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Introduction to the translation and notes:

This translation is the result of a happy collaboration between student and professor. Lucas Willis
is an undergraduate Mathematics Major and a French Minor. Tom Osler has been a mathematics professor
for 45 years. Together we struggled to understand this brilliant work.

When translating Euler’s words, we tried to imagine how he would have written had he been
fluent in modern English and familiar with today’s mathematical jargon. Often he used very long sentences,
and we frequently converted these to several shorter ones. However, in almost all cases we kept his original
notation, even though some is very dated.  We thought this added to the charm of the paper. One exception
is Euler’s use of lx for our log x, the natural logarithm. We thought lx was too confusing..

 Euler was very careful in proof reading his work, and we found few typos. When we found an
error, we called attention to it in parenthesis and italics in the body of the translation. Other errors are
probably ours. 

When half the translation was completed, we learned that Professor Robert Stein had made a
translation of this paper several years earlier. He generously shared his translation with us, and we
gratefully acknowledge his help.

The notes that follow this translation are a collection of material that we accumulated while trying
to understand and appreciate Euler’s ideas. In these notes we completed some steps that Euler omitted,
added some historical remarks, introduced some modern notation and modern mathematical thoughts,
especially on the use of divergent series.

Remarks on a beautiful relation between direct as well as reciprocal
power series (E 352)

By Leonhard Euler

1. The relation, which I intend to develop here, concerns the sums of these
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two general infinite series:

1 2 3 4 5 6 7 8 & .m m m m m m m m c− + − + − + − +

1 1 1 1 1 1 1 1 & .
1 2 3 4 5 6 7 8n n n n n n n n c− + − + − + − +

The first contains all the positive powers of the natural numbers of a variable m, and the

other negative or reciprocal powers of the same natural numbers, of a variable n, while

alternating the signs of the terms of both series. My principal goal is  to show that though

these two series are entirely different, their sums have a very beautiful relationship

between them. If we know the sum of one of these two series, we might deduce the sum

of the other series.  I will show that by knowing the sum of the first series, for a variable

m, we can almost always determine the sum of the other series for the variable n = m + 1.

It seems important to remark that while I only demonstrate this relation for certain special

cases, my argument is carried to such a degree of certainty that the reader will conclude it

very rigorously shown.

2. For the series of the first type, since the terms become increasingly large,

it is quite true that we could not create a correct idea of their sum, if we

understand by the sum, a value, that we all the more approach the more

we add terms to the series. Thus, when it is said that the sum of this series 1-2+3-4+5-6

etc. is 1/4 , that must appear paradoxical. For by adding 100 terms of this series, we get 

–50, however, the sum of 101 terms gives +51, which is quite different from 1/4 and

becomes still greater when one increases the number of terms. But I have already noticed

at a previous time, that it is necessary to give to the word sum a more extended meaning.

We  understand the sum to be the numerical value, or analytical relationship which is

arrived at according to principles of analysis, that generate the same series for which we
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seek the sum. After having established this relationship, it is no more doubtful that the

sum of this series 1-2+3-4+5 + etc.  is 1/4; since it arises from the expansion of the

formula 2

1
(1 1)+

, whose value is incontestably 1/4 . The idea becomes clearer by

considering the general series:

2 3 4 51 2 3 4 5 6 & .x x x x c− + − + − +

that arises while expanding the expression 2

1
(1 )x+

 , which this series is

indeed equal to after we set 1x = .

3. It is easy to use the differential calculus to find the sums of these series, and we

obtain the following summations:

2 3 11 & .
1

x x x c
x

− + − + =
+

,

( )
2 3

2
11 2 3 4 & .

1
x x x c

x
− + − + =

+
,

( )
2 2 2 2 3

3
11 2 3 4 & .
1

xx x x c
x

−
− + − + =

+
,

( )
3 3 2 3 3

4
1 41 2 3 4 & .

1
x xxx x x c
x

− +
− + − + =

+
,

( )

3
4 4 2 4 3

5
1 11 111 2 3 4 & .

1
x xx xx x x c

x
− + −

− + − + =
+

,

( )

3 4
5 5 2 5 3

6
1 26 66 261 2 3 4 & .

1
x xx x xx x x c

x
− + − +

− + − + =
+

,

( )

3 4 5
6 6 2 6 3

7
1 57 302 302 571 2 3 4 & .

1
x xx x x xx x x c

x
− + − + −

− + − + =
+

,
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&c.

We obtain our series of the first type by taking x = 1, and get the following sums:

0 0 0 0 0 11 2 3 4 5 6 & .
2

c− + − + − + =

11 2 3 4 5 6 & .
4

c− + − + − + =

2 2 2 2 21 2 3 4 5 6 & . 0c− + − + − + =

3 3 3 3 3 21 2 3 4 5 6 & .
16

c− + − + − + = −

4 4 4 4 41 2 3 4 5 6 & . 0c− + − + − + =

5 5 5 5 5 161 2 3 4 5 6 & .
64

c− + − + − + = +

6 6 6 6 61 2 3 4 5 6 & . 0c− + − + − + =

7 7 7 7 7 2721 2 3 4 5 6 & .
256

c− + − + − + = −

8 8 8 8 81 2 3 4 5 6 & . 0c− + − + − + =

9 9 9 9 9 79361 2 3 4 5 6 & .
1024

c− + − + − + = +

&c.

4. As to the series of the other type, we previously knew only  the case

n=1, which is

1 1 1 1 1 1 & .
1 2 3 4 5 6

c− + − + − +
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whose sum is log 2. First I discovered the sum of the reciprocal series with square

powers, and then the sum for all the other even powers. I have shown that the sums of all

these series depend on  π,  the circumference of a circle of diameter 1.

I found the following sums of these series

2
2 2 2 2

1 1 1 1 & .
1 2 3 4

c Aπ+ + + + =
1
6

A = ,

4
4 4 4 4

1 1 1 1 & .
1 2 3 4

c Bπ+ + + + = 22
5

B A= ,

6
6 6 6 6

1 1 1 1 & .
1 2 3 4

c Cπ+ + + + =
4
7

C AB= ,

8
8 8 8 8

1 1 1 1 & .
1 2 3 4

c Dπ+ + + + = 24 2
9 9

D AC B= + ,

10
10 10 10 10

1 1 1 1 & .
1 2 3 4

c Eπ+ + + + =
4 4

11 11
E AD BC= + ,

&c.

from which I calculated sums of our series of the second type with alternating signs

2
2 2 2 2 2 2

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Aπ−
− + − + − + =

3
4

4 4 4 4 4 4 3

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Bπ−
− + − + − + =

5
6

6 6 6 6 6 6 5

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Cπ−
− + − + − + =

7
8

8 8 8 8 8 8 7

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Dπ−
− + − + − + =

9
10

10 10 10 10 10 10 9

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Eπ−
− + − + − + =
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11
12

12 12 12 12 12 12 11

1 1 1 1 1 1 2 1& .
1 2 3 4 5 6 2

c Fπ−
− + − + − + =

&c.

However, in the cases where n is an odd number, all my effort to find their sum is a

failure up to now. Nevertheless it is certain that they do not depend in a similar way on

the powers of the number π. Perhaps the following observations will spread some light

here.

5. Since the numbers A, B, C, D, etc. are of the highest importance in this subject,

I will list them here as far as I have calculated them.

02 1
1 2 3

A ⋅
=

⋅ ⋅
,

22 1
1 2 5 3

B ⋅
=

⋅ ⋅
,

42 1
1 2 7 3

C ⋅
=

⋅ ⋅
,

62 3
1 2 9 5

D ⋅
=

⋅ ⋅
,

82 5
1 2 11 3

E ⋅
=

⋅ ⋅
,

102 691
1 2 13 105

F ⋅
=

⋅ ⋅
,

122 35
1 2 15 1

G ⋅
=

⋅ ⋅
,

142 3617
1 2 17 15

H ⋅
=

⋅ ⋅
,

162 43867
1 2 19 21

I ⋅
=

⋅ ⋅
,

182 1222277
1 2 21 55

K ⋅
=

⋅ ⋅
,

202 854513
1 2 23 3

L ⋅
=

⋅ ⋅
,

222 1181820455
1 2 25 273

M ⋅
=

⋅ ⋅
,

242 76977927
1 2 27 273

N ⋅
=

⋅ ⋅
,

262 23749461029
1 2 29 15

O ⋅
=

⋅ ⋅
,

282 8615841276005
1 2 31 231

P ⋅
=

⋅ ⋅
,

302 84802531453387
1 2 33 85

Q ⋅
=

⋅ ⋅
,
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322 90219075042845
1 2 35 3

R ⋅
=

⋅ ⋅
.

