Lemma 11. If k < Y, then, we have 

Iq2-Flja< A I~a-F~~,1;/2+AI~F~,h.)2<A(~a-Fh,k12+AG2; 
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(3.23) Iq”-Ii;l,k la de 

< A +A “‘bf dA + Ad (log PZ)~ v*, 

by Lemmas 8, 9, and 11. From (3 . Zl), (8 .22), and (8 I as), we conclude 
that 

C f 1 qa-Fla d9 < Ad(log 7a)A q+Ang(logn)Av4a 

Taking Y = [GJ, we obtain (3. II), and complete the proof of the theorem. 

3.2, THEOREM B. -If Hy@hesis R* is true, then the number of eves 
numbers less tha7t 92, for which Goldbrcch’s Theorem is false, is O(d+‘) for 
every positive E. 

We have Q(m) = 0, if m is odd, and 

if PJZ is even ; and so 

( v(m)--n(m))2 = (61(m))’ > Am’, 

for every even number nz for which Goldbach’s Theorem is false. The 
number of such numbers between $, and PZ (inclusive of the limits) is 
therefore less than 

B (&a$+‘, 

where B(e) ia 
fhan ?z is less 

a function of e only ; and the number of sllch numbers less 

B (e) + (1+(9)“+‘+($)1+‘+*,*) < .B(e)Iza+c* 

4. ConclUSiu~2. 

4.1. It may be observed that the main conclusion of P. N. 3, viz. that 
evwy Eal*ge odd number is (on Hypothesia R’) the such of thq=ee primes, ia 
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an immediate corollary of Theorem B. For, if 72 is a large odd 
which is not the sum of three primes, then none of the numbers 

number 

92-p (2 < p < 4 

can be the sum of two, which obviously contradicts Theorem B. 
The method which we have followed here has other important applica- 

tions. It enables us, for example, to prove that almost all numbers are 

8ums of Jive cubes, 

sixtem biquadmtes, 

two squaws ad a cube (or any odd power), 

tm squares a9td a pri9ne? 

-the last theorem being, naturally, subject to Hypothesis R*. We shall 
prove the first two oE these assertions in the next memoir of the series, irl 
which we return to Waring’s Problem, 
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SOME FAMOUSPROBLEMS OF THE 
THEORY OFNUMBERS. 

IT is expected that a professor who delivers an inaugural 

lecture should choose a subject of wider interest than those 
which he expounds to his ordinary classes. This custom is 

entirely reasonable ; but it leaves a pure mathematician 

faced by a very awkward dilemma. There are subjects in 
which only what is trivial is easily and generally compre- 

hensible. Pure mathematics, I am afraid, is one of them ; 
indeed it is more: it is perhaps the one subject in the 

world of which it is true, not only that it is genuinely 

difficult to understand, not only that no one is ashamed of 

inability to understand it, but even that most men are 
more ready to exaggerate than to dissemble their lack of 

understanding. 

There is one method of meeting such a situation which 

is sometimes adopted with considerable success. The 

lecturer may set out to justify his existence by enlarging 

upon the overwhelming importance, both to his University 
and to the community in general, of the particular studies on 

which he is engaged. He may point out how ridiculously 

inadequate is the recognition at present afforded to them ; 
how urgent it is in the national interest that they should be 

largely and immediately re-endowed ; and how immensely 

all of us would benefit were we to entrust him and his 
colleagues with a predominant voice in all questions, of 

educational administration. I have observed friends of my 

own, promo&d to chairs of various subjects in various 
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demarcated region, but it has suffered under tile miss& of 
philosophers for generations, and it is ours by right; we 

propose to accept the mandate for it, and to offer it the 

opportunity of &f-determination under the mathematical 

flag. Such at any rate is the thesis which I hope it may 

before long be my privilege to defend, 

It seemed to me, however, when I considered the matter 

further, that there are two fatal objections to maVthematical 

philosophy as a subject for an inaugural address. In the 

first place the subject is one which requires a certain 

amount of application and preliminary study. It is not 

that it is a subject, now that the foundations have been 
laid, of any extraordinary difficulty or obscurity; nor that 

it demands any wide knowledge of ordinary mathematics, 
l3ut there are certain things that it does demand ; a little 

thought and patience, a little respect for mathematics, and 

a little of the mathematical habit of mind which comes 

fully only after long years spent in the company of mathe- 
matical ideas. Something, in short, may be learnt in a 
term, but hardly in a casual hour. 

In the second place, I think tha& a professor should 

choose, 
exists, 

for his inaugural lecture, a subject, if such 

to which he has made himself some contri 
a subject 
bution of 

substance and about which he has something new 
And about mathematical philosophy I have nothing 

to say. 

new to 
say; I can only repeat what has been said by t#he men, 

Cantor and Frege in Germany, Peano in Italy, Russell and 

Whitehead in England, who have originatred the subject 
and moulded it now into something like a definite form. 

It would be an insult to my new University to offer it, 

a wat?ered synopsis of some one else’s work. I have there- 
fore finally decided, after much hesitation, to take a sub- 

ject which is quite frankly mathematical, and to give a I 
summary account of the results of some researches which, 
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THE THEORY OF NUMBERS 7 

whether or no they c0ntai.n anything of any interest or. 

imputince, have at any rate the merit that they represenb 

the best that I can do. 

My own favourite subject has certain redeeming advan- 

hges. It is a subject, in the first place, in which a large 
proportion of the most remarkable results are by no means 

beyond popular comprehension. There is nothing in the 
lea& popular about its methods ; as to its votaries it is the 

most beautiful, so by common consent it is the mod diffi- 

cult of all branches of a difficult science ; but many of the 
actual results are such as can be stated in a simple and 

striking form. The subject has also a considerable histori- 

cal connexion with this particular chair. I do not wish ta 
exaggerate this connexion. It must be admitted that the 
contributions of English mathematicians to the Theory of 
Numbers have been, in the aggregate, comparatively slight. 

Fermat was not an Englishman, nor Euler, nor Gauss, nor 
Dirichlet, nor Riemann ; and it is not Oxford or Cambridge, 

but Gattingen, that is the centre, of arithmetical research 
to-day. Still, there hag been an English connexion, and it 
has been fur the most part a connexion with Oxford and 

with the Savilian chair. 

The connexion of Oxford with the theory of numbers is 
in the main a nineteenth-century connexion, and centres 

naturally in the names of Sylvester and Henry Smith. 

There ia a more ancient, if indirect, connexion which I 
ought not altogether to forget, The theory of numbers, 

more than any other branch of pure mathematics, has 
begun by being an empirical science. Its most famous 

theorems have all been conjectured, sometimes a hundred 
years or more before they have been proved; and they 

have been suggested by the evidence of b mass of compu- 

tation. Even now there is a considerable part to be 

played by the computer, n and a man who has to undertake 
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laborious arithmetical computations is hardly likely to 

forget what he owes to Briggs. However, this is ancient 

history, and it is with Sylvester and Smith that I am 

concerned to-day, and more particularly with Smith, 

Henry Smith was very many things, but above all things 
a most brilliant arithmetician. Three-quarters of the first 

volume of his memoirs is occupied with the theory of 

numbers, and Dr. .Glaisher, his mathematical biographer, 
has observed very justly that, even when he is primaril? 

concerned with other matters, the most striking feature of 
his work is the strongly arithmetical spirit which pervades 

the whoie, His most remarkable contributions to the 

theory are contained in his memoirs on the arithmetical 

theory of forms, and in particular in the famous memoir on 
the representation of numbers by mnns of five squares, 

crowned by the Paris Academy and published only after 

his death. This memoir is peculiarly interesting fo me, for 

the problem is precisely one of those of which I propose to 
speak to-day ; and I: mzey perhaps add one comment on the 
surprising history set out in Dr. (Zaisher’s i&rod&ion. 

The name of Minkowski is familiar to-day to many, even 

in Oxford, who have certainly never read a line of Smith, 

It is curious to contemplate at a distance the storm of 

indignation which convulsed the mathematical circles of 

England when Smith, bracketed after his death with the 
then unknown German mathematician, received, a greater 

honour than any that had been paid to him in life. 

The particular problems with which I am concerned 
belong to what is called the ‘ additive ’ side of higher 

arithmetic. The general problem may be stated as follows. 
Suppose that ‘M, is any positive integer, and 

aj3 “2, a,, .*a 

positive integers of some special kind, squares, for example, 
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or cubew, OF perfect kth powers, or primes. 
possible expressions of’ m in the form 

We consider all 

n = cw,+q- a.* +a,, 

where B may be fixed or unrestricted, the Cwfs may or may 
not be necessarily distinct, and order may or may not be 

relevant, according to the particular problem on which we 

are engagd We denote by 

r (N) 

the number of representations which satisfy the conditions 

of the problem. Then what ctm ‘we say about r (9%) 1 Can 
we find an exact formula for r@), or an approximate formula 
valid for large values of rt ? In particular, is r (in) a&5uays 
p&be? Is it always possible, that is to say, to find at 

least one representation of SQ of the type required? Or, if 
this is not so, is it at any rate always possible when YL is 
sufficiently large ? 

I can illustrate the nature of the general problem most 
simply by considering for a moment an entirely trivial 

case. Let us suppose that there are three different a’s only, 

viz, the numbers I, 2, 3 ; that repetitions of the same 61 are 
permissible ; that the order of the cw’s is irrelevant ; and 

that 8, the number df the a’s, is unrestricted. Then it is 
easy to see that Y(%), the number of representations, ia the 

number of solutions of the equation 

n =x+Zy+3z 

in positive integers, including zez0. 

There are various ways of solving this extremely simple 

problem. The most interesting for our present purpose is 
*that which rests on aq analytical foundation, and usm the 

idea of the generating fulzctim 
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in which the coefficients are the values of the arithmetical 

functitin I. It follows immediately from the definition 

of r(?z) that 

and, in order to determine the coefikients in the expansion, 

nothing more than a little elementary algebra is required. 
We find, by the ordinary theory of partial fractions, that 

f( 1 1 1 17 1 
x= 

6(1-x)’ $- 
-- 
4(1--~)~ + 72(1--s) + 8(1+x) 

1 1 
+ 

9 (l-ox) + 9(1-h) 

lvhere o and o2 denote e usual the two complex cube roots 

of unity. Expanding the fractions, and picking out the 
coefficient of tlln, we obtain . 

+) (9% + 3J2 
12 

7 + (-v+ 2c*g2n= =--- 
72 8 ii 3’ 

It is easily verified that the sum of the la& three terms 

can never be as great as & so that r(m) isr the integer 

nearest to 
(m + q2 -. 

12 

The problem is, zw I said, quite trivial, but it is interest- 

ing none the less. A great deal of work has been done 
on problems similar in kind, though naturally far more 

complex and difficult in detail, by Cayley and Sylvester, 

for example, in the last century, and by G&her, and 
above all by Macmahon, in this. And even thirs problem, 
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simple as it is, has auf&i& content to bring out clearly 

certain principles of cardinal importance. 

In particular, the solution of the problem shows quite 
clearly that, if we are to attack these c additive ’ problems 

by analytic methods, it is in the theory of integral power 

aeries 

that the necessary machinery must be found. It is this 
characteristic which distinguishes this theory sharply from 

the other great side of the analytic theory of numbers, the 

t multiplicative ’ theory, in which the fundamental idea ie 

that of the resolution of a number into primes. In the 

latter theory the right weapon is generally not a power 

series, but what is called a Dirichlet’s series, a series of the 

fyl?e 

c a,w8. 

It is easy to see this by considering a simple example. 

One of the most interesting functions of the multiplicative 
theory is d(n), the number of divisors of n. The amociated 

pow& series 

is easily transformed into the series 

called Lam bert’s series. The function is an interesting 

one, but somewhat unmanageable, and certainly+not one of 
the fundamental f m&ions of analysis. The corresponding 

Dirichlet’s series is far more fundamental; it is in fact 

the square of the fakous Zeta function of Riemann. 
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The underlying reason for this distinction is fairly 

obvious. It is natural to mdtipZy primes and unnatural 

to add them. Now 

WP x ncs = (mn)-g, 

su that, in the theory of Dirichlet’s series, 

combine natural ly with oqe another in a c mu 

manner. But 
xm XX% = xm+y 

the terms 
.Itiplicative ’ 

so that the multiplication of two terms of a power series 
involves an additive operation on their ranks. It is 

thus that the Dirichlet’s series rather than the power 

series proves to be the proper weapon in the theory of 
primes. 

It would be difficult for anybody to be more profoundly 
interested in anything than I am in the theory of primes ; 

but it is not of this t*heory that I propose to speak to-day, 
and we must return to our general additive problem. As 

noon as we try to specialize the problem in some more 

interesting manner, two problems stand out as calling for 
resesrch. Each of them, naturally, is only the representa- 

tive of a class. 

The first of these problems is the problem of pwtitims. 

Let us suppose now that the cx’s are cony positive integers, 

and that (as in the trivial problem) repetitions are allowed, 
order Is irrelevant, and s is unrestricted. The problem is 

then that of expressing ‘IL in any manner as a sum of 
integral parts, or of solving the equation 

n =x-t2y+32!+4u+5v+.;., 

and r(m) or, as it is now more naturally written, p (n), is 

the number of warestrieted partitbm of in. Thus 

5 = 1+X+1+1+1 = 1+1+1+2 

=1+2+2=1+1+3=2+3=1+4=5, 
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THE THEORY OF NUMBERS 13 

so that p(5) = 7. The generating function in this case 

wae found by Euler, and is 

I do not wish ‘to discuss this problem in any detail 

now, but the form of the generating function calls for 

une or two general remarks. In the trivial problem the 

generating function was rc&onaZ, with a finite number of 

poles all situated upon the unit circle. Here also we are 

led to a power series, or infinite product, convergent inside 

the unit circle ; but there the resemblance ends, This 

function will be recognized by any one familiar with the 

theory of elliptic functions ; it is an elliptic modular 

function ; and, like all such functions: it has the unit circle 

as a continuous line of. singularities and does not exist at 

all outside, It is easy to imagine the immensely increased 

difficulties of any analytic solution of the problem. 

It was conjectured by a very brilliant Hungarian 

mathematician, Mr. G. Pdlya, five or six years ago, that 
cony function represented by a power series whose 

coefficients are integers, and which is convergent inside 

the unit circle, must behave, in this respect, like one or 

other of the two generating functions which we have 

considered. Either such a function is a rational function, 

that is to say, completely elementary; or else the unit 

circle is a line of essential singularities. I believe that a 

proof of this theorem has now been found by Mr, F, Carlson 

of Upsala, and is to be published shortly in the Muthe- 

mcttische Zeitschrift. It is difficult for me to give reasoned 

praise to a memoir which I have not seen, but I can 

recommend the theorem to your attention with confidence 
as one of the most beautiful of recent years. 

The problem of partitions is one to which, in collaboration 

with the Indian mathematician, Mr. S. Ramanujan, I have 
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myself devoted a great deal of work. The principal result 

of our work has been the discovery of an approximate 

formula for @Q in which the leading term is 
27r 

- &-& 
1 -46 de -- 

and which enables 

accuracy which is 

example, by using 

p(200), a number 
I have set out the 

w  to approximate to p(m) with an 
almost uncanny, We are able, fur 

8 terms of our formula, to calculate 
>f 13 figures, with an error of 404. 

details of the calculation in Table I, 

TABLE T 

242w 

3,972,998,993,185-896 
36,282*978 
- 87*5% 
+ 5m 147 
+ I*424 
+ 04071 
+ O*OQO 
+ 0*043 

3,972,999,029,388+004 

The value of p(200) was subsequently verified by Major 
MacBIahon, by a direct computation which occupied over 

a month, 

The formulae connected with this problem are very 
elaborate, and except on the purely numerical side, where 

the results of the theory are compared with those of com- 

putation, it is not very well suited for a ha&y expo- 

sition ; and I therefore pass on -at once to the principal 
object of my lecture, the very famous problem known, 

after a Cambridge professor of the eighteenth century, as 

Wiwing’s Probhm. 
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We suppose now that every 61 is a perfect &th power 
,k, E being fixed in each case of the problem which we 

consider; rfl2 may be of either sign if h is even, but must 

be positive if i2 is odd. In either case \-Te allow nz to be 

zero. Repetitions are permitted, as in our previous problems; 

but it is more convenient now to take acco.unt of the order 

of the br’s ; and s, which was formerly unrestricted, is now 

fixed in each case of the problem, like h. The problem is 
therefore that of determining the number of representations 

of a number m as the sum of s positive E-th powers. Thus 
Henry Smith’s problem, the problem of five squares, is the 

particular case of Waring’s problem in which X;: is 2 and 

s is 5. The problem has a long history, which centres 
round this simplest case of squares ; a history which began, 

I suppose, with the right-angled triangles of Pythagoras, 

and has been continued by a long succession of mathemati- 

cians, including Fermat, Euler, Lagrange, and Jacobi, down 
to the present day. I will begin by a summary of what 
is known in the simplest case, where the solution is 
practically complete. 

A number 32 is t,lie sum of two squttres if and only if 
it is of the form 

9a I jlpp, 

where P is a product of primes, all different and all of the 
form 4kfl. In particular, a prime number of the form 

4 1; + I can be expressed as the sum of two squares, and 

substantially in only one way. Thus 5 = I2 + P, and there 

is no other solution except the solutions (+ 1)2 + (+ 2)“, 

(+ q2 + ( $- q2, which are not essentially different, although 

it is convenient to count them as distinct. The number of 
numbers less than x, and expressible as the sum of two 

squares, is approximately 
CX 

-3 
&g X 
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where C is a certain constant. The last result was proved 

by Lndau in 1908; all the rest belong to the clmsical 

theory* 
A number is the Burn of three squares unless it is of 

the form 

when it is not so expressible. Evq number may by 

expressed by four squares, and u f’tiori by five or more, 

It is this last theorem of Lagrange that I would ask you 

particularly to bear in mind. 
If s, the number of squares, is even and less than 10, 

the number of representations may be expressed in a very 

simple form by means of the divisors of 32. Thus the 

number of representations by 4 squares, when ,iz is odd, ia 
8 times the sum of the divisors of n; when rz~ is even, it 

is 24 times the sum of the odd divisors; and there are 

similar results for 2 sqtiares, or 6, or 8. 