6. The summation of the series of the first type in the cases, where the variable

m is an odd number, also involves these same numbers A, B, C, D etc. We recall that

when this variable is an even number, the sum becomes equal to zero. A method should

be used that reveals this beautiful dependence. To achieve this demonstration, it is

necessary to use a general method that I have previously published to determine the sums

of the series of general terms. Let X, be a general function of x, and let it be represented

by  X = f : x.  Let us consider the infinite series

: : ( ) : ( 2 ) : ( 3 ) : ( 4 ) & .f x f x f x f x f x cα α α α+ + + + + + + + +

where the following terms are functions of  , 2 , 3 ,x x xα α α+ + + etc. Let us call the sum

of this series  S, which is also a function of x. If we put  x α+  in place of x,  it becomes

2 3 3 4 4

2 3 4 & .
1 1 2 1 2 3 1 2 3 4

d S dd S d S d SS c
dx dx dx dx

α α α α
+ + + + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

This expression is the sum of the series

: ( ) : ( 2 ) : ( 3 ) : ( 4 ) & .f x f x f x f x cα α α α+ + + + + + + +

and is equal to S - f : x = S -X, so that

2 3 3 4 4

2 3 4 & .
1 1 2 1 2 3 1 2 3 4

d S dd S d S d SX c
dx dx dx dx

α α α α
− = + + + +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

However, from this equation I previously derived the formula

3 3 5 5

3 3 5 5

1 1 & .
2 2 2 2

Ad X Bd X Cd XS Xdx X c
dx dx dx

α α α
α

= − + − + − +∫
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where A, B, C, etc are the same numbers which I have just developed.  By this means we

arrive at the desired sum S, using the integral  Xdx∫ , and  the derivatives of every order

of the function X.  

7. Now, to obtain the alternating signs, in place  of α  let us write 2α  to get the

summation:

3 3 5 5

3 5
3 3

1 1: : ( 2 ) : ( 4 ) & .
2 2

& .

f x f x f x c Xdx X

AdX Bd X Cd X c
dx dx dx

α α
α

α α α

+ + + + + = − +

− + − +

∫

and subtracting twice this from the preceding series,  we get

( ) ( ) ( )2 4 3 3 6 5 5

3 3 5 5

: : ( ) : ( 2 ) : ( 3 ) : ( 4 ) & .

2 1 2 1 2 11 & .
2 2 2 2

f x f x f x f x f x c

Ad X Bd X Cd X
X c

dx dx dx

α α α α

α α α

− + + + − + + + −

− − −
= − + − +

where the term, which contains the integral Xdx∫ , has disappeared. Let

us proceed  now  to  our goal by letting  f : x = X = mx , and obtain the following sum of

the series:

( ) ( 2 ) ( 3 ) ( 4 ) & .m m m m mx x x x x cα α α α− + + + − + + + − =

( ) ( )2 1 4 3 3

3

2 1 2 1 ( 1)( 2)1
2 2 2

m m
m

m Ax m m m Bx
x

α α− −− − − −
− +

( )6 5 5

5

2 1 ( 1)( 2)( 3)( 4)
2

mm m m m m Cxα −− − − − −
−

( )8 7 7

7

2 1 ( 1)( 2)( 3)( 4)( 5)( 6)
2

mm m m m m m m Dxα −− − − − − − −
+ ,

&c.
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which contains only a finite number of terms, when the variable m is a positive integer.

Therefore, setting 1α =  , we will have for our series of the first type

( 1) ( 2) ( 3) ( 4) ( 5) & .m m m m m mx x x x x x c− + + + − + + + − + + =

( ) ( )2 1 4 31 ( 1)( 2)2 1 2 1
2 2 2 2 2

m m mm m m mx Ax Bx− −− −
− − + −

⋅ ⋅

( )6 5( 1)( 2)( 3)( 4) 2 1
2 2 2 2 2

mm m m m m Cx −− − − −
− −

⋅ ⋅ ⋅ ⋅

( )8 7( 1)( 2)( 3)( 4)( 5)( 6) 2 1
2 2 2 2 2 2 2

mm m m m m m m Dx −− − − − − −
+ −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
,

&c.

8. Now, we have only to let x = 1, to obtain the general  sum of all our

series of the first type.  However it is easier to find the sum by letting x = 0, from which

we get

0 1 2 3 4 5 6 7 & .m m m m m m m m c− + − + − + − +

which is  the negative of the sum we seek. By letting x = 0,  all the numbers in the sum

disappear, except for one, where the power of x is zero. This occurs whenever m is an odd

number, because when it is even, all the members disappear and the sum of the series is

reduced to zero. Therefore, taking the negative of these sums, we find the following,

0m =
11 1 1 1 1 & .
2

c− + − + − =

1m =
( )22 1

1 2 3 4 5 6 & . 1
2

c A
−

− + − + − + = + ,

2m = 2 2 2 2 21 2 3 4 5 6 & . 0c− + − + − + = ,

3m =
( )4

3 3 3 3 3
3

2 1
1 2 3 4 5 6 & . 1 2 3

2
c B

−
− + − + − + = − ⋅ ⋅ ,
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4m = 4 4 4 4 41 2 3 4 5 6 & . 0c− + − + − + = ,

5m =
( )6

5 5 5 5 5
5

2 1
1 2 3 4 5 6 & . 1 2 5

2
c C

−
− + − + − + = + ⋅ ⋅⋅ ⋅ ,

6m = 6 6 6 6 61 2 3 4 5 6 & . 0c− + − + − + = ,

7m =
( )8

7 7 7 7 7
7

2 1
1 2 3 4 5 6 & . 1 2 7

2
c D

−
− + − + − + = − ⋅ ⋅⋅ ⋅ ,

8m = 8 8 8 8 81 2 3 4 5 6 & . 0c− + − + − + = ,

9m =
( )10

9 9 9 9 9
9

2 1
1 2 3 4 5 6 & . 1 2 9

2
c E

−
− + − + − + = + ⋅ ⋅⋅ ⋅ ,

10m = 10 10 10 10 101 2 3 4 5 6 & . 0c− + − + − + = ,

&c.

When these sums are calculated, it is found that they are the same values that I listed

above, but now we see their connection with the values A, B, C, etc. 

9. We divide each one of these series of the first type by that series of the second

type, which contains the same number  A, B, C, D, etc to obtain the following equations.

( )
( )

2

2

2 2 2 2 2

1 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .
2 3 4 5 6

c

c π

−− + − + − +
= +

−− + − + − +
,

2 2 2 2 2

3 3 3 3 3

1 2 3 4 5 6 & . 01 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +
=

− + − + − +
,

( )
( )

43 3 3 3 3

3 4

4 4 4 4 4

1 2 3 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .
2 3 4 5 6

c

c π

⋅ ⋅ ⋅ −− + − + − +
= −

−− + − + − +
,

4 4 4 4 4

5 5 5 5 5

1 2 3 4 5 6 & . 01 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +
=

− + − + − +
,
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( )
( )

65 5 5 5 5

5 6

6 6 6 6 6

1 2 5 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .
2 3 4 5 6

c

c π

⋅ ⋅⋅ ⋅ −− + − + − +
= +

−− + − + − +
,

6 6 6 6 6

7 7 7 7 7

1 2 3 4 5 6 & . 01 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +
=

− + − + − +
,

( )
( )

87 7 7 7 7

7 8

8 8 8 8 8

1 2 7 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .
2 3 4 5 6

c

c π

⋅ ⋅⋅ ⋅ −− + − + − +
= +

−− + − + − +
,

8 8 8 8 8

9 9 9 9 9

1 2 3 4 5 6 & . 01 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +
=

− + − + − +

( )
( )

109 9 9 9 9

9 10

10 10 10 10 10

1 2 9 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .

2 3 4 5 6

c

c π

⋅ ⋅⋅ ⋅ −− + − + − +
= −

−− + − + − +
,

&c.

(Misprint in the 3rd equation above: the term 4

1
6

is mistakenly printed as 5

1
6

.)

But the equation which precedes these, is

1 1 1 1 1 1 & . 1
1 1 1 1 1 2log 21 & .
2 3 4 5 6

c

c

− + − + − +
=

− + − + − +

whose connection with the following ones is entirely hidden.

10. Consideration of these equations leads me to this general formula:

( )
( )

1 1 1 1 1

1

1 2 3 ( 1) 2 11 2 3 4 5 6 & .
1 1 1 1 1 2 11 & .
2 3 4 5 6

nn n n n n

n n

n n n n n

nc N
c π

− − − − −

−

⋅ ⋅ ⋅ − −− + − + − +
= + ⋅

−− + − + − +
,

where we must now proceed to precisely determine the coefficient N of the
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variable n. To achieve this evaluation,  let us consider the values of this coefficient N,

which correspond to each variable n, that I have just examined:

2, 3, 4, 5, 6, 7, 8, 9, 10, .
1, 0, 1, 0, 1, 0, 1, 0, 1 .

n etc
N etc+ − + − +

Since whenever n is an odd number, the letter N must disappear, and for the case

4 2n i= + , it is necessary that it is N = 1; but for the case 4n i= , it becomes 1N = − , it is

obvious that we can satisfy these conditions by taking cos( / 2)N nπ= − : For this reason I

venture to propose the following conjecture, that for any variable n, the following

equation is always valid:

( )
( )

1 1 1 1 1

1

1 2 3 ( 1) 2 11 2 3 4 5 6 & . cos1 1 1 1 1 22 11 & .
2 3 4 5 6

nn n n n n

n n

n n n n n

nc n

c

π
π

− − − − −

−

− ⋅ ⋅ ⋅ − −− + − + − +
=

−− + − + − +
.

This conjecture will undoubtedly stand out as bold, but since it has been shown to be true

for the case where n is a positive integer larger than one, I shall next prove this

relation for the case n = 1, and then for n = 0. After that I will show, that if this conjecture

is proved for the cases where n is a positive integer, it will also be true when n is a

negative integer. Finally I will demonstrate some cases where we give to n a fractional

value. 

11. First let  n = 1, and get the expression 

1 1 1 1 1 1 & .
1 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +

− + − + − +

whose value is 1/(2 log 2) . However for this case our conjectured relation contains the

expressions 1 2 3 ( 1) 1n⋅ ⋅ − =  and nπ π= , while the two other expressions cos( / 2)nπ
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and 12 1n− − , are both zero, with one dividing the other. This is why I write the

expression, that our conjecture gives in this case as:

1

cos1 2
2 1n

nπ

π −− ⋅
−

,

where it is a question of determining the value of the fraction 1

cos
2

2 1n

nπ

− −
, where the

numerator and the denominator are both zero. Now let us treat the letter n as

a variable, and since the differential of the numerator is    sin
2 2
dn nπ π −  

 
, and that of

the denominator is 12 log 2n dn− , our fraction for this case will be the same as

1

sin
2 2
2 log 2n

nπ π

−

 
 
 − . Letting  1n =  this is reduced to 

2 log 2
π

−  , so that the value that we

seek will be

1

1 cos( / 2) 1
2 1 2log 2n

nπ
π −− =

−
.

Thus our conjecture also holds for the case n = 1, which initially appeared to entirely

deviate from the rule of the prior cases. This is already a type of proof for the truth of this

conjecture, for it seems impossible that a false supposition could support this test. We

may already look at our conjecture as very firmly established. However, I am going to

bring even more convincing evidence. 

12. Let n= 0, and now we must consider the expression

1 1 1 1 11 & .
2 3 4 5 6

1 1 1 1 1 1 & .

c

c

− + − + − +

− + − + − +
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whose value is obviously equal to 2log2.  However from our conjecture, we have the

expressions cos( / 2) 1nπ = , and πⁿ=1, as well as 2·1·2·3···(n-1)(2ⁿ-1). The factor

1·2·3···(n-1) is infinite, and the other expression 2ⁿ-1 is zero, from which we see that

our conjecture is not yet contradicted in this case.  But, to proceed to a proof, I notice that 

11 2 3 ( 1) 1 2 3n n
n

⋅ ⋅ ⋅ − = ⋅ ⋅ ⋅

and in the case 0n = , we have1 2 3 1n⋅ ⋅ ⋅ = .  Therefore in this same case

11 2 3 ( 1)n
n

⋅ ⋅ ⋅ − = , and the value from our conjecture 
( )2 2 1n

n
−

= , where since the

numerator and denominator disappear when putting 0n = , we have only to substitute for

them their differentials. Thus we have another fraction 2 2 log 2 2 2 log 2
n

ndn
dn

⋅
= ⋅ ,

equivalent to the one for the case 0n = .  Now this one gives us the same value 2 log 2

that the nature of the series demands.  Here is therefore a new verification, which being

joined to the preceding one will be able to give us of a more complete demonstration of

our conjecture.  Nevertheless we have not given a direct demonstration that contains at

once all the possible cases.  

13. Our conjecture being verified only for all the case where n is a positive

integer, I am going to prove now that it is equally true when we take for n any negative

integer.  In these cases  the value of the expression 1·2·3···(n-1) is infinity, and this

seems to invalidate the conjecture that I have in mind; however,  an evaluation that I

made previously will overcome this obstacle. Take this notation, [ ]λ , to represent the
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product: 1 2 3 λ⋅ ⋅ . I have shown previously that it is always true that

[ ] [ ]
sin
λπ

λ λ
λπ

⋅ − = . Thus letting 1n m− = −  or 1n m= − + , we get the expression

( )
( )

1 1 1 1 1

1

1

1 2 3 4 5 6 & .
1 2 3 4 5 6 & .

1 2 3 ( ) 2 1 (1 )cos
22 1

m m m m m

m m m m m

m

m m

c
c

m m π
π

− − − − −

− − − − −

− +

− − +

− + − + − +
=

− + − + − +
− ⋅ ⋅ − − −

−

where since 1 2 3 ( ) [ ]m m⋅ ⋅ − = − and [ ] [ ]
sin

mm m
m
π
π

⋅ − =  , we will have

1 2 3 ( )
1 2 3 sin 1 2 3 ( 1)sin

mm
m m m m
π π

π π
⋅ ⋅ − = =

⋅ ⋅ ⋅ ⋅ −
.

Then since cos((1 ) / 2) sin( / 2)m mπ π− = , the expression from our conjecture takes the

following form upon making these substitutions:

( )
( )

12 2 1
sin

22 1 1 2 3 ( 1)sin

m m

m

m
m m

π π
π

− −
− =

− ⋅ ⋅ ⋅ −

( )
( )

12 1

1 2 3 ( 1) 2 1 cos
2

m m

m mm

π
π

− −
−

⋅ ⋅ ⋅ − −
,

where we have used sin 2sin( / 2)cos( / 2)m m mπ π π= . Now, we have only to invert the

equation found by putting on top the denominator and on bottom the numerator, and we

will obtain the equation:

( )
( )

1 1 1 1 1

1

1 2 3 4 5 6 .
1 2 3 4 5 6 .

1 2 3 ( 1) 2 1
cos

22 1

m m m m m

m m m m m

m

m m

etc
etc

m mπ
π

− − − − −

− − − − −

−

− + − + − +
=

− + − + − +
⋅ ⋅ − −

−
−

which is the same one that was conjectured. It is seen clearly that if the
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conjectured expression is correct for the case where n is a positive number, it will be true

also when n is a negative number, because of 1m n= − + .