When 8 is 3, 5, or 7, the number of representations can 
also be found in a simple form, though .one of a very 

different character. Suppose, for example, that s is 3. The 

problem is in this case essentially the same as that of 

determining the number of classes of binary arithmetical 

forms of determinant --‘r’l ; and the solution depends on 
certain finite sums of the form 

extended over quadratic residues p or non-residues y of ‘YL. 
When S, whether even or odd, is greater than 8, the 

solution * is decidedly more difficult, and it is only very 

recently that & uniform method of solution, for which I 

must refer you to some recent memoirs of Mr, L. J. Mordell 

and myself, has been discovered. For the moment I wish 

to concentrate your attention on two points : the first, that 
an expre8tiu~n by 4 squmea is dways ptible, while om3 
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THE THEORY OF NUMBERS 17 

by 3 is lnot ; and the second, that the existence of numbers 

sot expressible by 3 squares is revealed at once by the quite 

trivial observation that no number so expressible can be 

congruent to 7 to modulus 8. 
It is plain, when we proceed to the general case, that 

any number 32 can be expressed as & sum of Lth powers ; 

we have only to take, for example, the sum of ‘YL ones. And, 
when 83% is given, there is a /miniirnztm, number of Xc-th 
powers in terms of which m can be expressed ; thus 

23 = 2*z3 + 7*13 

is the sum of 9 cubes ahd of no smaller number. But it is 
not at all plain (and this is the point) that this minimum 

number cannot tend to infinity with ITL. It does not when 

b = 2 ; for then it cannot exceed 4.. And Waring’s Problem 
(in the restricted sense in which the name has commonly 

been used) is the problem of proving that the minimum 

number is similarly bounded in the general case. It is not 

an easy problem ; its difficulty may be judged from the fact 

that it took 127 years to solve. 

We may state the problem more formally as follows. 

Let 16 be given. Then there may or may not exist a 
number nz, the same for all values of n, and such that 

3% can always be expressedSas the sum of wz k-th powers or 

less. If any number ‘yrt possesses this pruperty, all larger 

numbers plainly possess it too ; and among these numbers 

we may select the Zeust, This least number, which will 
plainly depend on k, we call g(E) ; thus g(k) is, by defini- 

tion, the least number, if such a number exists, for which 

it is true that 

We have seen already that g(Z) exists and has the vaIue 4. 

In the third edition uf his Meditationes Algebmicae, 

published in Cambridge in 17 82, Waring asserted that 
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every number is the sum of not more than 4 squares, not 

more than 9 cubes, not more than 19 fourth powers, et sic 

deimeps. A little more precision would perhaps have 
been desirable ; but it k~s generdly been held, and I do 

not question that it is true, that what Waring is assepting 

is precisely the existence of s(k). He implies, moreover, . 
that y(2) = 4 and y(3) = 9 ; and both of these assertions 

are correct, though in the first he had been anticipated ‘by 
Lagrange. Whether ~(4) is or is not equal to * 19 is not 

known to-day. 
Waring advanced no argument of any kind in support 

of his assertion? and it is in the highest degree unlikely 
that he was in possession of any sort of proof. I have no 
desire to detract from the reputation of a man who was 

a very good mathematician if not a great one, and who 
held a very honourable position in a University which not 
even Oxford has persuaded me entirely to forget. Eut 
there is a tendency to exaggerate the profundity implied 

by the enunciation of a theorem of this particular kind. 
We have seen this even in the case of Fernlat, a mathe- 

matician of a class to which Waring had not the slightest 
pretensions to belong, whose notorious assertion concerning 
‘ Mersenne’s numbers ’ has been exploded, after the lapse of 

over 2 50 years, by the calculations of the American computer 
Mr. Powers. No very labol-ious computations would be 

necessary to lead Waring to a highly plausible speculation, 

which is all I take his contribution to the theory to be ; 
and in the Theory of Numbers it is singularly easy to 

speculate, though often terribly difficult to prove ; and it 

is only proof that counts. 
The next advance towards the solution of the problem 

was made by Liouville, who established the existence of 
g (4). Liouville’s proof, which was first published in 185 9, 

is quite simple and, as the simplest example of awl important 
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type of argument, is worth reproducing here. It may be 

verified immediately tbhat 

+~dc+z)4+(x-z)4+(t+y)4 ++yy 

+tx+ty +(z- t)*+(y+z)4+(y-X)4; 
and since, by Lagrange’s theorem, any number X is the 
sum of 4 squares, it follows that any number of the form 

6x2 is the sum of 12 biyuadrates. Hence any number of 
the form 6 (X2 + Y2 + Z3 + T2) or, what is the same thing, 

any number of the form 6 ~yyt, is the sum of 48 biquadrates. 
But amy number ss is of the form 6m+r, where r is 

O, I, 2, 3, 4, or 5. And therefore #IL is, at worst, the sum 

of 53 biquadrates. That is to say, q (4) exists, and does I 
not exceed 53. Subsequent investigators, renning upon this 

argument, have been able to reduce this number to 37; the 

final proof that g (4) < 37, the most that is known at present, = 
was given by Wieferich in 1909. The number 

79 = 4a24 + 1 t&l4 

needs 19 biquadrates, aml no number is known which needs 
more. There is therefore still a wide margin of uncertainty 

as to the actual value of g( 4). 
The case of cubes is a little more difficult, and the 

existence of g (3) was not established until 1895, when 
Maillet proved that g(3j s 17. The proof then given by 

Maillet rests upon the identity 

6x(x2+y’+x”+t2) 

= (x+y)3+(x-y)3+( x+~)3+(X-z)3+(X+t)3+(X--t)3, 

and the known results concerning the expressiog of a 
number by 3 squares. It has not the striking simplicity 

of Iiiouville’s proof ; but it has enabled successive investi- 

gators to reduce the number of cubes, until finally Wieferich, 
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in 1909, proved that g (3) s 9. As 23 and 239 require 

9 &es, the value of g(3) is in fact exactly 9. It i8 only 

for E = 2 and k = 3 that the actual value of g(k) has 

been determined. But similar existence proofs were found, 

and upper bounds for g(k) determined, by various writers, 

in the cases hi = 5, 6,7, 8, and 10. 
Before leaving the problem of the cubes I must call your 

attention to another very beautiful theorem of a slightly 
different character. The numbers 23 and 239 r’equire 

9 cubes, and it appears, from the results of a survey of 
all numbers up to ~U,OUO, that no other number requires so 

many. It is true that this has nut actually been proved ; 
but it has been proved (and this is of course the essential 

point) that the number of numbers which require as many 
cubes- as 9 is $w&. 

This singularly beautiful theorem, vrhich is due to my 

friend Professor Landau of Gijttingen, and is to me as 
fascinating as anything in the theory, also dates from 

19O9, a year which stands out for many reasons in the 

history of the problem. It is of exceptional interest not 
only in itself but also on account of the method by which 

it was proved, which utilizes some of the deepest results in 

the modern theory of the asymptotic distribution uf primes, 
and made it, until very recently, the only theorem of its 

kind erected upon a genuinely transcendental foundation. 

To me it has a personal interest also, as being the only 
theorem of the kind which, up to the present, defeats 

the new analytic method by which Mr. Littlewood and 

I have recently studied the problem. 
Landau’s theorem suggests the introduction of another 

function of E, which I will call G(k;), of the same general 

character as g(k), but I think probably more fundamental. 

This number G(k) is defined as being the least number for 

which it is true that 
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’ eve?y member FROM A CERTAIN POINT ONWARDS iS the 

aurn of G(k) bth powers or less.’ 

It is Obvious that the exi&nce of g(k) involves that of 
G(k), and that Q(k) s g(k). 1Yhen k = 2, both numbers 

are 4 ; but G(3) s 8, by Landau’s theorem, while g(3) = 9; 
and doubtless G(k) < g(k) in general. It is important also 

to observe that, conversely, the existence of G(k) involves 

that of g(k). For? if G(k) exists, all numbers beyond- a 
certain limit y are sums of G(k) k-th powers or less. But 

all numbers less than y are sums of y ones or less, and there- 

fore g(k) certainly cannot exceed the greater of G(k) and y. 

I said that G(k) seemed to me the more fundamental of 

these numbers, and it is easy to see why. Let us assume 

(as is no doubt true) that the only numbers which require 
9 cubes for their expression are 23 and 239. This is a very 

curious fact which should be interesting to any genuine 

arithmetician ; for it ought to be true of an arithmetician’ 

that, ZN has been said of Mr. Ramanujan, and in his case 
at any rate with abdolute truth, that Cevery positive integer 

is one of his personal friends’. But it would be absurd to 
pretend that it is one of the profounder truths of higher 

arithmetic : it is nothing more than an entertaining arith- 

metical fluke. It is Landau’s 8 and not Wieferieh’s 9 that 
is the profoundly interesting number. 

The real value of G(3) is still unknown, It cannot be 

less than 4 ; for every number is congruent to U, or 1, or 

- 1 to modulus 3, and it is an elementary deduction that 
every cube is congruent to O, or 1, or - 1 to modulus 9. 

Frum this it follows that the sum of three cubes cannot be 

of the form 9n2 + 4 or 9 m + 5 : fur such numbers at least 

4 cubes are necessary, so that G(3) 2 4. But whether 

G(3) is 4, 5, 6, 7, or 8 is one of the deepest mysteries 

of arithmetic. 