14. A remarkable  case is found  by setting n = 1/2 , which leads to this

fraction

1 1 1 1 11 & .
2 3 4 5 6

1 1 1 1 11 & .
2 3 4 5 6

c

c

− + − + − +

− + − + − +

whose numerator and denominator being equal, gives the value = 1: We must find the

value of  the expression, which the conjecture suggests it is equal to:

( )1 1 11 2 3 2 1 2
12 2 2cos

1 4 21
2

π
π ππ

     ⋅ ⋅ − − − −          − = + ⋅ =
 − 
 

However, I have shown before, by examining the factorial progression

1;1 2⋅ ; 1 2 3⋅ ⋅ , 1 2 3 4,⋅ ⋅ ⋅ ;  whose general term is 1 2 3 [ ]n n⋅ ⋅ =  , that setting

n = 1/2 , we have [1/ 2] / 2π= . Because [1/ 2] (1/ 2)[ 1/ 2]= − , it is evident that

[ 1/ 2] / 2π− = , (this should be π= ),  which indeed leaves our expression equal to 1.

There should not be any further doubt about our conjecture, having verified it not only for

all the cases where the variable n is an integer, be it n is positive, or n is negative, but also

for the case n = 1/2 . For the other cases involving fractional numbers, that we would like

to use instead of n, we cannot claim a particular proof, considering that no one has yet

discovered a correct method to determine the sum of a series 1 2 3 4 5n n n n− + − + when

the variable n is a fraction. In these cases it is necessary to be satisfied with numerical

approximations: however, we will see that our conjecture remains true. 
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15. To carry out a test, let 3 / 2n = . Because 

1 11 2 3 ( 1)
2 2

n π ⋅ ⋅ − = =  
, and 3 1cos

4 2
π
= − ,

this fraction

1 2 3 4 5 6 & .
1 1 1 1 11 & .

2 2 3 3 4 4 5 5 6 6

c

c

− + − + − +

− + − + − +

must be equal to this quantity 

( )
2 2 1 3 2 0,4967738

2 22 2 2 ππ

− +
= =

−
.

But on calculating the first 9 terms of the series in the numerator, we get 

1 2 3 4 5 6 7 8 9 1,9217396662− + − + − + − + = ,

 from which it was necessary ad infinitum to cut off the sum of the following terms 

10 11 12 13 14 & .c− + − + −

From section 7 this is

( ) ( )

( ) ( )

2 4

3 2

6 8

5 73 4

1 2 1 1 1 3 2 11 10
2 4 410 10 10
1 1 3 5 7 2 1 1 1 3 5 7 9 11 2 1

& .
4 410 10 10 10

A B

C D c

− ⋅ ⋅ −
− ⋅ + ⋅ −

⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
⋅ + ⋅ −

5 3 9 5 13 7

10 1 3 1 1 3 15 1 1 3 5 7 63 1 1 3 5 7 9 11 2551 & .
2 2 2 10 2 10 2 1010

A B C D c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = − ⋅ + ⋅ − ⋅ + ⋅ − 
 

and after substituting the values
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1
6

A = , 1
90

B = , 1
945

C = , 1
9450

D = , 1
93555

E = , &c., we calculate

=0,48750774577·√10, which is about =1,541610, (should be 1.541634853) and

making the numerator series : 1-√2+√3-√4+√5-√6+...= 0,380129. (should be

0.380104812)  Now, for the lower series, the first 9 terms gives 0,7821470744, (should

be 0.782135824) from which it is necessary to cut off the sum from all of the following,

which is

5 3 9 5

1 3 3 3 5 7 15 3 5 7 9 11 631 & .
2 10 2 10 2 1020 10

A B C c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅ − ⋅ − 
 

and is about = 0,01698880, and thus the sum of this infinite series will be = 0,765158

(should be 0.765147024)  Now let us see if the first series divided by this one, which is

the fraction 0,380129
0,765158

 (should be 0.380104812 / 0.765147024 = 0.496773561)   is equal

to the value 0,4967738. The difference is so small, being only two hundred-thousandths

of the unit, (should be  2 ten millionths) that one could not doubt in the least that this

matter is true. 

16. Since our conjecture has been demonstrated to the highest degree of certainty,

so that there remains no more doubt of its validity when n is a fraction, we list results for

the case where n is a fraction of the form  (2 1) / 2i +  :

( )
( )

2 2 11 2 3 4 & .
1 1 1 2 2 21 & .

2 2 3 3 4 4

c

c π

−− + − +
= +

−− + − +

( )
( )2 2

2 2 2

1 3 4 2 11 2 2 3 3 4 4 & .
1 1 1 2 4 21 & .

2 2 3 3 4 4

c

c π

⋅ −− + − +
= +

−− + − +
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( )
( )

2 2 2

3 3

3 3 3

1 3 5 8 2 11 2 2 3 3 4 4 & .
1 1 1 2 8 21 & .

2 2 3 3 4 4

c

c π

⋅ ⋅ −− + − +
= −

−− + − +

( )
( )

3 3 3

4 4

4 4 4

1 3 5 7 16 2 11 2 2 3 3 4 4 & .
1 1 1 2 16 21 & .

2 2 3 3 4 4

c

c π

⋅ ⋅ ⋅ −− + − +
= −

−− + − +

( )
( )

4 4 4

5 5

5 5 5

1 3 5 7 9 32 2 11 2 2 3 3 4 4 & .
1 1 1 2 32 21 & .

2 2 3 3 4 4

c

c π

⋅ ⋅ ⋅ ⋅ −− + − +
= +

−− + − +

( )
( )

5 5 5

6 6

6 6 6

1 3 5 7 9 11 64 2 11 2 2 3 3 4 4 & .
1 1 1 2 64 21 & .

2 2 3 3 4 4

c

c π

⋅ ⋅ ⋅ ⋅ ⋅ −− + − +
= +

−− + − +

( )
( )

6 6 6

7 7

7 7 7

1 3 5 7 9 11 13 128 2 11 2 2 3 3 4 4 & .
1 1 1 2 128 21 & .

2 2 3 3 4 4

c

c π

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −− + − +
= −

−− + − +

It should be noted that 2 2 1
2 2

λ

λ

−
−

, can be reduced to  
( )2

2

2 1 2 2
2 2

λ λ

λ

− +

−
.

Therefore, with each pair of these series, as soon as we have found the sum of one, we

will find from it the sum of the other in a relation involving the number π.

17. Regarding the reciprocal series of the powers

1 1 1 1 11 & .
2 3 4 5 6n n n n n c− + − + − +

I have already observed, that their sums have been found only when n is

an even integer, and that for the case where n is an odd integer, all of my

efforts have been completely useless. Now having  related the sum of these

reciprocal series to that of the direct series, and since we in general  know the sum of 
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1 1 1 11 2 3 5 6 & .n n n n c− − − −− + − + − , we could expect to find some way to achieve our goal,

but it is unfortunate that whenever n is an odd number, the sum of this direct series is

zero. Thus we could not conclude anything, because letting 2 1n λ= + , by our conjecture

we have:

( )
( )

2 1 2 1 2 1 2 1

2 2 1 2 2 2 2

2 1

1 1 1 11 & .
2 3 4 5

2 1 1 2 3 4 5 & .
2 11 2 3 2 2 1 cos

2

c

c

λ λ λ λ

λ λ λ λ λ λ

λ

π
λλ π

+ + + +

+

+

− + − + − =

− − + − + −
−

+⋅ ⋅ −

However, in this last expression,  the value of both the numerator 

2 2 2 21 2 3 4 5 & .cλ λ λ λ− + − + −

and  the denominator 2 1cos sin
2
λ

π λπ
+

= −    are zero, when λ  is an integer. It is  true

that we can easily discover the value of such a fraction, by substituting instead of the

numerator and denominator their differentials, however this technique is not successful as

I am going to demonstrate. 

18. To show this, we find that the differential of the numerator is  

( )2 2 2 22 1 log1 2 log 2 3 log3 4 log 4 & .d cλ λ λ λλ − + − +

and that of the denominator is cosdπ λ λπ−  . We  get for our case the sum

expressed in the form

( )
( )

2 1 2 1 2 1 2 1

2 2
2 2 2 2

2 1

1 1 1 11 & .
2 3 4 5

2 2 1
(1 log1 2 log 2 3 log3 4 log 4 & .)