It is worth while to glance at the evidence of computation. 
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Dam, at the instance of Jacobi,. tabulated the minimum 

number of cubes for values of /n from 1 to 12,000, and Dau- 
blensky Son Sterneck has extended the table to 40,000, 
Some of the results are shown in Table II. 

TABLE IX 

12‘3 4 5 6 7 8 9 
l- 1000 10 41 122 242 293 202 73 15 2 

lUOO- 2000 2 27 113 283 358 194 23 - - 

9000-10000 1 17 121 377 401 83 - - - 
19000-20000 1 12 100 400 426 61 - - - 
29000-30000 1 11 105 448 388 47 - - - . 
39000-40000 1 13 117 457 384 28 - - - 

In each row I have shown a typical thousand numbers, 

classified according to the minimum number of cubes by 
which they Can be expressed. There are 15 numbers only 

for which 8 are needed, fhe largest being 454. There are 

X 21 for which 7 are needed, the two largest being 58 18 and 
8042 ; the distribution of these 121 numbers in the first 

9 thousands is 

73, 23, 7, 6, 7, 4, 0, 0, 1. 

If empirical evidence means anything, it seems clear that 

G(3) 2 6. I am sure that Professor Townsend and Professor 

Ijndemann have made countless generalizations on evidence 

far less substantial. 

It is also clear that, throughout von Sterneck’s tables, 
there is a fairly steady, though latterly very slow, clecresse v 
in the proportion of numbers for which even 6 cubes are 

required ; but that the table is not sufficiently extensive to 

give any very decisive indication as to whether these num- 

bers disappear or not. 1t seemed to me this was a case in 

which further evidence would be worth having. To calculate 
a systematic table on the scale required would be a *work 

of years. It is possible, however, to obtain some indication 
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of tile probable truth, without any superhuman patience, 

by exploring a selected stratum of much larger numbers. 

Dr. Ruckle of Giittingen recently undertook this task at 

my request, and I am glad to be able to tell you his 

results. He found, for the 2,000 numbers immediately 

belotr I ,OOO,OOO, the following distribution. 

1 2 3 4 5 6 I 

998UUU-999000 0 f  98 640 262 1 0 
999uou--1000000 I 1 94 614 289 1 0 

You will observe that the e-cube numbers have all but 

disappeared. and that there is a quite marked turnover , 
from 5 to 4. Conjecture in such a matter is extremely 

rash, but 1 am on the whole disposed to predict with some 

confidence that G (3) s 5. If I were asked to choose between 

5 and 4, all I could say would ,be this. That G (3) should 

be 9 would harmonise admirably, so far as we can see 

at present, with the general trend of Mr. Littlewood’s and 

my researches. But it is plain that, if the S-cube numbers 

too do ultimately disappear, it can only be among numbers 

the writing of which would tax the resources of the decimal 

notation ; and at present we cannot prove even that G( 3) ,< 7, 

though here success seems not impossible. 

With the fourth powers or biquadrates we have been 

very much more successful. I have explained that g(4) 

lies between 19 and 37. As regards G (a), we have here no 

numerical evidence on the 

fourth puwer is congruent 

same 

to 0 

scale 

or f 

as for cubes. Any 
to modulus 16, and 

from this it follows that no number congruent to 15 to 

modulus 16 can be the sum of less than 15 fourth powers. 

Thus G(4) > 15; and Kempner, by a slight elaboration of 

this simple-argument, has proved that G(4) 2 16. No 

better upper bound wa8 known before than the 37 of 

Wieferich, but here Mr. Littlewood and I have been able 
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to make a very substantial improvement, fist to 33 and 

finally to 2 1. Thus G(4) lies between 16 and 21, and 

the margin is comparatively small. 

I turn now to the general case, In the years up to 

1909, the existence proof was effected, and upper bounds 

for g(k) determined, for the values of k from z to 8 in- 

clusive and for Jz = IO. These upper bounds are shown 

in the first row of Table III ; that for 10, which is not 

included, is somewhere in the neighbourhood of 140,000. 

TABLE III. 

2 3 4 5 6 7 8 
Y(k) e 
&(#)q+2"-2= 

4 9 37 58 478 3806 31353 

4 9 19 37 73 143 279 
NW2 4 PI 37 58 478 3806 31353 
G(k)s(k-2)2k-1$5= (5) (9) 21 63 133 335 773 
G(k)zk+1,4k 4 4 l6 6 7 8 32 

In the second row I have shown the beat known lower 

bounds, which are given by the simple general formula 

which stands to the left, in which [(Uk] denotes the 

integral part of (s)kg It is easily verified, in fact, that 

the number 

([(gq-1) @+ 9-1, 

which is less than Sk, requires the number of k-th powers 

stated? It will be observed that the first three numbers 

are those which occur in Waring’s enunciation. 
Waring’s problem, as I have defined it-the prublem, 

that is to say, of tiding a general existence proof 

for g(k), and a frtiori for G(k)--wan ultimately solved 

by Hilbert, once more in IW% I wish that I had time 

to give a proper account of his justly famous memoir, 

which raised the whole discussion at once on to an 

1 This observation wm made by Bretschneider in 1853. 
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altogether higher level. As it is, I must confine myself 

to one or two extremely inadequate remarks. The 

proof falls into two parts. The first part is what I may 

call semi-transcendental. It is not fully transcendental in 
the sense in which, for exa#mple, the classical proofs in the 

theory of the distribution of primes are transcendental, for 

it does not make use of the machinery of the theory of 
analytic functions of a complex variable ; but it uses the 

methods of the integral calculus, and is therefore not 

fully elementary. Hilbert set out with what would appear 
at first sight to be the singularly ill.- adapted weapon of 
a volume integral in space of 25 dimensions, a number 

which he wzcs afterwards able to reduce to 5. The formula 

which he ultimately used is 

(Xl2 + xz” + x,2 + x2 + xj2p 

- - c (x,t,+x,f,+x,t,+x,t,+xgt,)2kdtl . ..dt., 

where C is 21 certain constant, viz. 

and the integration is effected over the interior of, the 

hypersphere 
t,2+t22+t,2+t,2+t,2 = 1. 

Starting from this formula he was able, by an exceed- 
ingly ingenious process based upon the definition of a 

definite integral as the limit uf a finite sum, to prove 

the existence in the general case of algebraical identities 

analogous to that used by Liouville and his followers 
when I;: is 4. It should be observed that Hilbert’s 

proof is essentially an &&ewe proof; his method is 

not effective for the actual determination of these identities 
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even in the simplest cases. The identities which are known 

for special values of k have been obtained by commolz 
algebra, and are, after the first few values of E, excessively 

complicated. The simplest known identity for LY = IO, for 

instance, is 

22680 (xl2 + q2 + x,” + x42)5 

0) (48) 
= 92 (x1+x~*q+xpp+ ~(2x,+x,+s3y0 - - 

(12) (4) 
+ 1q (x2+x,)“‘+ 92 (2xJ0, 

where t1 e 1 in brackets show the number of 

under the signs of summation. However, the identities 

exist ; and it should be clear to you, after our discussion of 

the case 1~ = 4, that they enable us :tt once to obtain a 

proof in succession for k = 2, 4, 8, 16: . . . and generally 

whenever II: is a power of 2. This co&udes the first and 

most characteristic part of HiTbert’s argument. The second 

part, in which the conclusion is extended to every value of 

k, is purely algebraical. 

Hilbert’s work has been reconsidered and simplified by 

a number of writers, most notably by Dr. Stridsberg of 

Stockholm, and the ultimate result of their work has been 

to eliminate the transcendental elements from the proof 

entirely. The proof, as they have left it, is fully elemen- 

tary ; it does not involve any reference to integrals, or to 

any kind of limiting process, but depends simply on an 

ingenious system of equations derived by the processes of 

finite algebra. It remains a pure existence proof, and 

throws no light on the value of g(k). 

It would hardly be possible for me to exaggerate the 

admiration which I feel for the solution of this historic 

problem of which r have been compelled to give 80 bald 
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and summary a clescription. Within the limits which it 

has set for itself, it is absolutely and triumphantly $uccess- 

ful, and it stands with the work of Hadamard and de la 

ValMe-Poussin, in the theory of primes, as one of the land- 

marks in the modern history of the theory of numbers. 
But there is an enurmous amount which remains to be 

done, and it would seem that, if we are to interpret 

Waring’s problem in the widest possible sense, if we are to 

get into real con&t with the actual values of our numbers 

g(k) and G(k), still more if we are to attack all the obvious 
problems connected with the number of representatidas, 

then essentially diKerent and inherently more powerful 

methods are required. There is one armoury only in which 

such more powerful weapons can be found, that of the 

modern theory of functions. In short we must learn how 
to apply Cauchy’s Theorem to the problem, and that is 

what Mr, Littlewood and I have set out to do. 

The first step is fairly obvious. The formulae are 

slightly simpler when X: is ewe~iz,. The number of represen- 
tations of ‘1% as the sum of s lath powers, which we may 

denote in general by 

%,$ (4 

is* then the coefficient of xl2 in the generating function 

where 

This formula involves certain conventions as to the order 

and sign of the numbers which occur in the representations 
which me to be reckoned as distinct ; but the complications 

so introduced are trivial and I need nut dwell on them. 

The series is convergent when 1 x 1~ 1, and, by Cauchy’e 
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Theorem, we have 

rk,&) = Gi 
1 (f(W (jx 

s 
- p+l ? 

the path of integration being a circle whose centre is at 

the origin and whose radius is less than unity. 

All this is simple enough; but the further study of the 

integral is very intricate and difficult, and I cannot attempt 

to do more than to give a rough idea of the obstacles that 
have to be surmounted, -Let us contrast the integral for a 

moment with that which would stand in its place in the 

‘ trivial ’ problem to which I referred early in my lecture. 
There the subject of integration would be a rationd func- 

tion, with a finite number of poles all situated on the unit 

circle. We could deform the contour into one which lies 

wholly at a considerable distance from the origin and in 
which, owing to the f’rcctor znfl in the denominator, every 
element is very small when AU is large. We should have, 

of course, to introduce corrections corresponding to the 

residues at the poles ; and it is just these corrections which 

MTould give the dominant terms of an approximate formula 
bv means of which our coefficients could be studied. In 
tie present case we have no such simple recourse ; for 

every point of the unit circle is a singularity of an exceed- 
ingly complicated kind, and the circle as a whole is a 

barrier across which it is impossible to deform the contour. 

It is of course for this reason that no successful application 
of the method has been made before. 

Our fundamental idea for overcoming. the difkulty is 

as follows. Among the continuous mass of singularities 

which covers up the circle, it is possible to pi& out a class 
which to a certain extent dominates the rest. These special 

singularities are those associated with the rational points 

of the circle, that is to say, the points 
x = e2rnipJ, 
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where p/q is a rational fraction in its lowest terms. This 

class of points is indeed an i?zJilzite class ; but the infinity 

is, in Cantor’s phrase, only an erlzurrnerable infinity; and 

the points can therefore be arranged in a aimply i&Ae 
series, on the model of the series 

In the neighbourhood of these points the behaviour of the 
function is, sufficiently complex indeed, but simpler than 

elsewhere. The function hrts, to put the matter in a rough 
and popular way, a general tendency ti become large in 

the neighbourhood of the ‘unit circle, but this tendency is 

They are must pronounced near these particular points. 

nut only the sip@& but also the heaviest singularities; 

their weight is greatest when’ the denominatur q is smallest, 

decreases as q increases, and (as a physicist would say) 
becomes infinitely small when g is infinitely large. There 
is, therefore, at any rate, the hope that we may be able to 

isulate the contributions of each of these selected points, 
and obtain, by adding them together, a series which may 

give a genuine approximation to our coefficient. 

I owe to Professor Harald Bohr of Copenhagen a 

picturesque illustration which may help to elucidate the 
general nature of our argument. Imagine the unit circle 
as a thin circular rail, to which are attached an infinite 

number of small lights bf varying intensity, each illumi- 

nating a certain angle immediately in frunt of it. The 

brightest light is at x = I, corresponding to 13 = 0, Q = 1 ; 

the next brightest at x = - 1, corresponding to p = 1, 

4 = 2 ; the next at x = Pi/3 and eaaii3, and so on, We 
have to arrange the inner circle, the circle of integration, 

in the position of maximum illumination. If it is too far 

away the light will nut reach it; if too near, the arcs 

which fall within the angles of illbminatioti will be too 
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nan~w, and the light will not cover it completely. Is it 

possible to place it where it will receive a satisfactorily 
uniform illumination ? 

The answer is that this is onZy possible when 1~ is 2. 

Our functions are then elliptic functions ; the lights are the 
formulae of the theory of linear transformation ; and we 

can find a position of the inner circle in which it falls 

entirely under their rays. We are thus led to a solution of 

the problem of the squares which is in all essential respects 

complete. But when k exceeds z the result is less satisfac- 

tory. The angle of the lights is then too narrow; the 

beams which they emit, instead of spreading out, with 
reasonable regularity, are shaped like torpedoes or cigars ; 

however we move our circle a part remains in darkness. 

It would seem that this difficulty, which held up our 
researches for something like two years, is the really 

characteristic difficulty of the general problem. It cannot 

be solved until we have found some other source of light. 

It was only after the most prolonged and painful efforts 
that we were able to discover such another source, It is 

possible not only to hang lights upon the rail, but also, to 

a certain extent, to cause the rail itself to glow. The 

illumination which can be induced in this manner is irri- 

tatingly faint, and it is Xor this reason that our results are 

not yet all that we desire ; but it is enough to make the 
dark places dimly visible and to enable us to prove a great 

deal more than has been proved before. 

The actual results which we obtain are these. We find 

that there is a certain series, which we call the &g&r 

series, which is plainly the key to the solution. This 

aerie is 
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where 

-a sum which reduces, when /C = 2, to one of what are 

known as c Gauss’s sums ’ -and the summation extends, 
Srst to all values of p less than and prime to q, and 

secondly to all positive integral values of q. The genesis 
of the series is this. associate with the rational point 

auxiliary series 

which (cc) is as simple and natural’ as we can make it, and 

(b) behaves perfectly regularly at all points of the unit circle 

except at fhe one point with which we are particularly con- 
cerned. We then add together all these auxiliary functions, 
and endeavour to approximate to the coefficient of our original 

series by summing the auxiliary coefficients over all values 

of p and q. The process is, at bottom, one of ’ decom- 

position into simple elements ‘, applied in an unusual way. 

Our final formula for the number of representations is 

the second term denoting an error less than a constant 
multiple of rtb, and c being a number which is less than 

s 
i- - 1 at any rate for sufficiently large values of s. 
iit 

The A 

second term is then of lower iorder than the first. Further, 

the first term is real, and it may be shown, if s surpasses 

a certain limit, to be positive. If both these conditions 

are saCsfied, and 32 is sufficiently large, then y7;, 8 (3~) 
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cannot be zero, and representations of 121 by s kth powers 

certainly exist. The way is thus open to a proof of the 

existence of G(k); if G(k) exists, m also does g @c)~ and 

Waring’s problem is solved. 

The structure of the dominant term in our general 

formula ia best realized by considering some special cases. 

In Table IV I have written out the leading terms of S, 

TABLE IV. 

k- 2. 

2 
+- 

5&S i 

2 4 
cos g n7r + GO9 

( P-= )I 
+.u + **,a 

lc = 4, s = 33. 

k = 4, s = 21. 

first k=2 and s is arbi .trary, and for 7 

cubes and for 33 and 21 biquadratea. There are certain 
characteristic8 common to all these series. The terms 
diminish rapidly ; in eIM=h case only a very few are uf real 

importance : and they are oscillatory, with a period which 

increases as the amplitude of the oscillations decreases. 

The series for the cubes is easily shown to be positive; 

but we cannot; deduce that 7*3, 7 (n) is positive, and draw 

consequences as to the representation of numbers by 7 cubes, 

676 



THE THEORY OF NUMBERS 33 

because in this case we cannot dispose satisfactorily of the 

error term 0 frt”) in the general formula. In the two 

citges relating ti fourth powers which I have chosen, the 

discussion of the series itself is rather more delicate, for 

there is in each of them one term which can be negative 

and greater than I. But the discussion can be brought to 
a satisfactory conclusion, and, as in this case we are able 

to prove that the error term is really of lower order, we 

obtain what we desire. Ewery large mmber is the mm of 
21 fbwth powers or less; G( 4) 2 21, Further, we have 

obtained a genuine asymptotic formula for the number 

of representations, which can be used for the study of the 

representations of numbers of particular forms. We can 

show, for example, that a large number of the form 

I6 32 + 11) can be expressed by 2 1 biquadrates in about 200 

times more ways than one of the form 16~~ + 2. 
If the method of which I have tried to give some general 

idea +Is compared with those which have previously been 

applied to the problem, it will be found that it has three 

very great advantages, In the first place it is inherently 

very much more powerful. It brings us for the first time 

into relation with the series on which the solution in the 

last resort depends, and tells us, approximately but truly, 

what the number of representations really is. Secondly, it 

gives us numerical results which, as soon as k exceeds 3, are 

far in advance of any known before, These numbers 

are those in the fourth row of Table III.1 It will be seen 

that these numbers conform to a simple law, and that is 

the third advantage of the method, that it is not a mere 

f  The thick type indicates a new result. The (5) and (9) in round 
brackets are inferior to results already known, Our method is easily 
adapted to deal with the case k = 2 completely ; but it will not at 
present yield Landau’s 8, which is therefore tinclosed in square 
brackets. 
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existence proof, but gives us a definite upper bound for G(k) 

for all values uf k, viz. 

G(k) s (k- 2) Zkml + 5. 

In the la& row of the table I have shown all that is known 

about G(Ic) on the other side. In all cases G(k) 2 lc + 1, 

while if 7C is a power of 2 we can say more, namely that 
A compa;rison between this row of figures and G(k) >= 41~. 

that above it is enough to show the room which remains 

It is beyond question that our for further research. 
numbers are still very much too large ; and there is no 

sort of finality about our researches, for which the best 

that we claim is that they embody a method which opens 

the door for more. 

I will conclude by ode w.ord as to the application of 

our method to another and a still more diEcult problem. 