1 2 3 2 2 1 cos

c

c

λ λ λ λ

λ λ
λ λ λ λ

λ

π

λ λπ

+ + + +

+

− + − + − =

−
− + − +

⋅ ⋅ −

Upon substituting for λ  the numbers 1, 2, 3,…, we obtain the following summations:
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2 2 2 2

3 3 3

1 1 1 2 3 (1 log1 2 log 2 3 log3 4 log 4 & .)1 & .
2 3 4 1 2 7

cc π⋅ ⋅ − + − +
− + − + = −

⋅ ⋅

4 4 4 4

5 5 5

1 1 1 2 15 (1 log1 2 log 2 3 log3 4 log 4 & .)1 & .
2 3 4 1 2 3 4 31

cc π⋅ ⋅ − + − +
− + − + = +

⋅ ⋅ ⋅ ⋅

6 6 6 6

7 7 7

1 1 1 2 63 (1 log1 2 log 2 3 log3 4 log 4 & .)1 & .
2 3 4 1 2 3 6 127

cc π⋅ ⋅ − + − +
− + − + = −

⋅ ⋅ ⋅

8 8 8 8

9 9 9

1 1 1 2 255 (1 log1 2 log 2 3 log3 4 log 4 & .)1 & .
2 3 4 1 2 3 8 511

cc π⋅ ⋅ − + − +
− + − + = +

⋅ ⋅ ⋅

10 10 10 10

11 11 11

1 1 1 2 1023 (1 log1 2 log 2 3 log3 4 log 4 & .)1 & .
2 3 4 1 2 3 10 2047

cc π⋅ ⋅ − + − +
− + − + = −

⋅ ⋅ ⋅

Thus it is necessary that we find the sums of the series of the form

2 2 2 21 log1 2 log 2 3 log3 4 log 4 & .cλ λ λ λ− + − +

But this evaluation is perhaps more difficult than that which we have in mind,

and I do not foresee any method that can lead us to the desired goal.

19. These equations become a bit simpler upon considering that the series

1 1 1 11 & .
3 5 7 9m m m m c+ + + + +  is equal to this one

1

2 1 1 1 1 11 & .
2(2 1) 2 3 4 5

m

m m m m m c−

−  − + − + − −  
.

Using the previous methods we find the general sum

2 1 2 1 2 1 2 1

2
2 2 2 2

1 1 1 11 & .
3 5 7 9

(2 log 2 3 log3 4 log 4 5 log5 & .)
1 2 3 2 cos

c

c

λ λ λ λ

λ
λ λ λ λπ

λ λπ

+ + + ++ + + + + =

− − + − +
⋅ ⋅

and then list the particular cases:

2 2 2 2

3 3 3

1 1 1 (2 log 2 3 log3 4 log 4 & .)1 & .
3 5 7 1 2

cc π − + −
+ + + + = +

⋅
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4 4 4 4

5 5 5

1 1 1 (2 log 2 3 log3 4 log 4 & .)1 & .
3 5 7 1 2 3 4

cc π − + −
+ + + + = −

⋅ ⋅ ⋅

6 6 6 6

7 7 7

1 1 1 (2 log 2 3 log3 4 log 4 & .)1 & .
3 5 7 1 2 3 4 5 6

cc π − + −
+ + + + = +

⋅ ⋅ ⋅ ⋅ ⋅

8 8 8 8

9 9 9

1 1 1 (2 log 2 3 log3 4 log 4 & .)1 & .
3 5 7 1 2 3 4 5 6 7 8

cc π − + −
+ + + + = −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

&c.

(Misprint in the 2nd equation above: the term 5

1
3

appears as 4

1
3

.)

However, here it should be noticed that the general sum in these two

previous paragraphs is true only when the variable λ  is a positive integer, since it

is based on the condition that the sum of the series 

2 2 21 2 3 4 & .cλ λ λ− + − +

is zero. This sum is not zero anymore in the case 0λ = , therefore we can

use for λ  only the numbers 1, 2, 3, 4,… .I  note that the series

log 2 log3 log 4 log5 .etc− + − +  has the sum  1 log
2 2

π
=  , which gives us reason to hope

for success in finding the sum of the series that lead us here.

20. In the same way, we can compare the sums of these two infinite series

1 1 11 3 5 7 & .n n n c− − −− + − +  and 1 1 1 11 & .
3 5 7 9n n n n c− + − + −

and obtain the similar conjecture 

1 1 11 3 5 7 & . 1 2 3 ( 1)2 sin
1 3 5 7 & . 2

n n n n

n n n n

c n n
c

π
π

− − −

− − −

− + − + ⋅ ⋅ −
=

− + − +
.

Whenever n is a positive even integer, the numerator sum of the series disappears, and in

these cases, also, the sine of the angle becomes zero. Therefore, letting 2n λ= , we have:
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2 1 2 1 2 1 2 1

2 2 2 2 1

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2 3 (2 1)2 cos

cc
λ λ λ λ

λ λ λ λ

π
λ λπ

− − − −

−

− + −
− + − + = −

⋅ ⋅ ⋅ −

Letting n be a positive integer we calculate the following summations:

2 2 2 2

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2

cc π − + −
− + − + = +

⋅

3 3 3 3

4 4 4 3

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2 3 2

cc π − + −
− + − + = −

⋅ ⋅ ⋅

5 5 5 5

6 6 6 5

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2 3 4 5 2

cc π − + −
− + − + = +

⋅ ⋅ ⋅ ⋅ ⋅

7 7 7 7

8 8 8 7

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2 3 4 5 6 7 2

cc π − + −
− + − + = −

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

9 9 9 9

10 10 10 9

1 1 1 (3 log3 5 log5 7 log 7 & .)1 & .
3 5 7 1 2 3 4 5 6 7 8 9 2

cc π − + −
− + − + = +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 This last conjecture contains an expression simpler than the preceding

one, therefore  there is hope that further work will bring success. Finding a demonstration

of it will not fail to spread much light on a number of other problems of this nature.

Translator’s Notes

These notes are keyed to the 20 sections of Euler’s paper.

Section 1.  The main interest in this paper, for modern readers, is that Euler finds a

relation equivalent to the functional equation for the zeta function. The zeta function

defined by the series 

1

1( ) s
n

s
n

ζ
∞

=

=∑ ,   Re( ) 1s > ,

is one of the most important special functions in mathematics. The functional equation

for the zeta function is 
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(1.1) (1 ) 2(2 ) cos ( ) ( )
2

s ss s sπ
ζ π ζ−  − = Γ 

 
.

Instead of using ( )sζ , Euler uses the alternating series  [1, p. 807]

1

1

( 1)( )
n

s
n

s
n

η
+∞

=

−
=∑ ,

which is defined for the wider region Re( ) 0s > . The function ( )sη is one simple step

removed from ( )sζ as shown by the relation  

( )1( ) 1 2 ( )ss sη ζ−= − .

The functional equation now becomes

(1.2) ( ) ( )12 1 (1 ) 2 1 cos ( ) ( )
2

s s s ss s sπ
η π η− −  − − = − − Γ 

 
.

This is easily manipulated into Euler’s relation when s n= , a natural number which he

writes as

(1.3) 
( )

( )
1 1 1 1 1

1

( 1)! 2 11 2 3 4 5 6 cos1 1 1 1 1 22 11
2 3 4 5 6

nn n n n n

n n

n n n n n

n nπ
π

− − − − −

−

− − −− + − + − +
=

−− + − + − +
.

     

When n is a natural number, the series in the numerator diverges, and the modern reader

is severely troubled. Euler however, the grand master of series manipulation is

undaunted. One of the most interesting features of this paper is Euler’s exciting

evaluation of divergent series. Throughout his paper, Euler refers to the “direct series”

(1.4) 1 2 3 4 5 6 7 8m m m m m m m m− + − + − + − + ,

and the “reciprocal series”

(1.5)                    1 1 1 1 1 1 1 1 ,
1 2 3 4 5 6 7 8n n n n n n n n− + − + − + − +

Euler had received much acclaim for finding exact closed form values for the

series ( )sζ  for s a positive even integer (see section 4 aand 5). So why did he choose to

write about the alternating series ( )sη  rather than ( )sζ ? Because the alternating series

can be summed by his methods, (see section 15), even for values of s where the series

diverges. This is not true of ( )sζ . Why was he interested in a functional equation?
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Probably because he was trying to sum ( )sζ  for s an odd positive integer, an attractive

problem that has never been solved.

At the end of his paper, Euler considers another function of interest  

1 1 1 ( ) ( )( )
1 3 5 2s s s

s sL s ζ η+
= − + − = ,

valid for Re( ) 0s > . Euler finds the functional equation

(1.5)    (1 ) 2 sin ( ) ( )
2

s s sL s s L sπ
π −  − = Γ 

 
.

Hardy [4, p. 23] writes “These results have usually been attributed to Riemann,

Malmsten, and Schlomilch. It was comparatively recently that it was observed, first by

Cahen and then by Landau, that both (1.2), which is equivalent to (1.1), and (1.6) stand

in a paper of Euler written in 1749, over 100 years before Riemann”.

Helpful summaries of Euler’s ideas from this paper are in Ayoub’s article [2] and

Hardy’s classic book [4, pp. 23-26].

Section 2.  Euler explains his idea of the sum of a divergent series. He uses the example

of the series 1-2+3-4+5-6 etc., which  arises by first expanding 

2 3 4 5
2

1 1 2 3 4 5 6
(1 )

x x x x
x

= − + − + − +
+

,

then setting x = 1.  We conclude that 1 2 3 4 5 6 . 1/ 4etc− + − + − + = . In modern terms this

is the Abel summation of the series which Hardy [4, p. 7] describes essentially as

follows:

Definition of Abel sum. If 
0

( )n
n

n
a x f x

∞

=

=∑  is convergent for 1x <  , and

1
lim ( ) ,
x

f x s
→ −

=

then we call s the Abel sum of 
0

n
n

a
∞

=
∑ .

Few modern mathematicians would try using divergent series as a tool to discover

mathematical truth. As early as 1826  Niels Heinrik Abel wrote:  The divergent series are

the invention of the devil, and it is a shame to base on them any demonstration

whatsoever. By using them, one may draw any conclusion he pleases and that is why

these series have produced so many fallacies and so many paradoxes. .…
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On the other hand, Hardy writes: The definitions of convergence and divergence

are now commonplaces of elementary analysis. The ideas were familiar to

mathematicians before Newton and Leibniz (indeed to Archimedes); and all the great

mathematicians of the seventeenth and eighteenth centuries, however recklessly they may

seem to have manipulated series, knew well enough whether the series which they used

converged.  The great electrical engineer Oliver Heaviside (1850–1925) wrote: The series

is divergent; therefore we may be able to do something with it.

It is the surprising success of Euler’s masterful manipulations with divergent

series that gives this paper its distinctive flavor and intense interest.

Section 3.  Euler lists seven special cases ( n = 0 to 6) of the following closed form

summation of power series:
2 3

2 3 1 2 3
1

1 ( 1)1 2 3 4
(1 )

n n
n n n n n n n n

n

c x c x c x c xx x x
x +

− + − + + −
− + − + =

+
.

Euler skips the derivation, so we outline ours here. We start with the case n = 0 which is

the geometric series,

2 3 11 .
1

x x x etc
x

− + − + =
+

.

To derive the remaining relations, simply multiply the last one by x and differentiate. For

example, if we have found

(3.1)
2 3

2 3 1 2 3
1

1 ( 1)1 2 3 4
(1 )

n n
n n n n n n n n

n

c x c x c x c xx x x
x +

− + − + + −
− + − + =

+
,

then multiplying by x we get
2 3 4 1

2 3 4 1 2 3
1

( 1)2 3 4
(1 )

n n
n n n n n n n n

n

x c x c x c x c xx x x x
x

+

+

− + − + + −
− + − + =

+
,

and differentiating we have the next relation
2 3 1 1

1 1 2 1 3 1 1 1 2 1 3 1 1
2

1 ( 1)1 2 3 4
(1 )

n n
n n n n n n n n

n

c x c x c x c xx x x
x

+ +
+ + + + + + + +

+

− + − + + −
− + − + =

+
.  

A simple examination of the coefficients n rc  in Euler’s list reveals the recurrence relation

1 1( 1) ( 1)n r n r n rc r c n r c+ −= + + − +

in action. We also note  that n r n n rc c −= .

Now let 1x →  in (3.1) and obtain the Abel summation of the divergent series
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(3.2) 1 2 3
1

1 ( 1)1 2 3 4
2

n
n n n n n n n n

n

c c c c
+

− + − + + −
− + − + = .

Sections 4 and 5. In previous work, Euler found closed form expressions for ( )zζ

when z is an even natural number. He showed that
2

2
1

1(2)
6n n
π

ζ
∞

=

= =∑ ,

4

4
1

1(4)
90n n
π

ζ
∞

=

= =∑ ,

6

6
1

1(6)
945n n
π

ζ
∞

=

= =∑ , 

and, today we write in general

(4.1) 
1 2 1

2 2
2

1

( 1) 21(2 )
(2 )!

p p
p p

p
n

B
p

n p
ζ π

+ −∞

=

−
= =∑  .

(See Knopp [5, page 237].) Using ( )1( ) 1 2 ( )ss sη ζ−= − we have

(4.2)
( )1 2 11

2 2
2

1

( 1) 2 1( 1)(2 )
(2 )!

p pn
p p

p
n

B
p

n p
η π

+ −+∞

=

− −−
= =∑ .

Here the numbers nB  are called Bernoulli’s numbers, and they are all rational. The first

few are 

0 1 2 4 6
1 1 1 11, , , , ,...
2 6 30 42

B B B B B= = − = = − = , and 3 5 7 ... 0B B B= = = = ,

and their generating function is 

(4.3)
01 !

nn
x

n

Bx x
e n

∞

=

=
− ∑ .

These can all be calculated recursively by starting with 0 1B = , and using

0 1 2 1 0
0 1 2 1 n

n n n n
B B B B

n −

       
+ + + + =       −       

for 2,3, 4, .n =  
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These numbers first appeared in 1713 in Jakob Bernoulli’s posthumous book, The

Art of Conjecturing [3, vol. 3, pp. 164–167]. They arise in a formula which Bernoulli

conjectures for the sum 
1

( , )
n

p

k
s p n k

=

= ∑ , where p is a natural number. 

The Bernoulli numbers were used by Euler in some of his publications, but he

does not use them explicitly here. Rather Euler uses consecutive letters of the alphabet in

the form 2(2) Aζ π= , 4(4) Bζ π= , 6(6) Cζ π= , … . In these notes we will use the

notation ( )A n when we refer to Euler’s notation so that (1)A A= , (2)A B= , (3)A C= ,

… . Thus from (4.1) we have Euler’s notation in terms of Bernoulli numbers

(4.4)
1 2 1

2( 1) 2( )
(2 )!

n n
nBA n

n

+ −−
= .

Euler also summed other alternating series related to ( )zζ . These include

1
0

( 1)(1)
(2 1) 4

n

n
L

n
π∞

=

−
= =

+∑ ,

3

3
0

( 1)(3)
(2 1) 32

n

n
L

n
π∞

=

−
= =

+∑ ,

5

5
0

( 1)(5)
(2 1) 1536

n

n
L

n
π∞

=

−
= =

+∑ , and in general

2 2 1
2 1 2 2

0

( 1)( 1)(2 1)
(2 1) 2 (2 )!

pn
p p

p p
n

E
L p

n p
π

∞
+

+ +
=

−−
+ = =

+∑ .