It was asserted by Goldbach in 1742 that every ew~3~ NT&~- 

&r is the SUV~ of two odd Times. Goldbach’s assertion 
-remains unproved ; it has not even been proved that every 

number 3’~ is the sum of 10 primes, or of 100, or of any number 

independent of #IL Our method is applicable in principle to 

this problem also. We cannot solve the problem, but we 

can open the first serious atttik upon it, and bring it into 

relation with the established prime number theory. The 
most which we can accomplish at present is a~ follows. 

We have to assume the truth of the notorious Riemann 

hypothesis concerning the zeros of the Zeta-function, and 

indeed in a geaeralized and extended form. If we do this 
we can prove, not Goldbach’s Theorem indeed, but the next 

best theorem of the kind, viz. that eve3qy odd nzc&e~, at any 

rate from a certain point onwards, is the ~U/IYL of three ocld 
primes. It is an imperfect and provisional result, but it is 

of the proble1n. the 
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CORRECTION 

23. 31. In the formula for r&) on p. 31, read r(s/k) in the denominator. I 

COMMENT 

A French translation, by A, Sallin, with notes by Hardy on subsequent developments, appeared 
in I93 1 as Trois ~obl&nes c&&es de Za thkorie des no&es (les Prews Universitairw de France). 
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theory of numbers, Memenger of Mathematics, 46, 104-107. V 
8. N.I.C. XLV: On a point in the theory of Fourier series, Mesaewer of Muthemtics, 46, 

146-149. III. 1 (a) 
9, N.I.C. XLVI: On Stieltjes’ ‘probl&me des moments’, Messenger of Muthematics, 46, 17!% 

182. VII. 1 
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1917 (cmt*) 

10. (With J, E, L.) Sur la convergence dea series de Fourier et des s&k de Taylor, Comptes 
Rendus, 165, 1047-1049. n-r. 1 (a) 

Il. Mr. S. Ramanujan’s mathematical work in England, Journal of the Indim Mathematical 

Society, 9, 30-45. VII. 2 

1918 

1, (With J. E. L.) Contributions to the theory of the Riemann zeta-function and the theory 
of the distribution of primes, Acta Mathemutica, 41, 119-196. IX. 1 

2. (With S. Ramanujan) On the coefficients in the expansions of certain modular func- 
tions, Proceedings of the Royal Society, (A) 95, 144-155. I. 2(a) 

3. Sir George Stokes and the concept of uniform convergence, Proceeding8 of the Cambridge 
Philosophical Society, 19, 148-156. VII. 2 

4. (With J. E. L.) On the Fourier series of a bounded function, Proceedings of the London 

Muthemmtical Society, (2) 17, xiii-xv. III. 1 (b) 
5. (With S. Ramanujan) Asymptotic formulae in combinatory analysis, Proceeding8 of the 

London MaMekaticul Society, (2) 17, 75-115. I. 2 (a) 
6. N.I.C. XLVII: On Stieltjes’ ‘probl&me des moments’ (cont.), Messenger of Muthematica, 

47, 81-88. VII. 1 
7. N.I.C. XLVIII: On some properties of integrals of fractional order, Messenger of M&e- 

matics, 47, 145-150. V 
8, N.I.C. XLIX: On Mellin’s inversion formula, Messenger of Mathematics, 47, 178-184. VII. 1 
9. Note on an expression of Lambert’s series as a definite htegral, Messenger of Mathe- 

matics, 47, 190-192. Iv. 1 (d) 
10. On the representation of a number as the sum of any number of squares, and in par- 

ticular of five or seven, Proceedings of the Nution& Academy of Sciences, 4,189-193. I. 2 (a) 

1919 

1, (With J. E. L.) Note on Messrs. Shah and Wilson’s paper entitled: ‘On an empirical 
formula connected with Goldbach’s theorem’, Proceedings of the Cambridge Philo- 
sophical Society, 19, 245-254. I. 2 (c) 

2, N.I.C. L. On the integral of Stieltjes and the formula for integration by parts, Messenger 
of Mathematics, 48, W--100. V 

3. N.I.C. LI : On Hilbert’s double-series theorem, and some connected theorems concerning 
the convergence of infinite series and integrals, Memenger of Mathemutica, 48, 107- 
112. XI. 3 

4. A problem of Diophantine approximation, Joumul of the Indian Mathematical Society, 
11, 162-166. T_ 1 

1920 

1. (With S. Ramanujan) The normal number of prime factors of a number n, Quarterly 
Jownul of Mathematics, 48, 76-92. II. I 

2. (With J. E. L.) A new solution of Waring’s problem, Quarterly JoumuZ of Mathematics, 
48, 272-293. I. 2 (b) 

3. Note on a theorem of Hilbert, Mathemtische Zeitschrijt, 6, 314-317. rx. 3 

4. On two theorems of F. Carlson and S. Wigert, Acta Mathematics, 42, 327-339. IV. 2 

5. (With J. E. L.) P.N. I: A new solution of Waring’s problem, Qiittinger Nachrichten 
(1920), 33-54. I. 2 (b) 

6, Additional note on two problems in the analytic theory of numbers, Proceeding8 of the 
London Mathematical Society, (2) 18, 201-204. II. 2 

-7. -(with J. E. L.) Abel’s theorem and its converse, Proceedinga of the London Mathe- 
matical: Society, (2) 18, 205-235. VI 
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’ 1920 (cont.) 

8. N.I.C. LII: On some definite integrals considered by Mellin, AZeassnger of Muthematics, 
49, 85-91. VII. 1 

9, N.1.C LPII: On certain criteria for the convergence of the l?ourier series of a continuous 

function, Messenger of Mathematics, 49, 149-155. IIf. 1 (a) 

10. On the representation of a number as the sum of any number of squares, and in particular 
of five, Transactions of the American Mathematical Society, 21, 255-284. I. 2 (a) 

If. Some famous problenzs of the theory of numbers and in particular Waring’s problem, 
Inaugural lecture, Oxford, 1920. I. 2 (d) 

1. 

2. 

3. 

4, 

5. 
6. 

I 

7. 

1. 
2. 

3. 

4, 

5; 

6. 

7. 

8. 

9. 

10. 

11. 

1. 

1921 

(With J. E. I,.) P.N. II: Proof that every large number is the sum of at most 21 bi- 
quadrates, Mathematische Zeitschrift, 9, 14-27. I. 2(b) 

(With J. E. L.) The zeros of Riemann’s zeta-function on the critical line, Muthematiache 

Zeitschrift, 10, 283-317. II, 1 
Note on Ramanujan’s trigonometrical function c&n), and certain series of arithmetical 

functions, Proceedings of the Cambridge Philosophical Society, 20, 263-27 1. II. 2 

A theorem concerning summable series, Proceedings of the Cambridge Philosophi& 

Society, 20, 304-307. VI 

A convergence theorem, Proceedings of the London Mathematical Society, (2) 19, vi-vii. 11. 3 
(With J. E. IL.) On a Tauberian theorem for Lambert’s series, and some fundamental 

theorems in the analytic theory of numbers, Proceedings of the London Muthematicul 

Society, (2) 19, 21-29. II. 1 

N.I.C. LIV : Further notes on Mellin’s inversion formulae, Mesenger of Muthematics, 50, 

16&171. VII. 1 

1922 

Goldbach’s Theorem, Matematisk Tidsskrift B, 1-16. I. 2 (c) 
A new proof of the functional equation for the zeta-function, Matem&& Tidssbift B, 

7 1-73. II. 1 

(With J. E. L.) P.N. III: On the expression of a number as a sum of primes, Acta 
Muthematica, 44, l-70. I. 2 (c) 

(With J. E. L.) P.N. IV: The singular series in Waring’s problem and the value of the 
number G(k), Mathematische Zeitschrift, 12, 161-188. I* 2 (b) 

(With J. E. L.) D.A. : A further note on the trigonometrical series associated with the 
elliptic theta-functions, Proceedings of the Cambridge PhibsophicaZ Society, 21, 1-5. I, 1 

(With J. E. L.) D.A.: The lattice-points of a right-angled triangle, Proceedings of the 
London Mathematical Society, (2) 20, 15-36, I. 1 

(With T. Carleman) Fourier’s series and analytic functions, Proceedings of the Royal 
Society, (A), 101, 124-133. IV. 2 

(With J. E. L.) Summation of a certain multiple series, Proceedings of the London Mathe- 
matical Society, (2) 20, xxx. I. 2 (c) 

(With J. E, L.) D.A.: The lattice-points of a right-angled triangle, Hamburg Abhand- 
lungen, 1, 212-249. I. 1 

N.LC. LV: On the integration of Fourier series, Messenger of Mathemcttics, 51, 186- 
192. III. 1 (e) 

The theory of numbers, British Association Report, 90, 16-24. VII. 2 

1923 

(With J. E. I;.) On Limlelaf’s hypothesis concerning the Riemann zeta-function, Pro- 

ceedings of the Royal Society, (A) 103, 403-412. II. 1 
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1923 (cont.)- 

2. A chapter frc)m Ramanujan’s notebook, Proceedings of the Cambridge PhilosophicaL 
Society, 2 1, 492-503. IV. 1 (d) 

3. (With 3. E. L.) D.A.: The analytic character of the sum of a Dirichlet’s series considered 
by Hecke, Hamburg Abhandlungen 3, 57-68. I, 1 

4. (With J. E. L.) D.A. : The analytic properties of certain Dirichlet’s series associated 
with the distribution of numbers to modulus unity, Transactions of the Cambridge 
Philosophical Society, 22, 519-533. I. 1 

5. (With J. E. I;.) The approximate functional equation in the theory of the zeta-function 
with applications to the divisor-problems of Dirichlet and Piltz, Proceedings of the 
London Mathematical Society, (2) 21, 39-74. XI. 1 

6, N.I.C. LVI: On Fourier’s series and Fourier’s integral, Messenger of Mathematics, 52, 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

1. 

2. 
3. 
4, 

5. 

6. 

7. 

8. 

9. 
10. 
11. 

49-53. III, 1 (e) 

1924 

(With J. E. L.) Solution of the Ces&ro summability problem for power-series and 
Fourier series, Mathewmtische Zeitschrift, 19, 67-96. III. P (b) 

Some formulae of Ramanujan, Proceedings of the London Mathematical Society, (2) 22, 
xii-xiii. IV. 1 (d) 

(With J. E. L.) Note on a theorem concerning Fourier series, Proceedings of the London 
Mathematical Society, (2) 22, xviii-xix. III. I (b) 

(With J. E. L.) The equivalence of certain integral means, Proceedings of the London 
Mathewmtical Society, (2) 22, xl-xliii, VI 

(With J, E. L.) The allied series of a Fourier series, Proceedkgs of the London Mathe- 
matical Society, (2) 22, xliii-xlv. III. 1 (b) 

(With J. E. L.) P.N. V: A further contribution to the study of Goldbach’s problem, 
Proceedings of the London Mathematical Society (2) 22, 46-56, I. 2 (c) 

(With J. E. L.) Abel’s theorem and its converse II, Proceedings of the London Mathe- 
matical Society, (2) 22, 254-269. VI 

N,I.C. LVII: On Fourier transforms, Messenger of Mathemcttics, 53, 135442. VII. 1 

(With E. Landau) The lattice points of a circle, Proceedings of the Royal Society (A), 
105, 244-258. II. 2 

1925 

(With 3. E. L.) P.N. VI: Further researches in Waring’s problem, M&hemab&he 
Zeitschrift, 23, l-37. I. 2 (b) 

The lattice points of a circle, Proceedings of the Royal Society (A), 107, 623-635. II. 2 
What is geometry ? Mathematical Gazette, 12, 309-316. VII. 2 
(With Jm E. L.) D.A. : An additional note on the trigonometrical series associated with 

the elliptic theta-functions, Acta Mathemtica, 47, 189498. I. 1 
(With J. E. L.) A theorem concerning series of positive terms, with applications to the 

theory of functions, Meddelelser Kabenhavn, 7, Nr. 4, IV. 2 
Note on a theorem of Hilbert concerning series of positive terms, Proceedings of the 

London Mathematical Society, (2) 23, xlv-xlvi. II. 3 
Some formulae in the theory of Bessel functions, Proceedings of the London Mathe- 

m&ical Society, (2) 23, lxi-lxiii, IV. 1 (d) 
(With E. C. Titchmarsh) Solutions of some integral equations considered by Bateman, 

Kapteyn, Littlewood and Milne, Proceedings of the London Mathematical Society, (2) 
23, 1-26, and Correction ibid. 24, xxxi-xxxiii. VII. 1 

N.I.C. LVIII: On Hilbert transforms, Messenger of Mathematics, 54, 20-27. VII, 1 

N.I.C. LIX: On Hilbert transforms (cont.), iMessenger of Mathematics, 54, 81-88. VII. 1 

N,I.C, LX: An inequality between integrals, Messenger of Mathematics, 54, 150-156, 11, 3 
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1926 

1, A definite intsgral which occurs in physical optics, Proceedings of the London Mathe- 
mticaE Society, (2) 24, xxx-xxxi. IV. 1 (d) 

2. (With J. E. L.) Some prop&k of fractional integrals, Proceedings of the London Muthe- 
matical Society, (2) 24, xxxvii-xii. III. 2 

3, Note on the inversion of a repeated integral, Proceedings of the London &hthemuticd 

Society, (2) 24, 1-li. V 

4, (With J. E. L.) The allied series of a Fourier series, Proceedings of the London Muthe- 
m&xl Society, (2) 24, 211-246. III. 1 (b) 

5. (With J. E. L.) A further note m the converse of Abel’s theorem, Proceedings of the 
London Mathematical Society, (2) 25, 219-236. VI 

6. (With J. E. L. and G. Polya) The maximum of & certain bilinear form, Proceedings of the 
London Mathematical Society, (2) 25, 265-282. II. 3 

7. (With J, E, L.) Some new properties of Fourier constants, Mathematische An&en, 97, 

159-209. III. 1 (c) 

8, (With 5. E. L.) N.S. I: Two theorems concerning Fourier series, Journul of the Lon- 
don Mathematical Society, 1, 19-25. III. 1 (a) 

9. A theorem concerning harmonic functions, Journal of the London Mat7Lematical Society, 

1, 130-131. Iv. 2 

10. (With J. E. L.) N.S. II: The Fourier series of a positive function, Journal of the London 
i’bfathematical Society, 1, 134-138. III. 1 (b) 

11. (With S. ]Bochner) Notes on two theorems of Norbert Wiener, Journal of the London 
Mathematical Society, I, 24&244. VII. 1 

12. N.1.C. LXI: On the term by term integration of a series of Bessel functions, Messenger 

of Mathematics, 55, 140-144. IV. 1 (d) 

13. The case agakt the Mathematical Tripos, Mathematical Gazette, 13, 61-7 1. VII. 2 

1927 

1, Note on Ramanujan’s arithmetical function T(n), Proceedings of the Cambridge Philo- 
sophical Society, 23, 675-680. II. 2 

2. (With J. E. L.) N.S. III: On the summability of the Fourier series of a nearly con- 

tinuous function, Proceedings of the Cambridge Philosophical Society, 23, 981-684. III. 1 (b) 
3, (With J. E. L.) N.S. IV: On the strong summability of Fourier series, Proceeding8 of 

the London Mathemcttical Society, (2) 26, 273-286. III. 1 (b) 
4. (With J. E. L.) N.S. V: On Parseval’s theorem, Proceedings of the London MathematicaZ 

Society, (2) 26, 287-294. III. 1 (e) 
5. (With A. E. Ingham and G. Pblya) Theorems concerning mean values of analytic 

functions, Proceedings of the RoyaL Society (A), 113, 542-569. IV. 2 
6, (With J. E. L.) Elementary theorems concerning power series with positive coefficients 

and moment con&ants of positive functions, Journal fiir Matkemutik 157, 141- 
158. II. 3 

7, N.I.C. LXII: A singular integral, Messenger of Muthemutics, 56, l&16. VII. 1 
8, N.I.C. LXIII: Some further applications of Mellin’s inversion formula, Messenger of 

Mathematics, 56, 186-192. VII. 1 
9. Note on a theorem of Mertens, Journal of the London MathemuticaZ Society, ZY 70-72. II, 1 

10, Note on the multiplication of series, Journal of the London Mathematical Society, 2, 

169-171. VI 
11, (With J. E. L.) N.S. VI: Two inequalities, Journal of the London Mathematical Society, 

2, 196-201. II, 3 
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1928 

1, (With J. E. L.) A theorem in the theory of summable divergent series, Proceeding8 of 
the London Mathematical Society, (2) 27, 327-348. VI 

2. (With A. E. Ingham and G. Pdlya) Notes on moduli and mean values, Proceedings of 
the London Mathematical Society, (2) 27, 401-409, IV. 2 

3. (With J. E. L.) N.S. VII: On Young’s convergence criterion for Fourier series, Pro- 
ceedings of the London Mathematical Society, (2) 28, 301-311. III. 1 (b) 

4, (With J. E. L.) P.N. VIII: The number r(k) in Waring’s problem, Proceedings of the 
London Mathematical Society, (2) 28, 518-542. I. 2 (b) 

5. (With 3. E. L.) Some properties of fractional integrals I, Mathematische Zeitschrifi, 27, 
565-606. III. 2 

6. (With J. E. L.) A convergence criterion for Fourier series, Mathemutische Zeitschwft, 28, 
612-634. III. 1 (a) 

7. N.I.C. LXIV : Further inequalities between integrals, Messenger of Mathematics, 57, 
12-16. II. 3 

8. N.I.C. LXV: A discontinuous integral, Messenger of Mathematics, 57, 113-120. IV. 1 (d) 

9. A theorem concerning trigonometrical series, Journal of the London NathematicaZ Society, 
3, 12-13. III. 1 (d) 

10. (With J. E. L.) N.S. VIII: Am inequality, Journal of the London Mathematical Society, 
3, 105-l 10. II. 3 - 

11. Remarks on three recent notes in the Journal, Joumul of the London Mathematical 
Society, 3, 166-169. II. 3 

12. A formula of Ramanujan, JournaZ of the London Mathemtical Society, 3, 238-240. XV. 1 (d) 

13. (With J. E. L.) N.S. IX: On the absolute convergence of Fourier series, Journal of the 
London Mathematical Society, 3, 25&253. III, 1 (a) 