(See Knopp [5, page 240].) Here the nE  are called Euler’s numbers. They are all integers

and the first few are 0 2 4 6 81, 1, 5, 61, 1385,...E E E E E= = − = = − = , and

1 3 5 ... 0E E E= = = = . The 2nE  can all be calculated recursively by starting with 0 1E = ,

and then using 

2 2 2 2 4 0

2 2
0

2 4n n n

n n
E E E E− −

   
+ + + + =   
   

, for 1, 2,3n = . 

Section 6.  Euler uses a version of the “Euler Maclaurin summation formula”. 

In modern times we frequently write this formula as 
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(6.1) 
[ ]

0

0

0 0 0
0

2 1
2 1 2 12

0 0
1

1 1( ) ( ) ( ) ( )
2

( ) ( ) .
(2 )!

x nn

k x

k
k kk

k

f x k f x dx f x f x n

B f x n f x
k

α

α α
α

α
α

+

=

−∞
− −

=

+ = + + + +

 + − 

∑ ∫

∑

Usually it appears with 1α = . We can think of this as a generalization of the trapezoidal

rule for numerical integration of the function ( )f x  over the interval from 0x x=  to

0x x nα= +  where  α  is the length of the increment step. 

Euler uses a variation of (6.1) which we now describe. Rather than integrating

from left to right, we can integrate from right to left. We achieve this modification by

replacing the increment α  by –α  , and  now think of 0x  is the right most point and

0x x nα= −  is the left most point. We get

(6.2)   
[ ]

0

0

0 0 0
0

2 1
2 1 2 12

0 0
1

1 1( ) ( ) ( ) ( )
2

( ) ( ) .
(2 )!

x nn

k x

k
k kk

k

f x n k f x dx f x f x n

B f x n f x
k

α

α α α
α

α
α

−

=

−∞
− −

=

− + = + + − −
−

 − − 

∑ ∫

∑
.

This form of the summation formula can be easily modified  if we want  to sum over the

infinite range of numbers , , 2 ,x x xα α+ + . For this purpose write  0x x nα= −   and

let 0x →∞  and n →∞  in such a way that x remains fixed to get

[ ]
0

2 1
2 1 2 12

1

1 1( ) ( ) ( ) ( )
2

( ) ( )
(2 )!

x

k

k
k kk

k

f x k f x dx f x f

B f x f
k

α
α

α

∞

= ∞

−∞
− −

=

+ = + + ∞ −
−

 − ∞ 

∑ ∫

∑
.

If we call 
2 1

2 12

1

( )( ) ( )
2 (2 )!

k
kk

k

Bf f
k
α

β α
−∞

−

=

∞
= + ∞∑ , then the above summation formula

becomes

(6.3)
2 1

2 12

0 1

1 1( ) ( ) ( ) ( ) ( )
2 (2 )!

x k
kk

k k

Bf x k f x dx f x f x
k
α

α β α
α

−∞ ∞
−

= =∞

+ = + − +
−∑ ∑∫ .

Section 7.   We must sum alternating series so he modifies (6.3). We replace the

increment  α  by 2α  to get
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(7.1)     
2 1 2 1

2 12

0 1

21 1( 2 ) ( ) ( ) ( ) (2 )
2 2 (2 )!

x k k
kk

k k

Bf x k f x dx f x f x
k
α

α β α
α

− −∞ ∞
−

= =∞

+ = + − +
−∑ ∑∫ .

Next double (7.1) and subtract the previous summation (6.3) from it to get

(7.1)   
( )2 2 1

2 2 1

0 1

2 11( 1) ( ) ( ) ( ) ( ) 2 (2 )
2 (2 )!

k k
kk k

k k

B
f x k f x f x

k
α

α β α β α
−∞ ∞

−

= =

−
− + = − − +∑ ∑ .

Finally let 1α =  and get the general alternating infinite series

     
( )2

2 2 1

0 1

2 11( 1) ( ) ( ) ( ) (1) 2 (2)
2 (2 )!

k
kk k

k k

B
f x k f x f x

k
β β

∞ ∞
−

= =

−
− + = − − +∑ ∑ .

If the series on the left converges, then we see that the constant term (1) 2 (2) 0β β− + =

by imagining x →∞ .  We get

(7.3)     
( )2

2 2 1

0 1

2 11( 1) ( ) ( ) ( )
2 (2 )!

k
kk k

k k

B
f x k f x f x

k

∞ ∞
−

= =

−
− + = −∑ ∑ .

Since Euler does not use the Bernoulli numbers, rather he uses consecutive letters of the

alphabet which we describe as 
1 2 1

2( 1) 2( )
(2 )!

n n
nBA n

n

+ −−
= , he writes (6.6) in the form

(7.4)
( )2

2 1
2 1

0 1

( 1) ( ) 2 11( 1) ( ) ( ) ( )
2 2

k k
k k

k
k k

A k
f x k f x f x

∞ ∞
−

−
= =

− −
− + = +∑ ∑ .

This is the form of the summation formula used by Euler throughout the remainder of the

paper.

To obtain series of the first type Euler sets ( ) mf x x=  and 1α =  in (7.4) to get 

( 1) ( 2) ( 3) ( 4) ( 5)m m m m m mx x x x x x− + + + − + + + − + + =

( ) ( )2 1 4 31 ( 1)( 2)2 1 (1) 2 1 (2)
2 2 2 2 2

m m mm m m mx A x A x− −− −
− − + −

⋅ ⋅

( )6 5( 1)( 2)( 3)( 4) 2 1 (3) ,
2 2 2 2 2

mm m m m m A x −− − − −
+ − −

⋅ ⋅ ⋅ ⋅

where the sum on the right is finite if m is a non-negative  integer.

Section 8.  Euler now lets 0x =  in this last result to obtain series of the first type (1). On

the right, all the terms disappear if m is even, and all but one term disappears if m is odd. 
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(8.1)

( )
( 1) / 2

1

1 2 3 4 5 6
0 ,

( 1) ! 2 1 (( 1) / 2) .
2

m m m m m m

m
m

m

if m is even
m A m if m is odd

−
+

− + − + − +


= −

− +

In terms of Bernoulli numbers this is

(8.2)
( )1

12 1
1 2 3 4 5 6

1

m
mm m m m m m

B
m

+
+−

− + − + − + =
+

.

These sums agree with the results of section 2, but only now is the dependence on A(n)

revealed. Comparing (8.2) with (3.2) we have

(8.3)
( )1

11 2 3
1

2 11 ( 1)
2 1

mm
mm m m m m

m

Bc c c c
m

+
+

+

−− + − + + −
=

+
.

Hardy [4 , p. 24] gives a derivation of (8.2) that does not use the Euler Maclaurin

summation formula and proves that the result is the Abel summation of the divergent

series. Hardy begins with the geometric series

2 3

1
x x x x

x
= − + −

+
 , for 1x < .

Now let yx e−= , with y > 0 to get

2 31
1

y y y
y e e e

e
− − −= − + −

+
.

Differentiating m times we get 

(8.4) 2 31 1 2 3
1

m
m y m y m y

y

d e e e
dy e

− − − 
− = − + −  + 

,

for 0, 1, 2, .m =

Consider the following elementary manipulations to write 1
1ye +

 as a power series in y in

terms of Bernoulli numbers:

2

1 1
1 1

y

y y

e
e e

−
=

+ −

( )( )2

2 1
1 1 1

y

y y y

e
e e e

+
= − +

− − +
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          2

2 1
1 1y ye e

= − +
− −

          

          2

1 1 2 1 11
2 1 1 2y y

y y
y e y e
   = − − + +   − −   

          

             2

1 1 2 1 1 11 2 1
2 1 2 1 2y y

y yy y
y e y e
   = − − + + − +   − −   

.

Using the generating function for the Bernoulli numbers (4.3) we now have

             
2 2

1 1 1 1(2 )
1 2 ! !

m mm m
y

m m

B By y
e y m y m

∞ ∞

= =

= − +
+ ∑ ∑ .

Thus we have shown that 

              
1

1
1

1 1 2 1
1 2 ( 1)!

m
m

my
m

B y
e m

+∞

+
=

−
= −

+ +∑ .

Differentiating m times we get

1

1
1

1
1

1

1 1 2 1
1 2 ( 1)!