14. (With J. E. L.) N,S. X: Some more inequalities, Journal of the London Muthemutical 
Society, 3, 294-299. rr. 3 

1929 

1. (With 3. E. L.) The approximate functional equations for c(8) and c3(8), Proceeding8 of 
the London Mathematical Society, (2) 29, 81-97. II. 1 

2, Prolegomena to a chapter on inequalities (Presidential Address), Jour& of the London 
Mathematical Society, 4, 61-78, and addenda, ibid. 5, 80. II. 3 

3. Remarks in addition to Dr. Widder’s note on inequalities, Journal of the London Mathe- 
muticul Society, 4, 199-202. PI. 3 

4. (With J. E. L.) A point in the theory of conjugate functions, Journal of the London 
Mathematical Society, 4, 242-245. III. 1 (e) 

5. (With E. C. Titchmarsh) Solution of an integral equation, Journ of the London Mathe- 
m&d Society, 4, 300-304. VII. 1 

6. An introduction to the theory of numbers, Bulletin of the American Mathematical Society, 
35, 778-818. VII. 2 

7. N.I.C. LXVX : The arithmetic mean of a Fourier constant, Messenger of Mathemutica, 58, 
50-52. III. 1 (e) 

8. N.I.C. LXVII: On the repeated integral which occurs in the theory of conjugate 
functions, Messenger of Mathematics, 58, 53-58. VII. I 

9. N.X.C. LXVIII: The limit of an integral mean value, Messenger of Mathematics, 58, 
l&120. II. 3 

10. ‘N.I.C. LXIX: 0 n asymptotic values of Fourier constants, i’kfe88enger of Mathematics, 
58, 130-135. III. 1 (a) 

11. (With J. E. L. and G. P6lya) Some simple inequalities Batisfied by convex functions, 
Messenger of Mathematics, 58, 145-152. II. 3 

12. Mathematical proof, Mind, 38, l-26. VII. 2 
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5. 

6. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 
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1930 

(With J. E. L.) A maximal theorem with function-theoretic applications, Actu Mathe- 

matica, 54, U-116. II. 3 

(With E. C. Titchmarsh) Self-reciprocal functions, Quarterly Journccl of Mathematics, 

1, 196-231. VII. 1 

(With J. E. L.) D.A.: A series of cosecants, Bulletin of the Calcutta Muthemuticul 
Society, 20, 251-266. I. 1 

(With 5. E. L.) N.S. XI: On Tauberian theorems, Proceedings of the London Muthe- 

maticul Society, (2) 30, 23-37. VI 
(With E. C. Titchmarsh) Additional note on certain integral equations, Proceedings of 

the London Mathematical Society, (2) 30, 95406. VII. 1 
(With J. E. L.) N.S. XII: On certain inequalities connected with the calculus of varia- 

tions, Journul of the London Mathewtutical Society, 5, 34-39. II. 3 

1931 

Some theorems concerning trigonometrical series of a special type, Proceedings of the 
London Mathematical Society, (2) 32, 441-448. III. 1 (d) 

(With J. E. I;,) Some properties of conjugate functions, Journal fiir Muthematik, 167, 
405-423. III. 2 

The summability of a Fourier series by logarithmic means, Quarterly Journal of Muthe- 
matics, 2, 107-112. III. 1 (b) 

(With J. E. I;.) N.S. XIII: Some new properties of Fourier Constants, Journal of the 
London Mathematical Society, 6, 3-9. IIL. 1 (c) 

(With J. E. L.) N.S. XIV: An additional note on the summability of Fourier series, 

Journal of the London Mathematical Society, 6, 9-12. III. 1 (b) 
(With E. C. Titchmarsh) A note on Parseval’s theorem for Fourier transforms, Journal 

of the London Mathematical Society, 6, 44-48. VII. f 

(With J. E. I;.) N.S. XV: On the series conjugate to the Fourier series of a bounded 
function, Journal of the London Mathematical Society, 6, 278-281, III. 1 (b) 

(With J. E. L.) N.S. XVI: Two Tauberian theorems, Journal of the London Mathe- 
matical Society, 6, 28 1-286. VI 

1932 

(With E. C. Titchmarsh) Formulae connecting different classes of self-reciprocal func- 
tions, Proceedings of the London @athematicaZ Society, (2) 33, 225-232. VII. 1 

On Hilbert transforms, QuurterZy Journal: of Muthematics, 3, 102~HZ. VII, 1 
(With J. E. L.) Some integral inequalities connected with the calculus of variations, 

Quurterly Journal of Mathematics, 3, 241-252, II. 3 
(With J. E. L.) S ome properties of fractional integrals II, Muthemutische Zeitschrift, 

34, 403-439. III, 2 
(With J. E. L.) S ome new cases of Parseval’s theorem, Muthematische Zeitschrift, 34, 

620-633. III. I (c) 
(With J. E. L.) An additional note on Parseval’s theorem, Mathemutische Zeitschrift, 

34, 634-636. III* 1 (c) 
(With E. C. Titchmarsh) An integral equation, Proceedings of the Cambridge PhilosophicaL 

Society, 28, 165473. VII. 1 
Summation of a series of polynomials of Laguerre, Journal of the London Muthematicul 

Society, 7, 138-139, and addendum, ibid. 192. XII. 1 (e) 
(With J. Ii]. L.) N.S. XVII: Some new convergence criteria for Fourier series, Journal 

of the London Muthematicul: Societv. 7. 252-256. III. 1 la1 
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1933 

1. (IVith E. C. Titchmarsh) A class of Fourier kernels, Proceedings of the London Muthe- 
mtical Society, (2) 35, 116-155. VII, 1 

2. (With J. E. L.) Some more integral inequalities, The T6hoku Mathem.&cal Journal, 

37, 151-159. II. 3 
3. The constads of certain inequalities, Journal of the London Mathematical Society, 8, 

114-119. II. 3 

4. A theorem concerning Fourier transforms, JoumaZ of the London Mathematical Society, 
8, 227-231. VII. 1 

1934 

1. (With 3. E. L.) Theorems concerning Ces&ro means of power series, Proceedings of the 
London Mathematical Society, (2) 36, 5 16-53 1. III, 2 

2. (With J, E. L.) Bilinear forms bounded in apa’ce [p, q], Qua~terZy JournaZ of Mathe- 
matics, 5, 241-254. 11. 3 

3. (With J. E. I;.) Some new convergence criteria for Fourier series, AnnaZi Piaa, (2) 3, 
43-62. III. 1 (a) 

4. (With E. M. Wright) Leudesdorf’s extension of Wolstenholme’s theorem, Journal of the 

London Mathematical Society, 9, 38-41, and corrigendum, ibid. 240, II. 2 
E; On the summability of series by Borel’s and Mittag-Leffler’s methods, Journal of the J* 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

11 

2. 

3. 

4. 

London Mathematical Society, 9, 153457. VI 

1935 

Remarks on some points in the theory of divergent series, Annuls of Mathematics, (2) 
36, 167-M. VI 

The resultant of two Fourier kernels, Proceedings of the Cambridge Philosophical Society, 
31, l-6. VII. 1 

[With E. Landau and J. E. L.) Some inequalities satisfied by the integrals or derivatives 

of real or analytic functions, Mathematische Zeitschrijt, 39, 677-695. II. 3 
(With J. E. I;.) An inequality, Mathematische Zeitschrift, 40, l-40. II. 3 
(With J. E. I;.) The strong summability of Fourier series, Fundamenta Mathematicae, 

25, 162-189. III. 1 (b) 
(With J. E. L.) N.S. X.VIII: On the convergence of Fourier series, Proceedings of the 

Cambridge Philosophical Society, 3 1, 3 17-323. III. 1 (c) 
(With 3. E. L.) N.S. XIX: A problem concerning majorants of Fourier series, Quartedy 

Journal of Mathemcttics, 6, 304-315. III. 1 (c) 

Second note on a theorem of Mertens, Journal of the London Mathematical Society, 10, 
91-94. II. 1 

Some identities satisfied by i-nfinite series, Journal of the London Mathematicul Society, 
10, 217-220. IV. 1 (d) 

1936 

(With J, E, L.) N.S. XX: On Lambert series, Proceedings of the Londorz Mathew&cd 
Society, (2) 41, 257-270. VI 

(With J. E. L.) S ome more theorems concerning Fourier series and Fourier power series, 

Duke Mathematical Journal, 2, 354-382. III 1 (b) 

(With E. C. Titchmarsh) New solution of an integral equation, Proceedings of the London 

Mathematical Society, (2) 41, l-15. VII. 1 

A note on two inequalities, Journal of the London Mathematical Society, 11, 167-170. 11. 3 
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1937 

1, Ramanujan and the theory of Fourier transforms, Quarterly Journul of Mathemtica, 8, 
245-254. VII. 1 

2, The Indian mathematician Ramanujan, American Mathematical Monthly, 44, 137- 
155. VII. 2 

3, (With J. E. L,) N.S. XXI: Generalizations of a theorem of Paley, Qumterly Journal of 
Mathematics, 8, 161-171. III. 2 

4, On a theorem of Paley and Wiener, Proceedings of the Cambridge Philosophicub Society, 
33, 1-5. VII. 1 

5, (With N. Levinson) Inequalities satisfied by a certain defmite integral, Bulletin of the 
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