2 1 !( 1) .
( 1)! ( )!

m m k
k

ky
k

k
m k m

k
k m

d d B y
dy e dy k

kB y
k k m

+∞

+
=

+∞
+ −

+
=

     −
− = − −    + +     

−
= −

+ −

∑

∑

Comparing this with (8.4) we get
1

2 3 1
1

2 1 !1 2 3 ( 1)
( 1)! ( )!

k
m y m y m y m k m

k
k m

ke e e B y
k k m

+∞
− − − + −

+
=

−
− + − = −

+ −∑ .

Write yx e−=  to get 

(8.5) 
1

2 3 1
1

2 1 !1 2 3 ( 1) ( log )
( 1)! ( )!

k
m m m m k m

k
k m

kx x x B x
k k m

+∞
+ −

+
=

−
− + − = − −

+ −∑ .

This last result allows us to find the needed Abel summation of the series. Let 1x → and

only the first term in the series on the right remains. We get
1

1
1

2 11 2 3 ( 1)
1

m
m m m m

mB
m

+
+

+
−

− + − = −
+

.

Now 1 1/ 2B = − , and all the remaining Bernoulli numbers with odd subscripts are zero.

Therefore for m = 0 we get
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1 1 1 1 1/ 2− + − + = ,

and for 1, 2, 3,m =  we can ignore 1( 1)m+−  since it is negative only when 1 0mB + = . We

get 

(8.6)
1

1
2 11 2 3

1

m
m m m

mB
m

+

+
−

− + − =
+

.

This last relation is the same as (8.3) and we have rigorously demonstrated the Abel

summation of the divergent series 1 2 3m m m− + −   when m is a positive integer.

Sections 9. In this section Euler prepares for his main conjecture. When p is a positive

integer, he has obtained the following two results:

( )2
2 1 2 1 2 1 2 1 2 1 1

2 1

2 1
1 2 3 4 5 6 ( 1) (2 1)! ( )

2

p
p p p p p p

pp A p− − − − − +
−

−
− + − + − + = − −   , and

  
2 1

2
2 2 2 2 2 2 2 1

1 1 1 1 1 1 2 1 ( )
1 2 3 4 5 6 2

p
p

p p p p p p p A p π
−

−

−
− + − + − + = .

Dividing the two he eliminates ( )A p  and gets

(9.1)
( )

( )
1 22 1 2 1 2 1 2 1 2 1

2 1 2

2 2 2 2 2 2

( 1) (2 1)! 2 11 2 3 4 5 6
1 1 1 1 1 1 2 1

1 2 3 4 5 6

p pp p p p p

p p

p p p p p p

p

π

+− − − − −

−

− − −− + − + − +
=

−− + − + − +
.

He also has

(9.2)
2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1

1 2 3 4 5 6 01 1 1 1 1 1
1 2 3 4 5 6

p p p p p

p p p p p p+ + + + + +

− + − + − +
=

− + − + − +
.

Euler lists this pair (9.1) and (9.2) for p = 1 to 5. 

Section 10. Reflecting on the above results, Euler conjectures the general formula

(10.1)
( )

( )
1 1 1 1 1

1

( 1)! 2 11 2 3 4 5 6 cos1 1 1 1 1 22 11
2 3 4 5 6

nn n n n n

n n

n n n n n

n nπ
π

− − − − −

−

− − −− + − + − +
=

−− + − + − +
.

which he has shown to be true for n = 2, 3, 4, … . This is the main result of the paper.

Today we would write this as

(10.2)
( )

( )1

( ) 2 1(1 ) cos
( ) 22 1

n

n n

nn n
n

η π
η π−

−Γ −−
=

−
.

Section 11. In this section Euler proves that his conjecture (10.1) is valid for n = 1. 
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Section 12. Now Euler verifies his conjecture (10.1) for n = 0. Looking at the conjecture

in the form (10.2) we see at once a difficulty since ( )xΓ has a pole at x = 0. This he

overcomes by multiplying and dividing by x to get  ( ) ( 1)x x x
x x

Γ Γ +
= . This last

expression approaches 1
x

 as 0x →  which simplifies the investigation of the limits that

Euler encounters. 

Section 13.  The conjecture (10.1) has been demonstrated for n = 0, 1, 2, 3, …. He now

proves the conjecture for n a negative integer. Euler introduces his notation for the

generalized factorial. He writes [x]  for the modern x!, and so for arbitrary x we have in

modern terms [ ] ( 1)x x= Γ + . Looking at the conjecture in the form (10.2) and recalling

that ( )xΓ  has poles at x = 0, 1, 2, … , we see a problem. This is overcome by using the

identity (1 ) (1 )
sin

xx x
x

π
π

Γ − Γ + = , which he has found in a previous publication.

Section 14. Euler verifies his conjecture (10.1) for 1/ 2n =  which is

( )
( )

1/ 2
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1 1 1 11 (1/ 2) 2 12 3 4 5 6 cos1 1 1 1 1 42 11
2 3 4 5 6

π
π−

− + − + − + −Γ −
=

−− + − + − +
.

This is the only case considered by Euler in which both the series in the numerator and

the denominator converge. He uses (1/ 2) πΓ = , and remarks that his success in this

case makes his conjecture very convincing.

Section 15.      Next Euler tests his conjecture for n = 3/2 which is 

1 2 3 4 5 6 3 2 0.49677381 1 1 1 1 2 21
2 2 3 3 4 4 5 5 6 6

π
− + − + − + +

= =
− + − + − +

.

He makes the verification numerically. This means Euler must find a numerical value for

the divergent series in the numerator!  A task that would frighten the best analysis. He

initially calculates the sum of the first nine terms and gets 

1 2 3 4 5 6 7 8 9 1.9217396662− + − + − + − + = . 

 From this he must subtract the remainder of the series which is

10 11 12 13 14− + − + −  For this second calculation he calls on the alternating
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series version of the Euler-Maclaurin sum formula (7.3) from which he uses the first 5

terms. This  is about 1.541610. Thus the numerator series equals 0.380129. 

 He calculates the sum of the convergent series in the denominator in the same

way (9 terms of the series followed by 5 terms of the Euler Maclaurin formula) and gets

0.765158. Dividing these two values he finds agreement with the conjectured value to 4

decimal places. (Euler actually has 6 decimal place accuracy, but he made a few

arithmetical errors.)  Euler ends by saying “one could not doubt in the least that this

matter is true.” 

Using Mathematica, we tried the same calculations with the first 60,001 terms of

the original series followed by 350 terms of the Euler Maclaurin formula for the

remainder of the series. When we compared the numerical results with the conjectured

value, we had over 2000 accurate decimal places in less than two minutes.

Sections 17 to 19.      Euler  continues his search to find the sum of the series 

1 1 1 1 1 1 1 1 ,
1 2 3 4 5 6 7 8n n n n n n n n− + − + − + − +

when n is an odd integer. Again he fails. He shows that for λ a positive integer

( )
( )

2 1 2 1 2 1 2 1

2 2
2 2 2 2

2 1

1 1 1 11
2 3 4 5

2 2 1
(1 log1 2 log 2 3 log3 4 log 4 )

1 2 3 2 2 1 cos

λ λ λ λ

λ λ
λ λ λ λ

λ

π

λ λπ

+ + + +

+

− + − + − =

−
− + − +

⋅ ⋅ −
,

and observes that summing the series 
2 2 2 21 log1 2 log 2 3 log3 4 log 4 .etcλ λ λ λ− + − +

is probably more difficult than his original problem.

Section 20.      Euler states that he has found the similar conjecture
1 1 11 3 5 7 1 2 3 ( 1)2 sin

1 3 5 7 2

n n n n

n n n n

n nπ
π

− − −

− − −

− + − + ⋅ ⋅ −
=

− + − +

using the same methods. 

In modern notion we write  

1 1 1 ( ) ( )( )
1 3 5 2s s s

s sL s ζ η+
= − + − = ,

valid for Re( ) 0s > . We have the modern functional equation
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   ( )2(1 ) sin ( )
2

s

s

s sL s L sπ
π

Γ  − =  
 

.
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